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We use the bifurcation method of dynamical systems to study the periodic wave solutions and
their limit forms for the KdV-like equation ut + a(1 + bu)uux + uxxx = 0, and PC-like equation
vtt−vttxx−(a1v + a2v2+a3v3)xx = 0, respectively. Via some special phase orbits, we obtain some
new explicit periodic wave solutions which are called trigonometric function periodic wave
solutions because they are expressed in terms of trigonometric functions. We also show that the
trigonometric function periodic wave solutions can be obtained from the limits of elliptic function
periodic wave solutions. It is very interesting that the two equations have similar periodic wave
solutions. Our work extend previous some results.

1. Introduction

Many authors have investigated the KdV-like equation

ut + a(1 + bu)uux + uxxx = 0, (1.1)

and the PC-like equation

vtt − vttxx −
(
a1v + a2v2 + a3v3

)
xx

= 0. (1.2)

For example, Dey [1, 2] studied the exact Himiltonian density and the conservation laws,
and gave two kink solutions for (1.1). Zhang et al. [3, 4] gave some solitary wave solutions
and singular wave solutions for (1.1) by using two different methods. Yu [5] got an exact
kink soliton for (1.1) by using homogeneous balance method. Grimshaw et al. [6] studied the



2 Mathematical Problems in Engineering

large-amplitude solitons for (1.1). Fan [7, 8] gave some bell-shaped soliton solutions, kink-
shaped soliton, and Jacobi periodic solutions for (1.1) by using algebraic method. Tang et
al. [9] investigated solitary waves and their bifurcations for (1.1) by employing bifurcation
method of dynamical systems. Peng [10] used the modified mapping method to get some
solitarywave solutions composed of hyperbolic functions, periodic wave solutions composed
of Jacobi elliptic functions, and singular wave solution composed of triangle functions for
(1.1). Chow et al. [11] described the interaction between a soliton and a breather for (1.1)
by using the Hirota bilinear method. Kaya and Inan [12] studied solitary wave solutions for
(1.1) by using Adomian decomposition method. Yomba [13] used Fan’s subequation method
to construct exact travelingwave solutions composed of hyperbolic functions or Jacobi elliptic
functions for (1.1).

Zhang andMa [14] gave some explicit solitary wave solutions composed of hyperbolic
functions by using solving algebraic equations for (1.2). Li and Zhang [15] used bifurcation
method of dynamical system to study the bifurcation of traveling wave solutions and
construct solitary wave solutions for (1.2). Kaya [16] discussed the exact and numerical
solitary wave solutions by using a decomposition method for (1.2). Rafei et al. [17] gave
numerical solutions by using He’s method for (1.2).

Recently, many authors have presented some useful methods to deal with the
problems in equations, for instance [18–30].

In this paper, we use the bifurcation method mentioned above to study the periodic
wave solutions for (1.1) and (1.2). Through some special phase orbits, we obtain new
expressions of periodic wave solutions which are composed of trigonometric functions sin ξ
or cos ξ. These solutions are called trigonometric function periodic wave solutions. We also
check the correctness by using the software Mathematica.

In Section 2, we will state our results for (1.1). In Section 3, we will state our results
for (1.2). In Sections 4, and 5, we will give derivations for our main results. Some discussions
and the orders for testing the correctness of the solutions will be given in Section 6.

2. Trigonometric Function Periodic Wave Solutions for (1.1)

In this section, we state our main results for (1.1). In order to state these results conveniently,
we give some preparations. For given constant c /= 0, on a − b plane we define some lines and
regions as follows.

(1)When c < 0, we define lines

l1: b = 0,

l2: b = − a

6c
,

l3: b = − 3a
16c

,

l4: a = 0,

(2.1)

and regions Ai (i = 1–8), as Figure 1(a).
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Figure 1: The locations of the lines li, ki (i = 1, 2, 3, 4) and the regions Aj , Bj (j = 1, 2, . . . , 8) for given
constant c /= 0.
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Figure 2: The limiting precess of u1(ξ) when c < 0, (a, b) ∈ A1, and (a, b) tends to the line l1, where a = 4
and c = −1.

(2)When c > 0, we define lines

k1: b = 0,

k2: a = 0,

k3: b = − 3a
16c

,

k4: b = − a

6c
,

(2.2)

and regions Bi (i = 1–8), as Figure 1(b).
Using the lines and regions in Figure 1, we narrate our results as follows.

