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For second-order and high-order dynamic multiagent systems with multiple leaders, the
coordination schemes that all the follower agents flock to the polytope region formed by multiple
leaders are considered. Necessary and sufficient conditions which the follower agents can enter
the polytope region by the leaders are obtained. Finally, numerical examples are given to illustrate
our theoretical results.

1. Introduction

Recently, collective coordinations of multiagent systems have received significant attention
due to their potential impact in numerous civilian, homeland security, and military
applications, and so forth. For example, Wei et al. [1] described a multiagent recommender
system in which the agents form a marketplace and compete to provide the best
recommendation for a given user. De Meo et al. [2] presented an XML-based multiagent
system for supporting e-recruitment services, in which the various agents collaborate to
extract data and rank them according to user queries and needs.

Consensus plays an important role in achieving distributed coordination. The basic
idea of consensus is that a team of vehicles reaches an agreement on a common value
by negotiating with their neighbors. Consensus algorithms are studied for both first-order
dynamics [3–5] and high-order dynamics [6–10].

Formal study of consensus problems in groups of experts originated in management
science and statistics in 1960s. Distributed computation over networks has a tradition in
systems and control theory starting with the pioneering work of Borkar and Varaiya [11] and
Tsitsiklis [12] in 1980s. In 1995, Vicsek et al. [13] provided a formal analysis of emergence of
alignment in the simplified model of flocking. Due to providing Vicsek Model, [13] has an
important influence on the development of the multiagent systems consensus theory. On the
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study of consensus of continuous-time system, the classical model of consensus is provided
by Olfati-Saber and Murray [14] in 2004.

In multiagent coordination, leader-follower is an important architecture. Hu and Yuan
[15] presented a first-order dynamic collective coordination algorithm of multiagent systems
guided by multiple leaders, which make all the follower agents flock to the polytope region
formed by the leaders. In this paper, we consider the second-order and high-order dynamic
collective coordination algorithms of multiagent systems guided by multiple leaders.

2. Preliminaries

A directed graph (digraph) G = (V, E) of order n consists of a set of nodes V = {1, . . . , n} and
a set of edges E = V × V . (j, i) is an edge of G if and only if (j, i) ∈ G. Accordingly, node j is a
neighbor of node i. The set of neighbors of node i is denoted byNi(t). Suppose that there are
n nodes in the graph. The weighted adjacency matrix A ∈ �

n×n is defined as aii = 0, aij ≥ 0,
and aij > 0 if and only if (j, i) ∈ E. A graph with the property that (i, j) ∈ E implies (j, i) ∈ E
is said to be undirected. The Laplacian matrix L ∈ �

n×n is defined as lii =
∑

j /= i aij , lij = −aij ,
for i /= j. Moreover, matrix L is symmetric if an undirected graph has symmetric weights, that
is, aij = aji.

In this paper, we consider a system consisting of n follower-agents and k leaders,
and the interconnection topology among them can be described by an undirected graph G.
Where each follower-agent (or leader) is regarded as a node in a graph G = (V , E), and each
available information channel between the follower-agent (or leader) i and the follower-agent
(or leader) j corresponds to a couple of edges (i, j), (j, i) ∈ E. (i, j) ∈ E is said that i and j is
connected. Moreover, the interconnection topology among follower-agents can be described
by an undirected graph G. The undirected graph G is connected; we mean that at least one
node in each component of G is connected to the nodes who are leaders. A diagonal matrix B
to be a leader adjacencymatrix associate withGwith diagonal elements bi(i ∈ {1, . . . , n}) such
that each bi is some positive number if agent i is connected to the leader node and 0 otherwise.

Let S ⊂ �
m , S is said to be convex if (1 − γ)x + γy ∈ S whenever x ∈ S, y ∈ S and

0 < γ < 1. A vector sum γ1x1 + γ2x2 + · · · + γnxn is called a convex combination of x1, . . . , xn, if
the coefficients γi are all nonnegative and γ1 + · · · + γn = 1. The intersection of all convex sets
containing S is the convex hull of S. The convex hull of a finite set of points x1, . . . , xn ∈ �m is
a polytope [16].

The Kronecker product of A = [aij] ∈ Mm,n(F) and B = [bij] ∈ Mp,q(F) is denoted by
A ⊗ B and is defined to be the block matrix [17]

Lemma 2.1 (see [4]). (i) All the eigenvalues of Laplacian matrix L have nonnegative real parts;
(ii) Zero is an eigenvalue of L with 1n (where 1n is the n × 1 column vector of all ones) as the
corresponding right eigenvector. Furthermore, zero is a simple eigenvalue of L if and only if graph
G has a directed spanning tree.

