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Identification, prediction, and control of a system are engineering subjects, regardless of the nature
of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly
recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-
infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of
cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find
the probabilities of the state transition S → I able of reproducing in the CA lattice the historical
series of 2007. These probabilities depend on the number of infective neighbors. Time-varying
and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling
topology among the cells are taken into consideration. Then, these epidemiological models built by
combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models
can be useful for forecasting and controlling the spreading of this infectious disease.

1. Introduction

The propagation of infectious diseases is one of the major public health problems in the world
(e.g., [1]). Cellular automaton (CA; e.g., [2]) has been employed for modelling the spreading
of such diseases (e.g., [3–6]), in order to predict epidemics and evaluate the efficacy of control
strategies. In a CA epidemiological model, each cell composing the lattice can correspond
either to a unique individual or to a larger fraction of the population. At each time step,
each cell is in one of three states: S, I, or R. The state S represents a cell that is susceptible
and therefore subject to being infected; the state I is related to a cell that is infective and
hence can transmit the disease for susceptible ones; the state R is associated with removal
from the process of disease propagation, meaning that the cell either is cured and immunized
or is dead. Such a model is usually known by the abbreviation SIR (e.g., [7]). If recovery
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from the infection does not confer immunity, the model is called SIS. The definition of the
rules concerning the transitions among the states S, I, and R and the choice of the network
topology utilized for representing the contacts among the individuals specify a SIR or SIS
model based on CA.

There are several works on identification of transition rules of CA by using genetic
algorithm (GA; e.g., [8–11]). For instance, GA was employed for finding the probabilities of
state transitions of a SIR model formulated in terms of CA in order to simulate the temporal
evolution of the number of chickenpox cases registered by the Arizona Department of Health
Services, USA, between 1994 and 2004 [12]. Here we use a similar approach for identifying
SIR and SIS models related to the incidence of dengue in 2007 in Rio de Janeiro, the second
most populous city in Brazil.

Dengue is presently considered the most relevant arthropod-borne viral disease in
terms of morbidity and mortality, affecting tens of millions of people annually worldwide
(e.g., [13–16]). Its main vector is the mosquito Aedes aegypti, usually found in urbanized areas
in tropical and subtropical countries. There are four serotypes of dengue virus. The variation
number 2 was the predominant serotype circulating in the city of Rio de Janeiro in 2007 and
2008 (e.g., [17, 18]). Dengue is transmitted to humans by the bite of an infected mosquito,
which became infected with dengue virus after biting an infected person. Because of the
current lack of vaccines or specific drugs against dengue fever (e.g., [14]), it is crucial to
predict dengue epidemics, in order to concentrate efforts on combating the vector. In fact,
the strategy commonly adopted for controlling the spreading of this disease involves the
chemical attack against the mosquito (using insecticides) and the reduction of natural or
human-made uncovered water containers (like empty bottles and old automobile tires) that
store rainwater and can support the mosquito proliferation (e.g., [13]).

There are several mathematical studies on dengue dynamics by using autoregressive
models (e.g., [19, 20]), cellular automata (e.g., [21]), genetic algorithms (e.g., [22]), neural
networks (e.g., [23]), ordinary differential equations (e.g., [24, 25]), and partial differential
equations (e.g., [26]). Here we employ our originally developed approach [12] based on CA
and GA to build models able of reproducing the number of dengue cases recorded in Rio
de Janeiro during 2007. Then, these models are used for weekly predicting the cases of sick
persons in the course of 2008.

In our CA models, humans live in a square matrix formed by n × n = n2 cells. These
CA models can be different in the number of states available for each cell (two states if SIS,
three states if SIR), in the lattice size (here 500 × 500, 1000 × 1000 or 2420 × 2420), in the
connection topology in the CA lattice (here cross-shaped or square-shaped neighborhood),
in the maximum radius r where connections can be made (here r = 1 or 2), and in the use of
time-varying or non-time-varying probabilities associated with the state transition S → I.

This manuscript is organized as follows. In Section 2, the epidemiological models
written as CA rules are introduced. In Section 3, the GA employed for identifying the
probabilities of the transition S → I is described. In Section 4, the numerical results obtained
from different kinds of CA models are presented. In Section 5, the main conclusions are
stressed.