Proposition 2.1. For arbitrary given constant c /= 0, let

ξ = x − ct. (2.3)

Then, (1.1) has the following periodic wave solutions.
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Figure 3: The limiting precess of u1(ξ) when c < 0, (a, b) ∈ A5, and (a, b) tends to the line l1, where a = −4
and c = −1.

(1) When c < 0 and (a, b) ∈ A1 or A5, the expression of the periodic wave solution is

u1(ξ) =
6c

a +
√
a(a + 6bc) cos

(√−cξ)
, (2.4)

which has the following limit forms.

(i) When c < 0, (a, b) ∈ A1 and (a, b) tends to the line l1, u1(ξ) tends to the periodic blow-up
solution

u◦1(ξ) =
6c

a
[
1 + cos

(√−cξ)] (2.5)

(see Figure 2).

(ii) When c < 0, (a, b) ∈ A5 and (a, b) tends to the line l1, u1(ξ) tends to the periodic blow-up
solution

u∗1(ξ) =
6c

a
[
1 − cos

(√−cξ)] (2.6)

(see Figure 3).

(iii) When c < 0, (a, b) ∈ A1 or A5, and (a, b) tends to l2, u1(ξ) tends to the trivial solution
u(ξ) = 6c/a.

(2) When c < 0 and (a, b) ∈ A2, or when c > 0 and (a, b) ∈ B5, the expression of the periodic
wave solution is

u2(ξ) =
α0 cos(w0ξ) + β0
p0 cos(w0ξ) + q0

, (2.7)
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where

Δ = 3a(3a + 16bc), (2.8)

α0 = −

(
3a +

√
Δ
)√

a
(
a −

√
Δ
)

4a2b2
, (2.9)

β0 = −3a + 24bc +
√
Δ

2ab2
, (2.10)

p0 =

√
a
(
a −

√
Δ
)

ab
, (2.11)

q0 = − 1
ab

(
a +

√
Δ
)
, (2.12)

w0 =

√
3a + 16bc +

√
Δ

8b
. (2.13)

The solution u2(ξ) has the following limit forms.

(i) When c < 0, (a, b) ∈ A2 and (a, b) tends to l3, the u2(ξ) tends to the peak-shaped solitary
wave solution

u◦2(ξ) =
4c
(
3 + 2cξ2

)

a(−9 + 2cξ2)
(2.14)

(see Figure 4).

(ii) When c < 0, (a, b) ∈ A2 and (a, b) tends to l2, u2(ξ) tends to the trivial solution u(ξ) = 0.

(iii) When c > 0, (a, b) ∈ B5 and (a, b) tends to k1, the u2(ξ) tends to the periodic blow-up
solution

u∗2(ξ) =
c
(
2 sin2(√cξ/2) − 3

)

a sin2(√cξ/2)
(2.15)

(see Figure 5).

(3) When c < 0 and (a, b) ∈ A6, or when c > 0 and (a, b) ∈ B1, the expressions of the solution
is

u3(ξ) =
α1 cos(w1ξ) + β1
p1 cos(w1ξ) + q1

, (2.16)
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Figure 4: The limiting precess of u2(ξ) when c < 0, (a, b) ∈ A2, and (a, b) tends to the line l3, where a = 4
and c = −1.
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Figure 5: The limiting precess of u2(ξ) when c > 0, (a, b) ∈ B5, and (a, b) tends to the line k1, where a = −2
and c = 1.

where

α1 =

(
−3a +

√
Δ
)√

a
(
a +

√
Δ
)

4a2b2
,

β1 =
3a + 24bc −

√
Δ

2ab2
,

p1 =

√
a
(
a +

√
Δ
)

ab
,

q1 =
a −

√
Δ

ab
,

w1 =

√
3a + 16bc −

√
Δ

8b
.

(2.17)

The solution u3(ξ) has the following limit forms.

(i) When c < 0, (a, b) ∈ A6 and (a, b) tends to l3, the u3(ξ) tends to the canyon-shaped
solitary wave (see Figure 6) solution u◦2(ξ).

(ii) When c < 0, (a, b) ∈ A6 and (a, b) tends to l2, u3(ξ) tends to the trivial solution u(ξ) = 0.