3. Coordination Algorithms That All the Follower-Agents Flock to
the Polytope Region Formed by the Leaders

A continuous-time second-order dynamics of n follower-agents is described as follows:

ẋi = vi,
v̇i = ui,

(3.1)
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where xi, vi ∈ �m are the position and velocity of follower-agent i. We consider the following
dynamical protocol:

ui =
∑

j∈Ni

aij

(
xj − xi

)
+

k∑

q=1

b
q

i

(
x
q
0 − xi

)
+
∑

j∈Ni

aij

(
vj − vi

)
+

k∑

q=1

b
q

i

(
v
q
0 − vi

)
, (3.2)

where xj
0, v

j
0 (j = 1, . . . , k) are the position and velocity of the leader j, nonnegative constant

b
q

i > 0 if and only if follower-agent i is connected to leader q (q = 1, . . . , k). The objective of
this paper is to lead all the follower-agents to enter the polytope region formed by the leaders,
namely, xi, i = 1, . . . , n, will be contained in a convex hull of xq

0 , q = 1, . . . , k, as t → ∞.
Furthermore, (3.1) and (3.2) can be rewritten as vector form:

ẋ = v,

v̇ = −(H ⊗ Im)x + [B(Ik ⊗ 1n)] ⊗ Imx0 − (H ⊗ Im)v + [B(Ik ⊗ 1n)] ⊗ Imv0,
(3.3)

where H = L + B(1k ⊗ In), Bq ∈ �
n×n is a diagonal matrix with diagonal entry b

q

i , and B =
[B1 · · ·Bk] ∈ �n×nk .

Theorem 3.1. For the multiagent systems given by (3.1) and (3.2), the follower-agents can enter the
polytope region formed by the leaders if and only if G is connected.

Proof. Sufficiency: Let

x = x −
[
H−1B(Ik ⊗ 1n)

]
⊗ Imx0,

v = v −
[
H−1B(Ik ⊗ 1n)

]
⊗ Imv0.

(3.4)

Then, (3.3) can be rewritten as

ẋ = v,

v̇ = −(H ⊗ Im)x − (H ⊗ Im)v.
(3.5)

Further, (3.5) can be rewritten as

(
ẋ

v

)

=

(
0mn×mn Imn

−(H ⊗ Im) −(H ⊗ Im)

)(
x

v

)

. (3.6)

Let λ be an eigenvalue of Γ =
(

0mn×mn Imn

−H⊗Im −H⊗Im

)
, and

(
f
g

)
be the corresponding eigenvector of Γ.

Then we get

(
0mn×mn Imn

−H ⊗ Im −H ⊗ Im

)

x = λx, (3.7)
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which implies

g = λf, −(H ⊗ Im)f − (H ⊗ Im)g = λg. (3.8)

Let μi, i = 1, . . . , n be the eigenvalues of H ⊗ Im. Thus,

−(H ⊗ Im)f − (H ⊗ Im)λf = λ2f. (3.9)

That is, each eigenvalue ofH ⊗ Im, μi > 0 ([11, Lemma 1]), corresponds to two eigenvalues of
Γ, denoted by

λ2i−1,2i =
−μi ±

√
μ2
i − 4μi

2
. (3.10)

From (3.10), we can obtain that all the eigenvalues of Γ have negative real parts. By (3.6), we
can get

(
x

v

)

= eΓt
(
x(0)

v(0)

)

, (3.11)

which implies that x → 0 and v → 0 when t → ∞. Therefore,

x =
[
H−1B(Ik ⊗ 1n)

]
⊗ Imx0, v =

[
H−1B(Ik ⊗ 1n)

]
⊗ Imv0. (3.12)

We also know that [H−1B(Ik ⊗ 1n)] ⊗ Im is a row-stochastic matrix which is a nonnegative
matrix and the sum of the entries in every row equals 1 [15]. So the follower-agents can enter
the polytope region formed by the leaders.

Necessity: If G is not connected, by the definition of connectivity, then some follower-
agents, without loss of generality, are denoted by xi, i = 1, . . . , l(0 < l < n), will not get
information from the leaders, and the other follower-agents xj, j = l + 1, . . . , n. Then these
follower-agents xi, i = 1, . . . , lwill not get any position information about leaders. Therefore,
follower-agents xi, i = 1, . . . , l can not enter the polytope region formed by the leaders. So G
must be connected.

Remark 3.2. (1) For switching network topologies of multiagents systems, if topologies
are finite, and the shift is made in turn, then the system given by (3.1) and (3.2) is still
asymptotically convergence.

