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The Sauerbrey equation is a useful empirical model in material science to represent the dynamics
of frequency change denoted by Δf in an area, denoted by A, of the electrode in terms of the
increment of the mass, which is denoted by Δm, loaded on the surface of the crystal under a certain
resonant frequency f0. For the purpose of studying Δf from the point of view of time series, we
first propose two types of the modified representations of the Sauerbrey equation by taking time
as an argument to represent Δf as a function expressed by x(t, f0, A,Δm), where t is time. Usually,
Δf is studied experimentally for the performance evaluation of the tested quartz used in ammonia
sensors. Its properties in time series, however, are rarely reported. This paper presents the fractal
properties of Δf . We will show that Δf is long range dependent (LRD). Consequently, it is heavy
tailed according to the Taqqu’s theorem. The Hurst parameter (H) of Δf approaches one, implying
its strong long memory, providing a new explanation of the repeatability of the experiments and
novel point of view of the dynamics of Δf relating to the Sauerbrey equation in material science.

1. Introduction

Ammonia is a type of gas useful for synthesizing various materials in chemical engineering.
On the other side, it is a gas harmful to human body. Therefore, the research regarding
monitoring the ammonia in different concentrations is desired for atmospheric environmen-
tal measurements and control. The ammonia sensor may yet be a desirable device for this
purpose; see for example, Wang et al. [1].

In the aspect of ammonia sensing, an interesting phenomenon of the time-dependent
frequency increment that is denoted by Δf , that is, frequency change, responding to the
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coated sensors working under certain humidity was observed in the experimental research
by Wang et al. [2]. That phenomenon of the time-dependent Δf appears a random pulse
series. Nevertheless, it was only qualitatively described in [2]. Its statistical properties remain
unknown. This paper aims at revealing the statistical properties of that pulse time series.
The contribution points of this paper are in three aspects. First, we will give two types of
the modified representations of the Sauerbrey equation towards investigating the dynamics
of Δf based on time series. Second, we will point out that it is LRD and accordingly it is
heavy tailed according to the Taqqu’s theorem. Finally, we will show that the value of H
of Δf is approximately equal to one. Hence, Δf relating to the Sauerbrey equation used in
the experiments of [2] has strong long-range persistence, which may be served as a new
explanation to describe the repeatability of the experiments done in [2].

The rest of the paper is organized as follows. We will give the preliminaries regarding
the experiments on the time-dependent Δf and propose modifications of the standard
Sauerbrey equation in Section 2. The fractal behavior of the pulse phenomenon of Δf is
explained in Section 3. Discussions are given in Section 4. Finally, Section 5 concludes the
paper.

2. Modified Representations of the Sauerbrey Equation

In the experiments by Wang et al. [2], Pd2+ doped ZnO (zinc oxide) nanotetrapods were
prepared and studied for the detection of ammonia. The investigated gas sensors were
featured by the combination of a quartz crystal microbalance (QCM) as a transducer and
Pd2+ doped ZnO nanotetrapods as a sensing element. The characteristics, including the
sensitivity, stability, and reproducibility of the resulted sensors, were studied under different
concentration of ammonia in [2].

Note that quartz crystal microbalance (QCM) is an extremely sensitive mass device.
The sensing principle of QCM is to transform the mass change into frequency shifts. In
the experiments described in [2], Pd2+ doped ZnO nanotetrapods were put on the QCM;
if the resonance frequency of uncoated QCM was recorded, the mass of the Pd2+ doped ZnO
nanotetrapods can be calculated according to the frequency shifts between the uncoated QCM
and the coated one. Based on the same principle, if the coated QCM adsorbed ammonia, the
mass of ammonia can also be calculated. The measured frequency shifts were used to evaluate
the mass change based on the Sauerbrey equation expressed by

Δf = −2.26 × 10−6 f
2
0

A
Δm, (2.1)

where f (MHz) is the fundamental frequency of the unloaded piezoelectric crystal, f0 is
the resonant frequency (Hz), Δf is the frequency change (Hz), Δm (g) is the mass change
loading on the surface of the crystal, and A (cm2) is the surface area of the electrode.
Figure 1 indicates the flow chart of the experiments performed in [2]. The derivation from
the standard Sauerbrey equation reported in [3] to (2.1) is given in the appendix.

The experiment system in Figure 1 consists of sample gas inlets with valves, a mass
flowmeter, a sensing chamber with QCM, a frequency meter, and a computer for data
acquisition and analysis. The valve is a switch for opening and closing the gas tunnel. The
mass flowmeter was used for testing the gas concentration. The frequency meter was to
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Figure 1: Flow chart of the experiments for obtaining Δf for a gas sensing system.

calculate the frequency shifts and send the result to the computer; refer to [2] for the details
of the experiments.