2. SIR and SIS Models Based on CA

Dengue does not directly spread from person to person; that is, the transmission is indirect.
However, we suppose that the higher the number of infective neighbors, the higher the
chance of a susceptible individual being contaminated. This is a reasonable assumption
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when the mosquito is uniformly distributed over the space. From September 2006 to March
2008, the densities of Aedes aegypti weekly registered in urban and suburban areas of Rio
de Janeiro produced similar time series [27]. Thus, in these areas, the mosquito distribution
could be roughly taken, at each week, as uniform (but there were significant differences when
compared to suburban slum areas). In addition, SIR (e.g., [28]) and SIS (e.g., [29])models that
do not explicitly consider the mosquito concentration were already employed in numerical
studies on dengue spreading. These experimental and theoretical works give some support
to our simplification about dengue transmission.

The time step of a CA simulation corresponds to one week of real time, which is the
mean duration of the latent and the infective periods (e.g., [13, 16]). In our model, at each
time step t, there is a probability Pi(v) of a S-cell being infected, where Pi depends on the
number v of infective neighbors. We assume that the probability Pi of the transition S → I
obeys the constraints: Pi(0) = 0 (i.e., a susceptible individual can contract the disease only if
v > 0) and if v1 < v2 then Pi(v1) ≤ Pi(v2); (i.e., Pi(v) is a monotone increasing function of
v). A S-cell that acquires the disease in t will be infective only in t + 1. And, after one time
step, each I-cell becomes a R-cell in a SIR model or a S-cell in a SIS model. Notice that the
transitions I → R and I → S are governed by deterministic rules.

In a SIR model, a R-cell stays in such a state, representing either death or perfect and
sustained immunity against the dengue virus; more precisely, against the specific serotype
causing the disease (e.g., [13, 15]). In a SIS model, an I-cell returns to the susceptible state
after either death or recovery, meaning either birth of a susceptible cell in the place of a cell
killed by the infection or no cross-protective immunity against the other serotypes. In fact,
cross-immunity is detected only during a few months, corresponding to a short-term effect
(e.g., [15]); hence, it was not considered here. In both kinds of models, the total number of
cells n2 remains constant. The states of all cells are simultaneously updated at each time step.

In many mathematical studies on disease propagation using CA, the contact network
(which defines the neighborhood of each cell in the lattice) is taken as a regular structure (e.g.,
[3, 4]). In this context, cross-shaped (e.g., [30]) and square-shaped (e.g., [31]) neighborhoods
are commonly employed. Cross-shaped neighborhood of radius r of a cell is formed by the
cells orthogonally surrounding such a cell until the distance r (for instance, if r = 1 this
neighborhood comprises the 4 closest neighbors: left, right, up, and down); square-shaped
(Moore) neighborhood of radius r of a cell is constituted by all cells surrounding such a cell
until the distance r (for instance, if r = 2 the Moore neighborhood of a cell is formed by
the 24 cells pertaining to the square matrix of size 5 centered in such a cell). Both kinds of
neighborhoods with r = 1 and 2 are utilized in our epidemiological models.

With these models formulated in terms of CA rules, we intend to fit the number of
dengue cases observed in Rio de Janeiro, during the year of 2007, by finding appropriate
values for Pi. The values of these probabilities related to the transition S → I are determined
by using a GA. The parameter values, the features of the genetic operators and details of the
chromosome selection process of the GA were defined after preliminary tests, in which the
performance of our scheme based on CA and GA and the processing time required for the
numerical simulations were evaluated. A previous work [12] also guided these choices.

3. GA Used for Identifying the CA Models

Each generation of the GA is formed by 40 chromosomes (40 candidate-solutions). The length
of the chromosomes depends on the kind and on the radius of the neighborhood chosen in
the CA lattice. For instance, when cross-shaped neighborhood of r = 1 is employed, each
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Figure 1: Two points are randomly selected in two randomly picked chromosomes (the parents) and the
genes (in gray) between these two points are swapped. Thus, two new chromosomes (the children) are
created.

chromosome is formed by 4 genes (the values of Pi(1), Pi(2), Pi(3), Pi(4)); when square-
shaped neighborhood of r = 1 is used, each one consists of 8 genes (the values of Pi(1),
Pi(2), . . . , Pi(8)). The fitness of the chromosomes is evaluated in simulations with the CA
models.

Firstly, the GAused in the identification process with time-varying Pi(v, t) is described.
In this case, the fitness of a chromosome is high if the number of infective cells appearing in
the CA lattice in the tth time step is close to the datum recorded in the tth week of 2007. The
fitness function Ft,q of the qth chromosome at the time step t is written as

Ft, q ≡ 1
∣
∣
∣xt − xCA

t, q

∣
∣
∣

, (3.1)

where q = 1, 2, . . . , 40; xt is the number of historical cases registered in the tth week in the year
of 2007; xCA

t,q is the number of infective individuals obtained in the CA model in the tth time
step with the qth chromosome.