(2) The system given by (3.1) can solve formation control of network. This can bemade
by the following protocol.

ui =
∑

j∈Ni

aij

(
xj − xi − fij

)
+

k∑

q=1

b
q

i

(
x
q

0 − xi

)
+
∑

j∈Ni

aij

(
vj − vi

)
+

k∑

q=1

b
q

i

(
v
q

0 − vi

)
, (3.13)
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where fij can be decomposed into fij = fi − fj for any i, j = 1, . . . , n, fi and fj are some
specified constants. Let

x̃ = xi − fi, vi
0 = v

j

0, i, j = 1, . . . , m. (3.14)

Then Protocol (3.13) has the same form as (3.2), and the system will asymptotically converge.
By choosing suitable fi and fj , we can obtain on appropriate formation of network.

In the following, a continuous-time high-order dynamics of n follower-agents system
are considered.

Consider multiagent systems with l-th (l ≥ 3) order dynamics given by

ẋ
(0)
i = x

(1)
i ,

...

ẋ
(l−2)
i = x

(l−1)
i ,

ẋ
(l−1)
i = ui,

(3.15)

where x
(d)
i ∈ �

m , d = 0, . . . , l − 1 are the states of follower-agents, ui ∈ �
m is the control

input, and x
(d)
i denotes the k-th derivation of xi, with x

(0)
i = xi, i = 1, . . . , n. We consider the

following dynamical protocol:

ui =
∑

j∈Ni

aij

[
l−1∑

d=o

(
x
(d)
j − x

(d)
i

)
]

+
k∑

q=1

b
q

i

l−1∑

d=0

(
x
(d)
q0 − x

(d)
i

)
, (3.16)

where x(d)
q0 , q = 1, . . . , k, are the states of the leaders, x(d)

q0 denotes the d-th derivation of xq0.
Furthermore, the above equations can be rewritten as vector form:

ẋ(0) = x(1),

...

ẋ(l−2) = x(l−1),

(3.17)

ẋ(l−1) = −
l−1∑

d=o

(H ⊗ Im)x(d) +
l−1∑

d=o

[B(Ik ⊗ In)] ⊗ Imx
(d)
0 , (3.18)

where H = L + B(1k ⊗ In), x = [xT
1 · · ·xT

n]
T and x0 = [xT

10 · · ·xT
k0]

T .
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Denote x = [xT
1 · · ·xT

l ]
T and x0 = [xT

01 · · ·xT
0l]

T as the stacked vector of the follower-
agents’ states and the leaders’ states, respectively,

xs =
[(

x
(s−1)
1

)T
· · ·
(
x
(s−1)
n

)T
]T

, x0s =
[(

x
(s−1)
10

)T
· · ·
(
x
(s−1)
k0

)T
]T

, s = 1, . . . , l, (3.19)

and x0 = x01. Then the above equations can be rewritten as

x = Γx + Υx0, (3.20)

where

Γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0mn×mn Imn 0mn×mn · · · 0mn×mn

0mn×mn 0mn×mn Imn · · · 0mn×mn

0mn×mn 0mn×mn 0mn×mn · · · 0mn×mn

...
...

. . .
...

−H ⊗ Im −H ⊗ Im −H ⊗ Im · · · −H ⊗ Im

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.21)

Υ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0nm×km 0nm×km 0nm×km · · · 0nm×km

0nm×km 0nm×km 0nm×km · · · 0nm×km

0nm×km 0nm×km 0nm×km · · · 0nm×km
...

...
. . .

...

Λ Λ Λ · · · Λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Λ = [B(Ik ⊗ 1n)] ⊗ Im. (3.22)

Let x̃ = x − Il ⊗ {[H−1B(Ik ⊗ 1n)] ⊗ Im}x0. Then (3.20) can be written as

˙̃x = Γx̃. (3.23)

For high-order dynamic systems (3.23), we have the following theorem.

Theorem 3.3. For the multiagent system (3.23), the follower-agents can enter the polytope region
formed by the leaders, if and only if G is connected and λl + μiλl−1 + · · · + μi is Hurwitz stable, where
μi, i = 1, . . . , mn are eigenvalues ofH ⊗ Im.

Proof. Sufficiency. Let λ be an eigenvalue of Γ, and x̃ = [x̃T
1 · · · x̃T

l
]T be the corresponding

eigenvector of Γ. Then we get

x̃2 = λx̃1,

x̃3 = λx̃2,

· · ·
x̃l = λx̃i−1

−H ⊗ Imx̃1 −H ⊗ Imx̃2 − · · · −H ⊗ Imx̃l = λx̃l.

(3.24)
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Leader 1 Leader 2

Leader 3

1 1

12

2 2

3 4 5

Figure 1:Network topology G1 of a multiagent system.