(iii) When c > 0, (a, b) ∈ B1 and (a, b) tends to k1, the u3(ξ) tends to the periodic blow-up
wave solution u∗1(ξ) (see Figure 3).
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Figure 6: The limiting precess of u3(ξ) when c < 0, (a, b) ∈ A6, and (a, b) tends to the line l3, where a = −9
and c = −1.

Remark 2.2. Note that if u = ϕ(ξ) is a solution of (1.1), then u = ϕ(ξ+r) also is solution of (1.1),
where r is a arbitrary constant. According to this fact and the results listed in Proposition 2.1,
the following nine functions also are periodic wave solutions of (1.1).

(1)When c < 0 and (a, b) ∈ A1 or A5, the functions are

u11(ξ) =
6c

a −√a(a + 6bc) cos
(√−cξ)

,

u12(ξ) =
6c

a +
√
a(a + 6bc) sin

(√−cξ)
,

u13(ξ) =
6c

a −√a(a + 6bc) sin
(√−cξ)

.

(2.18)

(2) When c < 0 and (a, b) ∈ A2 or when c > 0 and (a, b) ∈ B5, the functions are

u21(ξ) =
−α0 cos(w0ξ) + β0
−p0 cos(w0ξ) + q0

,

u22(ξ) =
α0 sin(w0ξ) + β0
p0 sin(w0ξ) + q0

,

u23(ξ) =
−α0 sin(w0ξ) + β0
−p0 sin(w0ξ) + q0

.

(2.19)

(3) When c < 0 and (a, b) ∈ A6, or when c > 0 and (a, b) ∈ B1, the functions are

u31(ξ) =
−α1 cos(w1ξ) + β1
−p1 cos(w1ξ) + q1

,

u32(ξ) =
α1 sin(w1ξ) + β1
p1 sin(w1ξ) + q1

,

u33(ξ) =
−α1 sin(w1ξ) + β1
−p1 sin(w1ξ) + q1

.

(2.20)
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Figure 7: The locations of the rays Γi, Li and the regionsWi, Ωi (i = 1, 2, . . . , 8) for given a1 and c.

Remark 2.3. In the given parametric regions, the solutions ui(ξ), u1i (ξ), u
2
i (ξ), u

3
i (ξ) (i = 1, 2, 3),

and u◦2(ξ) are nonsingular. The solutions u
◦
1(ξ), u

∗
1(ξ), and u

∗
2(ξ) are singular. The relationships

of singular solutions and nonsingular solutions are displayed in the Proposition 2.1.

3. Trigonometric Function Periodic Wave Solutions for (1.2)

In this section, we state our main results for (1.2). For given a1 and c (a1 /= c2), on a2−a3 plane
we define some rays and regions as follows.

(1)When c2 < a1, we define curves

Γ1: a2 > 0, a3 = 0,

Γ2: a2 > 0, a3 =
2a22

9(a1 − c2)
,

Γ3: a2 > 0, a3 =
a22

4(a1 − c2)
,

Γ4: a2 = 0, a3 > 0,

Γ5: a2 < 0, a3 =
a22

4(a1 − c2)
,

Γ6: a2 < 0, a3 =
2a22

9(a1 − c2)
,

Γ7: a2 < 0, a3 = 0,

Γ8: a2 = 0, a3 < 0,

(3.1)

and region Wi as the domain surrounded by Γi and Γi+1 (i = 1–7), W8 as the domain
surrounded by Γ8 and Γ1 (see Figure 7(a)).
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(2)When c 2 > a1, we define curves

L1: a2 > 0, a3 = 0,

L2: a2 = 0, a3 > 0,

L3: a2 < 0, a3 = 0,

L4: a2 < 0, a3 =
2a22

9(a1 − c2)
,

L5: a2 < 0, a3 =
a21

4(a1 − c2)
,

L6: a2 = 0, a3 < 0,

L7: a2 > 0, a3 =
a22

4(a1 − c2)
,

L8: a2 > 0, a3 =
2a22

9(a1 − c2)
,

(3.2)

and region Ωi as the domain surrounded by Li and Li+1 (i = 1–7), Ω8 as the domain
surrounded by L8 and L1 (see Figure 7(b)).

Using the rays and regions above, we state our results as follows.

Proposition 3.1. For given parameter a1 and constant c satisfying c2 /=a1, let ξ = x−ct. Then, (1.2)
has the following periodic wave solutions.