An initial population of 40 chromosomes is randomly generated, and the value g of
their genes must always be real numbers between zero and one, that is, g ∈ [0, 1], because
they represent probabilities. These chromosomes are evaluated, and the 3 best ones (the 3
chromosomes with highest fitness) are kept apart. Other chromosomes are created from the
current generation by applying a two-point crossover operation (e.g., [32]). Such an operation
is performed by selecting two points in two randomly picked chromosomes (the parents) and
swapping the genes between these two points. Thus, two new chromosomes (the children)
are produced. Figure 1 illustrates this operation.

Then, each gene of the set of 40 chromosomes composed by the 3 best parents plus
37 children has 1% of chance of suffering mutation, which changes the value of g of ±0.02
(if after this operation g > 1, then we impose g = 1; if g < 0, then we impose g = 0 in order to
get g ∈ [0, 1]).

After applying these genetic operators for producing a new generation of chromo-
somes, the values of g in such chromosomes are reordered (if necessary) as shown in Figure 2,
because Pi must be a monotone increasing function of v. Thus, a new generation is created
and can be evaluated as described above.
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Figure 2: By comparing to Figure 1, observe that the values of the genes (5) and (6) in the child (3) were
reordered, because Pi must be a monotone increasing function of v.

The system identification performed with time-varying Pi(v, t) can be summarized as
follows. Initially, 40 chromosomes are randomly generated and each one is evaluated in a
CA lattice, by using their probabilities of the state transition S → I to obtain the number
of infective cells in the second time step (the second week of the historical series of 2007,
t = 2). Of course, the initial condition in the CA corresponds to the number of infective cases
in the first week of 2007 (t = 1). The transitions I → R in a SIR model and I → S in a SIS
model are deterministically performed. Then, the numbers of sick cells in the 40 lattices (one
lattice for each chromosome) are compared to the historical record. The 3 best chromosomes
obtained from this comparison plus 37 chromosomes created by crossover are selected for
suffering mutation. Thus, a new generation of 40 chromosomes is formed. Notice that one
GA generation corresponds to one time step in the CA lattice. This is repeated for the other
50 weeks of 2007. Also, the whole identification process is fully executed 10 times. In the end,
the best set of 51 chromosomes is picked out (the 51 chromosomes able of weekly reproducing
the numbers of infections in 2007). This set is employed for predicting the dengue cases in
2008.

The GA used in the identification process with non-time-varying Pi(v) is a little
different. In this case, the goal is to obtain constant values for Pi(v) that can satisfactorily
fit the number of sick persons observed during 51 weeks from the initial condition (which
corresponds to the dengue cases in the first week of 2007). Initially, 40 chromosomes are
randomly created and they are individually evaluated for 51 time steps in a CA lattice (again,
one lattice for each chromosome). The fitness function Gq of the qth chromosome is defined
as follows:

Gq ≡ 1
∣
∣
∣

∑52
t=1

(

xt − xCA
t,q

)∣
∣
∣

. (3.2)

Notice that the lower the absolute value of the difference between the grand total recorded
during 2007 and number of sick individuals appearing in the CA in all 52 time steps, the
higher the fitness. The next GA generation is created as already described, by applying
mutation in the 3 best parents plus 37 children. Notice that here one GA generation
corresponds to 51 time steps (51 weeks) in the CA lattice. This GA is executed by 25
generations. In the end, the best chromosome is picked out (the one able of better fitting
the number of infections occurred in the course of 2007). This unique chromosome is utilized
for making predictions about the infections in 2008.

4. Results

The simulations were performed by taking into account the dengue cases weekly recorded
by the Health Department of the city of Rio de Janeiro, Brazil, in 2007 and 2008 [33]. In
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Table 1: Performances of the models in the identification process (by using the historical series of 2007).

Rank Neighborhood r n SIS or SIR Average error
1 Square 2 500 SIS 312
2 Cross 2 500 SIS 315
3 Square 1 500 SIS 340
4 Cross 2 1000 SIS 467
5 Cross 1 500 SIS 522
6 Cross 2 500 SIR 556
7 Square 2 1000 SIR 648
8 Square 2 500 SIR 648
9 Square 2 1000 SIS 657
10 Square 1 1000 SIS 888
11 Cross 2 2420 SIS 953
12 Square 2 2420 SIR 999
13 Square 1 500 SIR 1292
14 Cross 1 500 SIR 1396
15 Cross 2 1000 SIR 1630
16 Cross 1 2420 SIS 1682
17 Cross 2 2420 SIR 1972
18 Square 1 1000 SIR 1977
19 Cross 1 1000 SIR 2137
20 Square 1 2420 SIR 2198
21 Square 2 2420 SIS 2442
22 Square 1 2420 SIS 2648
23 Cross 1 1000 SIS 3472
24 Cross 1 2420 SIR 5148

2007, 5857900 people lived in this city and we assume that this number also represents the
whole population in 2008. In 2007, 25107 people get sick by dengue; in 2008, 126326 people, a
number five-times greater than in 2007. Could this epidemic have been predicted by some of
our CA models in the first week of 2008, when 1510 cases were recorded?