In (2.1), Δf is in reality a function of time. To clarify this, we express (2.1) by

Δf ≈ df =
df

dt
dt ≈ −2.26 × 10−6 f

2
0

A
dm = −2.26 × 10−6 f

2
0

A

dm

dt
dt. (2.2)

Thus, for a given nth round of experiment, we write (2.1) by

yn
(
t, f0,Δm,A

)
= −2.26 × 10−6 f

2
0

A
Δm, t0 < t < t0 + T, (2.3)

where T is the time duration of a round of experiment, t0 is the starting time of the nth
experiment, yn means the frequency increment in the nth experiment, and n is a positive
integer. We call (2.3) the modified representation of the Sauerbrey equation of type I.

Considering uncertainty in experiments and measurements [4], the result of the nth
experiment is generally not equal to that of the (n + 1)th’s. That is,

yn /=ym for m/=n. (2.4)

The above expression implies that yn is a random variable. Therefore, we propose the
representation of the Sauerbrey equation on the round-by-round basis by

x(t) = yn
(
t, f0,Δm,A

)
[u(t) − u(t − nT)], n = 1, 2, . . . , (2.5)

where u(t) is the unit step function. We call (2.5) the modified representation of the Sauerbrey
equation of type II. In what follows, Δf as well as x(t) are in the sense of (2.5). For
convenience, we may write x(t) as

x(t) = x
(
t, f0,Δm,A

)
. (2.6)
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3. Fractal Analysis of the Pulse Phenomenon of Frequency Response to
Coated Sensors

Let X(t) be a second-order stationary random process or random function. Denote by p(X)
the probability density function (PDF) of X(t). Then, the probability is given by

P(X2) − P(X1) = Prob[X1 < ξ < X2] =
∫X2

X1

p(ξ)dξ. (3.1)

The mean and the autocorrelation function (ACF) of X(t) based on PDF is written by (3.2)
and (3.3), respectively,

μX =
∫∞

−∞
Xp(X)dX, (3.2)

RX(τ) =
∫∞

−∞
X(t)X(t + τ)p(X)dX. (3.3)

Let Vx be the variance of X. Then,

VX = E
[
X(t) − μX

]2 =
∫∞

−∞

(
X − μX

)2
p(X)dX. (3.4)

Note 1. If the tail of p(X) is so heavy such that the integrals of (3.2) for μX and (3.4) for VX
are divergent, we say that p(X) is heavy tailed (Adler et al. [5], Li [6]).

Note 2. If p(X) is heavy tailed, RX(τ) in (3.3) is slowly decayed. By slowly decayed, we mean
that

∫∞

−∞
Rx(τ)dτ = ∞. (3.5)

Note that (3.5) can be taken as a definition of LRD time series; see for example, Beran
[7]. As a matter of fact, according to the Taqqu’s theorem, see Abry et al. [8], LRD property
of a random function X(t) is a consequence of the heavy-tailed p(X) (Li [9]).

In the Gaussian assumption of X(t), we have

p(X) =
1

√
2πVX

e−(X−μX)
2/2VX . (3.6)

In this case, the heavy-tailed p(X) implies that VX → ∞. In the engineering sense, we do not
need infinite variance but VX is large enough, see Li [10].
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Figure 2: Measured Δf of the Pd-doped ZnO nanotetrapods to the concentration of NH3 from 0 to 240 ppm
in time.
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Figure 3: Measured Δf of the Pd-doped ZnO nanotetrapods to the concentration of NH3 from 0 to 240 ppm
in sampling index.

Note that Δf in the experiments was sampled in the discrete case. Therefore, without
loss of generality, we denote Δf by

Δf = x
(
t, f0, A, Δm

)
= x(ti), (3.7)

where x(ti) represents the value of Δf of the ith sample, and i is the sample index. Figure 2
indicates the series of x(ti), where the vertical coordinates is indicated by x(t) and abscissa
axis by t for short. Figure 2 is actually a curve of random pulse series representing the time-
cycling responses of the Pd-doped ZnO nanotetrapods for the concentration of ammonia gas
from 0 to 240 ppm. The ratio Pd2+/ZnO is 0.04 : 1 in Moore quality. In Figure 2, each pulse
stands for the result of a round of experiment. For instance, the second pulse comes from the
result of the second round of experiment for x(t). From Figure 2, one sees that the sensor
performed in a reproducible manner but random in nature. The experiment was repeated
over 20 times and different dosage of Pd. The pulse series indicated in Figure 2 exhibits that
Δf is random in terms of pulse width, pulse amplitude, and transition time of pulse, as one
can see by eye. The random behavior of the pulse series is the focus we work on in this paper.
Without loss of generality, we let x(i) = x(ti), where i = 1, . . . , 400. Then, we replot Figure 2
by Figure 3.

Taking into account the random pulse width, pulse amplitude, and pulse transition,
we say that x(i) is a random function. By numeric computations, we obtain the ACF of Δf as
indicated in Figure 4, which implies the remark below.