(1) When c 2 < a1 and (a2, a3) ∈W1 orW6, the expression of the periodic wave solution is

v1(ξ) =
R0

R1 + R2 cos(R3ξ)
, (3.3)

where

R0 = 2
(
c2 − a1

)
,

R1 =
2a2
3
,

R2 =
1
3

√
18a3(c2 − a1) + 4a22,

R3 =

√
a1 − c2
c2

.

(3.4)

For a2 /= 0, the periodic wave solution v1(ξ) has the following limit forms.
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(i) When c2 < a1, (a2, a3) ∈ W1 and (a2, a3) tends to the ray Γ1, v1(ξ) tends to the periodic
blow-up solution

v◦
1(ξ) =

3
(
c2 − a1

)

a2
(
1 + cos

((√
a1 − c2/|c|

)
ξ
)) . (3.5)

The limiting process is similar to that in Figure 2.

(ii) When c2 < a1, (a2, a3) ∈ W6 and (a2, a3) tends to the ray Γ7, v1(ξ) tends to the periodic
blow-up solution

v∗
1(ξ) =

3
(
c2 − a1

)

a2
(
1 − cos

((√
a1 − c2/|c|

)
ξ
)) . (3.6)

The limiting process is similar to that in Figure 3.

(iii) When c2 < a1, (a2, a3) ∈ W1 and (a2, a3) tends to the curve Γ2, or (a2, a3) ∈ W6 and
(a2, a3) tends to the curve Γ6, v1(ξ) tends to the trivial solution v(ξ) = 3(c2 − a1)/a2.

(2) When c2 < a1 and (a2, a3) ∈W5, or when c2 > a1 and (a2, a3) ∈ Ω1, the expression of the
periodic wave solution is

v2(ξ) = S0 − 2S1

−S2 + S3 cos(S4ξ)
, (3.7)

where

S0 =
−a2 +

√
ω

2a3
,

S1 =
−a22 + 4a3

(
a1 − c2

)
+ a2

√
ω

a23
,

S2 =
2
3a3

(−a2 + 3
√
ω
)
,

S3 =
2
3a3

√
a2
(
a2 + 3

√
ω
)
,

S4 =

√
−S1a3

2c2
,

(3.8)

ω = a22 − 4a3
(
a1 − c2

)
. (3.9)

The periodic wave solution v2(ξ) has the following limit forms.

(i) When c2 < a1, (a2, a3) ∈ W5, and (a2, a3) tends to the curve Γ6, v2(ξ) tends to the trivial
solution v(ξ) = 0.
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(ii) When c2 < a1, (a2, a3) ∈ W5, and (a2, a3) tends to the curve Γ5, the v2(ξ) tends to the
canyon-shaped solitary wave solution

v◦
2(ξ) =

2
(
a1 − c2

)[
12c2 − 9c2 − 2

(
a1 − c2

)
ξ2
]

a2[9c2 + 2(a1 − c2)ξ2]
. (3.10)

The limiting process is similar to that in Figure 6.

(iii) When c2 > a1, (a2, a3) ∈ Ω1, and (a2, a3) tends to the ray L1, v2(ξ) tends to the periodic
blow-up wave solution

v∗
2(ξ) =

a1 − c2
2a2

⎡
⎣1 + 3 tan2

⎛
⎝
√
c2 − a1
4c2

ξ

⎞
⎠
⎤
⎦. (3.11)

The limiting process is similar to that in Figure 2.

(3) When c2 < a1 and (a2, a3) ∈W2, or when c2 > a1 and (a2, a3) ∈ Ω2, the expression of the
periodic wave solution is

v3(ξ) = T0 +
2T1

−T2 + T3 cos(T4ξ) , (3.12)

where

T0 =
−a2 −

√
ω

2a3
,

T1 =
−a22 + 4a3

(
a1 − c2

) − a2
√
ω

a23
,

T2 =
2
3a3

(
a2 + 3

√
ω
)
,

T3 =
2
3a3

√
a2
(
a2 − 3

√
ω
)
,

T4 =

√
−T1a3
2c2

.

(3.13)

The periodic wave solution v3(ξ) has the following limit forms:

(i) When c2 < a1, (a2, a3) ∈ W2, and (a2, a3) tends to the curve Γ2, v3(ξ) tends to the trivial
solution v(ξ) = 0.