The CA models can be SIR or SIS; with lattice size n = 500, 1000, or 2420; with cross-
shaped or square-shaped neighborhood; with neighborhood radius r = 1 or 2. Thus, there
are 2 × 3 × 2 × 2 = 24 kinds of models. For n = 500, each CA cell represents approximately 23
individuals; for n = 1000, 6 individuals; for n = 2420, 1 individual.

Table 1 presents the ranking of these 24 kinds of models in the identification stage, by
using time-varying Pi(v, t). The lower the rank number, the lower the difference between the
series generated by the CA model and the historical data from 2007. The number in the last
column is the average error obtained in 10 simulations for each kind of model. The error in a
unique simulation is given by

∑52
t=1 |xt − xCA

t |, where xt is the number of dengue cases in the
tth week and xCA

t is the number of infective individuals in the tth week obtained in the CA
simulation with the best chromosome found in that week in the identification process. The
value of xCA

t is calculated from the number of I-cells by using a spatial scale factor determined
by n. Remember that x1 = xCA

1 . Table 1 shows that all CAmodels can satisfactorily fit the data:
the average errors are of the order of 1%–20% of the grand total of cases recorded in 2007. As
an example, Figure 3 exhibits the historical series of 2007 (solid line) and the series generated
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Figure 3: Historical records from 2007 (solid line) and a series obtained with a CA model based on time-
varying Pi(v, t), SIS, cross-shaped neighborhood, r = 2, and n = 1000 (dotted line).
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Figure 4: Historical records from 2008 (solid line) and a series obtained with the same CA model used in
Figure 3 (dotted line).

by a CA model (dotted line) with SIS, cross-shaped neighborhood, r = 2, and n = 1000; the
kind of model in fourth place in Table 1.

Table 2 presents the ranking of these 24 kinds of models with time-varying Pi(v, t) in
the prediction stage. The initial amount of I-cells in the CA lattice is determined from the
cases registered in the first week (t = 1) in 2008. The numbers of I-cells in the next 51 weeks
are calculated by using the values of Pi(v, t) corresponding to the best 51 chromosomes found
in the identification stage. Thus, our ambitious intention was to make a prediction of 51 steps
ahead. Observe, however, that the average error was great: even for the model in first place
in Table 2, the average error is of the same order of the grand total of cases registered in 2008.
In spite of that huge average error, some models found in the identification process were able
of correctly predicting the outbreak occurred in 2008. Figure 4 presents the historical series
of 2008 (solid line) and the series generated by the same CA model (dotted line) of Figure 3.
Notice that there is a reasonable agreement between the two series.



8 Mathematical Problems in Engineering

10 20 30 40 50
0

5000

10000

15000

Week

In
fe
ct
iv
e
in
d
iv
id
ua

ls

Figure 5: Historical records from 2008 (solid line) and the average temporal evolution of infective
individuals obtained in 10 simulations with a CA model based on time-varying Pi(v, t), SIS, cross-shaped
neighborhood, r = 2, and n = 500 (dotted line). The bars correspond to the standard deviations.

The set of chromosomes (the set of Pi(v, t) with t = 1, 2, . . . , 51) that better identified
the 2007 series was obtained with SIS, cross-shaped neighborhood, r = 2, and n = 500
(the average performance of this kind of model appears in the second place in Table 1). We
performed 10 simulations with this set and calculated the average values of sick individuals
in each week of 2008 and the corresponding standard deviations. Figure 5 shows the results.
Notice that this model predicts a sustained high number of dengue cases after the 20th week,
which in fact did not occur. However, the prediction for the first 10 weeks can be considered
satisfactory.

The set of chromosomes that better predicted the 2008 series was obtained with SIS,
cross-shaped neighborhood, r = 2, and n = 1000 (the CAmodel employed in Figures 3 and 4).
We executed 10 simulations with this set and determined the average values of sick persons
in each week of 2008 and the corresponding standard deviations. Figure 6 exhibits the results.
Observe the good qualitative and quantitative agreements: the average number of cases in the
CA lattice during 2008 is 129699, which is close to the real grand total (126326 cases). Also,
both series have a peak around the forth month.