Remark 3.1. The random function x(i), that is, Δf , which we investigated, is LRD. In other
words, the ACF is slowly decayed such that (3.5) holds.
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Figure 4: ACF of x(i).

According to the Taqqu’s theorem, therefore, comes the following remark.

Remark 3.2. The random function Δf described by (2.1) is heavy tailed.

Remark 3.1 implies that the ACF of x(i) has the asymptotic expression given by

R(k) ∼ ck−b (k −→ ∞), b ∈ (0, 1), (3.8)

where c > 0 can be either a constant or a slowly varying function.
Denote by Sx(ω) the power spectrum density (PSD) of x(i), where ω is the angular

frequency. Then,

Sx(ω) =
∫∞

−∞
Rx(τ)e−jωτdτ. (3.9)

Since (3.5) holds, Sx(ω) has to be considered in the domain of generalized functions.
According to the Fourier transform in the domain of generalized functions (Kanwal [11],
Li and Lim [12]), we immediately obtain

F
(
|k|−b

)
= 2 sin

(
πb

2

)
Γ(1 − b)|ω|b−1, (3.10)

where F stands for the operator of the Fourier transform. Therefore, for the measured Δf , we
have the asymptotic expression of the PSD of x(i) below:

F[R(k)] ∼ |ω|b−1 for ω −→ 0. (3.11)

Hence, we have the following remark. We note thatω in (3.9), (3.10), and (3.11) is the angular
frequency, which is an argument in the Fourier transform of the ACF of x(i), while x(i) stands
for the frequency increment in the Sauerbrey equation. That is, the frequency in Sx(ω) differs
in meaning from that in the Sauerbrey equation.

Remark 3.3. The measured Δf , that is, x(i), is in the class of 1/f noise.
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4. Discussions

The previous discussions exhibit three properties of x(i) from a view of fractals. They are
heavy-tailed PDF, slowly decayed ACF, and 1/f noise type PSD. Considering the Hurst
parameter, we have

H = 1 − b
2
. (4.1)

which characterizes the LRD of x(i) from a view of fractals. By the least square fitting, for the
curve in Figure 4, we have

H ≈ 1. (4.2)

Therefore, the frequency change of the Pd-doped ZnO nanotetrapods to the concentration of
NH3 from 0 to 240 ppm has strong LRD. This implies that the result from the nth experiment
is strongly correlated to that from the (n + k)th experiment, even if k is large. Hence, we
hereby provide, from the point of view of fractals, a quantitative explanation of repeatability
of the experiments that were qualitatively stated in [2].

We note that this paper does not say that x(i) obeys the widely used fractal time series
model, we mean, fractional Gaussian noise (fGn). In addition, we did not claim anything
about the fractal dimension of x(i) either. In the future, we will work on the accurate ACF and
the fractal dimension of x(i). To the best of our knowledge, the fractal properties described
above may yet imply a considerable advance in the field regarding the frequency change of
the Pd-doped ZnO nanotetrapods to the concentration of NH3 from 0 to 240 ppm. Further,
we will investigate such a type of random pulses with the differential equations as reported
in [13–17]. Finally, we note that x(i) appears deterministic but we did fractal analysis about
it to provide an explanation of the uncertainty principle in measurements.

5. Conclusions

We have processed the real data of the frequency change of the Pd-doped ZnO nanotetrapods
to the concentration of NH3 from 0 to 240 ppm. The present results exhibit that such a pulse
series is heavy tailed and has strong LRD. We have also explained the repeatability of the
experiments from a view of fractals.

Appendix

Derivation of (2.1)

The theory of the quartz crystal microbalance (QCM) is the piezoelectric qualities of quartz
crystals. The application of an electric field to the electrode of the quartz crystals causes a
shear deformation (parallel to the electrode surface). The crystal can be made to resonate
if an alternating electric field is applied at a particular frequency f0. Deposition of the
working electrode layer dampens this resonant frequency. The Sauerbrey equation relates
the dampening of frequency, Δf0, to the change in surface attached mass Δm.
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The Sauerbrey equation was first introduced by Sauerbrey in [3]. Its standard form is
given by

Δf =
−2Δmf2

0

A
√
ρqμq

= −
2f2

0

A
√
ρqμq

Δm, (A.1)

where f0 is the resonant frequency (Hz), Δf is the frequency change (Hz), Δm is the mass
change (g), A is the piezoelectrically active crystal area (cm2) between electrodes, ρq is the
density of quartz, and μq is the shear modulus of quartz for AT-cut crystal. In the experiments
described in [2],

ρq = 2.648 g/cm3,

μq = 2.947 × 1011 g/cms2.

(A.2)

Replacing ρq and μq in (A.1) with (A.2) produces Δf = −2.26 × 10−6(f2
0/A)Δm, which is the

expression (2.1).
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