(ii) When c2 < a1, (a2, a3) ∈ W2, and (a2, a3) tends to the curve Γ3, the v3(ξ) tends to the
peak-shaped solitary wave solution v◦

2(ξ). The limiting process is similar to that in Figure 4.

(iii) When c2 > a1, (a2, a3) ∈ Ω2, and (a2, a3) tends to the ray L3, the v3(ξ) tends to the
periodic blow-up wave solution v∗

2(ξ). The limiting process is similar to that in Figure 5.
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Remark 3.2. Similar to the reason in Remark 2.2, the following nine functions also are periodic
wave solutions of (1.2).

(1)When c2 < a1 and (a2, a3) ∈W1 orW6, the functions are

v1
1(ξ) =

R0

R1 − R2 cos(R3ξ)
,

v1
2(ξ) =

R0

R1 + R2 sin(R3ξ)
,

v1
3(ξ) =

R0

R1 − R2 sin(R3ξ)
.

(3.14)

(2)When c2 < a1 and (a2, a3) ∈W5 or when c2 > a1 and (a2, a3) ∈ Ω1, the functions are

v2
1(ξ) = S0 +

2S1

S2 + S3 cos(S4ξ)
,

v2
2(ξ) =S0 − 2S1

−S2 + S3 sin(S4ξ)
,

v2
3(ξ) =S0 +

2S1

S2 + S3 sin(S4ξ)
.

(3.15)

(3)When c2 < a1 and (a2, a3) ∈W2 or when c2 > a1 and (a2, a3) ∈ Ω2, the functions are

v3
1(ξ) = T0 −

2T1
T2 + T3 cos(T4ξ)

,

v3
2(ξ) = T0 +

2T1
−T2 + T3 sin(T4ξ) ,

v3
3(ξ) = T0 −

2T1
T2 + T3 sin(T4ξ)

.

(3.16)

Remark 3.3. In the given regions, the solutions vi(ξ), v1
i (ξ), v

2
i (ξ), v

3
i (ξ) (i = 1, 2, 3), and

v◦
2(ξ) are nonsingular. The solutions v◦

1(ξ), v
∗
1(ξ), and v∗

2(ξ) are singular. The relationships
of nonsingular solutions and singular solutions are displayed in Proposition 3.1.

4. The Derivation on Proposition 2.1

In order to derive the Proposition 2.1, letting c be a constant and substituting u = ϕ(ξ) with
ξ = x − ct into (1.1), we have

−cϕ′ + aϕϕ′ + abϕ2ϕ′ + ϕ′′′ = 0. (4.1)
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Integrating (4.1) once and letting the integral constant be zero, it follows that

−cϕ +
a

2
ϕ2 +

ab

3
ϕ3 + ϕ′′ = 0. (4.2)

Letting ϕ′ = y, yields the following planar system:

ϕ′ = y, y′ = cϕ − a

2
− ab

3
ϕ3. (4.3)

Obviously, system (4.3) has the first integral

6y2 − 6cϕ2 + 2aϕ3 + abϕ4 = h. (4.4)

Let

ϕ1 =
−3a −

√
Δ

4ab
,

ϕ2 =
−3a +

√
Δ

4ab
,

(4.5)

where Δ is defined in (2.8). Then, it is easy to see that system (4.3) has three singular points
(ϕ1, 0), (0, 0) and (ϕ2, 0) when Δ > 0, two singular points ((−3/4b), 0) and (0, 0) when Δ = 0,
unique singular point (0, 0) when Δ < 0.

Let ei and fi (i = 1, 2, 3) be, respectively,

e1 =
−a −

√
a2 + 6abc
ab

,

f1 =
−a +

√
a2 + 6abc
ab

,

e2 =
1

4ab

(
−a +

√
Δ − 2

√
a
(
a −

√
Δ
) )

,



14 Mathematical Problems in Engineering

A1

A2
A3

A4

A5

A6
A7

A8

y

y

y

yy

y
y

y

y

yy

y

y

y a

b

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

1f

f2

f3

e1

1f
e1

e2

e3

l1

l2

l3

l4ϕ

ϕ
ϕ

ϕ ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

Figure 8: When c < 0, the bifurcation phase portraits of system (4.3) and the locations of ei and fi (i =
1, 2, 3).

f2 =
1

4ab

(
−a +

√
Δ + 2

√
a
(
a −

√
Δ
) )

,

e3 = − 1
4ab

(
a +

√
Δ + 2

√
a
(
a +

√
Δ
) )

,

f3 = − 1
4ab

(
a +

√
Δ − 2

√
a
(
a +

√
Δ
) )

.