Furthermore, we have

−H ⊗ Imx̃1 − λH ⊗ Imx̃1 − · · · − λl−1H ⊗ Imx̃l = λlx̃l. (3.25)

Let μi, i = 1, . . . , n be the eigenvalues of H ⊗ Im. Then we get characteristic equation of Γ

λl + λl−1μi + · · · + μi = 0. (3.26)

By (3.23), we get

x̃ = eΓtx̃(0). (3.27)

If λl + λl−1μi + · · · + μi is Hurwitz stable, then all the eigenvalues of Γ have negative real parts.
Therefore, x̃ → 0, when t → ∞. So

x = Il ⊗
{[

H−1B(Ik ⊗ 1n)
]
⊗ Im

}
x0. (3.28)

Thus,

x =
[
H−1B(Ik ⊗ 1n)

]
⊗ Imx0, . . . , x(l) =

[
H−1B(Ik ⊗ 1n)

]
⊗ Imx0l. (3.29)

[H−1B(Ik ⊗ 1n)] ⊗ Im is a row stochastic matrix which is a nonnegative matrix and the sum of
the entries in every row equals 1, so the follower-agents can enter the region formed by the
leaders.

Necessity: Similar to the Proof of Theorem 3.1.

4. Simulation

In this section, simulation examples are presented to illustrate the proposed algorithms
introduced in Section 3.

Example 4.1. We consider a system of five follower-agents guarded by three leaders with the
topology G1 in Figure 1. The corresponding weights of edges of G1 are shown in Figure 1.
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Figure 2: Trajectories of the agents in the multiagent system with topologyG1 under the condition that the
leaders have the same velocity.

Moreover, the initial positions and velocities of follower-agents and leaders are given as
follows:

x1(0) =

(
2

2

)

, x2(0) =

(
3

3

)

, x3(0) =

(
1

1

)

, x4(0) =

(
1

1

)

, x5(0) =

(
2

2

)

,

v1(0) =

(
2

2

)

, v2(0) =

(
3

3

)

, v3(0) =

(
1

1

)

, v4(0) =

(
1

1

)

, v5(0) =

(
3

3

)

,

x1
0(0) =

(
2

3

)

, x2
0(0) =

(
3

2

)

, x3
0(0) =

(
4

3

)

,

v1
0 =

(
0.1

0.4

)

, v2
0 =

(
0.1

0.4

)

, v3
0 =

(
0.1

0.4

)

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.1)

Figure 2 is position trajectories of the agents. In Figure 2, the red lines are the
trajectories of the three leaders, and the others are the trajectories of the five follower-agents.
From Figure 2, we can obtain that the five follower-agents can enter the polytope region
formed by three leaders as the time t gradually increasing.

The velocities of leaders have no effect on follower-agents’ flocking to the polytope
region formed by leaders. We consider the following simulation for the same multiagent
system as the above example. The network topology of multiagents is still G1 in Figure 1.
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Figure 3: Trajectories of the agents in the multiagent system with topologyG1 under the condition that the
leaders have different velocities.
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Figure 4:Network topology G2 of a multiagent system.

The initial positions and velocities of follower-agents, the initial positions of leaders and
the corresponding weights of edges of G1 are the same as the above example, and only the
velocities of leaders are changed as

v1
0 =

(
1

2

)

, v2
0 =

(
2

3

)

, v3
0 =

(−1
−2

)

, (4.2)

Figure 3 is trajectories of the agents. The red lines are the trajectories of the three leaders, and
the others are the trajectories of the five follower-agents. From Figure 3, though the velocities
of leaders are different, we can still obtain that the five follower-agents can enter the polytope
region formed by three leaders as the time t gradually increasing. The final states of the
follower-agents are consistent with Theorem 3.1.

Example 4.2. We consider a system of five follower-agents guarded by four leaders with the
topology G2 in Figure 4. The corresponding weights of edges of G2 are shown in Figure 4.
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Figure 5: Trajectories of the agents in the multiagent system with topology G2.

Moreover, the initial positions and velocities of leaders are given as follows:

x1
0(0) =

(
2

3

)

, x2
0(0) =

(
3

2

)

, x3
0(0) =

(
4

3

)

, x4
0(0) =

(
6

3

)

,

v1
0(0) =

(
0.1

0.4

)

, v2
0(0) =

(
0.1

0.4

)

, v3
0(0) =

(
0.1

0.4

)

, v4
0(0) =

(
3

1

)

,

(4.3)

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.4)

Likewise, the initial positions and velocities of follower-agents are the same as those in
Example 4.1. The topology G2 of follower-agents is not connected, according to the definition
in Preliminaries, but G2 is connected.

In Figure 5, the red lines are the trajectories of the four leaders, and the others are the
trajectories of the five follower-agents. From Figure 5, we can obtain that the five follower-
agents can enter the polytope region formed by four leaders as the time t gradually increasing.

5. Conclusion

In this paper, we consider the second order and high-order dynamic collective coordination
algorithms of multiagent systems guided by multiple leaders. We give the necessary and
sufficient conditions which follower-agents can enter the polytope region formed by leaders.
Numerical examples are given to illustrate our theoretical results.
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