The set of chromosomes that better anticipated the number of cases recorded in the
second week of 2008 was obtained with SIR, cross-shaped neighborhood, r = 2, and n = 2420.
In 10 simulations, the average value predicted by this CA model is 3145, which is very close
to the real number (3148 cases). The week-by-week prediction for the whole year of 2008 is
not good, as shown in Figure 7. However, the difference between the total of cases recorded
in 2008 and the total predicted by this model is less than 1%.

By using non-time-varying Pi(v), the results were not too good. As examples, Figures
8 and 9 present the series generated by a CAmodel in the identification and prediction stages,
respectively, with SIR, square-shaped neighborhood, r = 1, and n = 500. The reason for the
failure of the approach with non-time-varying Pi(v) can be the seasonality of dengue fever:
its incidence usually increases after the beginning of the rainy season and decreases after the
beginning of the winter. Thus, the probabilities Pi of the transition S → I change during the
year, because themosquito concentration varies in function of climatic factors, such as rainfall
and temperature (e.g., [15, 27]). But notice that in Figure 9 the predicted incidence enhances
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Figure 6: Historical records from 2008 (solid line) and the average temporal evolution of infective
individuals obtained in 10 simulations with the same CA model of Figure 3 (dotted line). The bars
correspond to the standard deviations.
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Figure 7: Historical records from 2008 (solid line) and the average temporal evolution of infective
individuals obtained in 10 simulations with a CA model based on time-varying Pi(v, t), SIR, cross-shaped
neighborhood, r = 2, and n = 2420 (dotted line). The bars represent the standard deviations.

in the first weeks of 2008, which in fact did happen. Therefore, models with non-time-varying
Pi(v) can also give an acceptable prediction, at least for a few time steps ahead.

5. Conclusions

Dengue fever is a public health problem in more than 100 countries, like Brazil (e.g., [17]),
China (e.g., [20]), and Mexico (e.g., [22]). Forecasting its incidence is crucial to guide
prophylactic actions. Here we used data recorded in the city of Rio de Janeiro in 2007 and
2008 in order to find out the kinds of epidemiological models formulated as CA rules able
of better fitting and predicting its occurrence. Tables 1 and 2 reveal that the choice of the
model structure is critical: SIS models appear to be more convenient for identification while
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Figure 8: Historical records from 2007 (solid line) and a series obtained with a CA model based on non-
time-varying Pi(v), SIR, square-shaped neighborhood, r = 1, and n = 500 (dotted line).
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Figure 9: Historical records from 2008 (solid line) and a series obtained with the same CA model used in
Figure 8 (dotted line).

SIR models for prediction. Neighborhood radius r = 2 seems to be more adequate for
identification; r = 1, for prediction. These tables also show that cross-shaped or square-
shaped neighborhoods do not produce very different results and lattice size n = 500 can
be considered a good choice of spatial scale (for a discussion about the influence of the lattice
size, see [12]). Moreover, time-varying probabilities Pi(v, t) are essential for capturing the
seasonality of this infectious disease.

Of course, a prediction of 51 steps ahead is too challenging. In a real situation, the
probabilities Pi(v, t) could be periodically updated by considering the latest weekly records.
However, in spite of this ambitious goal, we found models that correctly predicted the
epidemic occurred in 2008 just from the cases recorded in the first week of this year and
by using the probabilities Pi(v, t) determined from the 2007 series. This framework based on
CA and GA should be applied to other diseases and cities, in order to check the validity of
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Table 2: Performances of the models in the prediction process (by comparing to the historical series of
2008).

Rank Neighborhood r n SIS or SIR Average error
1 Square 1 2420 SIR 106922
2 Cross 2 500 SIR 108836
3 Cross 1 2420 SIR 111387
4 Cross 1 500 SIR 115057
5 Square 1 500 SIR 115305
6 Cross 1 1000 SIR 118400
7 Square 1 1000 SIR 119329
8 Cross 2 1000 SIR 126618
9 Cross 1 2420 SIS 152288
10 Square 2 500 SIR 153741
11 Square 2 2420 SIR 159273
12 Cross 2 2420 SIR 176750
13 Square 2 1000 SIR 191479
14 Cross 2 2420 SIS 251616
15 Square 1 1000 SIS 262038
16 Cross 1 500 SIS 274454
17 Square 1 2420 SIS 354890
18 Cross 1 1000 SIS 565194
19 Square 1 500 SIS 693065
20 Cross 2 1000 SIS 1241196
21 Square 2 1000 SIS 2674843
22 Square 2 2420 SIS 2746208
23 Square 2 500 SIS 3622893
24 Cross 2 500 SIS 4749106

our conclusions about the performances of the different kinds of models employed in this
investigation.
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