(4.6)

Using the qualitative analysis of dynamical systems, we obtain the bifurcation phase
portraits of system (4.3) and the locations of ei and fi (i = 1, 2, 3) as Figures 8 and 9.

It is easy to test that the closed orbit passing (ei, 0) passes (fi, 0) (i = 1, 2, 3). Thus,
using the phase portraits in Figures 8 and 9, we derive ui(ξ) (i = 1, 2, 3) as follows.

(1) When c < 0 and (a, b) ∈ A1 or A5, the closed orbit passing the points (e1, 0) and
(f1, 0) has expression

y = ±
√
ab

6
ϕ
√
−e1f1 +

(
e1 + f1

)
ϕ − ϕ2, where e1 ≤ ϕ ≤ f1. (4.7)

Substituting (4.7) into dϕ/y = dξ, we have

dϕ√
−e1f1 +

(
e1 + f1

)
ϕ − ϕ2

=

√
ab

6
dξ. (4.8)
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Figure 9: When c > 0, the bifurcation phase portraits of system (4.3) and the locations of ei and fi (i =
1, 2, 3).

Integrating (4.8) along the closed orbit and noting that u = ϕ(ξ), we obtain the solution u1(ξ)
as (2.4).

(2) When c < 0 and (a, b) ∈ A2 or when c > 0 and (a, b) ∈ B5, the closed orbit passing
the points (e2, 0) and (f2, 0) has expression

y = ±
√
ab

6
(
ϕ − ϕ1

)√−e2f2 +
(
e2 + f2

)
ϕ − ϕ2, where e2 ≤ ϕ ≤ f2. (4.9)

Substituting (4.9) into dϕ/y = dξ, we get

dϕ
(
ϕ − ϕ1

)√−e2f2 +
(
e2 + f2

)
ϕ − ϕ2

=

√
ab

6
dξ. (4.10)

Along the closed orbit integrating (4.10) and noting that u = ϕ(ξ), we get the solution u2(ξ)
as (2.7).

(3) When c < 0 and (a, b) ∈ A6 or when c > 0 and (a, b) ∈ B1, the closed orbit passing
the points (e3, 0) and (f3, 0) has expression

y = ±
√
ab

6
(
ϕ2 − ϕ

)√−e3f3 +
(
e3 + f3

)
ϕ − ϕ2, where e3 ≤ ϕ ≤ f3. (4.11)
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Substituting (4.11) into dϕ/y = dξ, it follows that

dϕ
(
ϕ2 − ϕ

)√−e3f3 +
(
e3 + f3

)
ϕ − ϕ2

=

√
ab

6
dξ. (4.12)

Similarly, along the closed orbit integrating (4.12), we obtain u3(ξ) as (2.16). From the
expressions of these solutions, we get their limit forms. This completes the derivation on
Proposition 2.1.

5. The Derivation on Proposition 3.1

In this section, we give derivation on Proposition 3.1. Let v = ψ(ξ) with ξ = x − ct, where c is
a constant. Thus, (1.2) becomes

c2ψ ′′ − c2ψ ′′′′ −
(
a1ψ + a2ψ2 + a3ψ3

)′′
= 0. (5.1)

Integrating (5.1) twice and letting integral constant be zero, we get

c2
(
ψ − ψ ′′) = a1ψ + a2ψ2 + a3ψ3. (5.2)

Letting ψ ′ = y, we have the planar system

ψ ′ = y, c2y′ =
(
c2 − a1

)
ψ − a2ψ2 − a3ψ3. (5.3)

It is easy to see that system (5.3) has the first integral

c2y2 + ψ2
(
a3
2
ψ2 +

2a2
3
ψ + a1 − c2

)
= h, (5.4)

and three singular points (0, 0), (ψ1, 0), and (ψ2, 0), where

ψ1 =
−a2 −

√
ω

2a3
,

ψ2 =
−a2 +

√
ω

2a3

(5.5)

and ω is defined in (3.9).
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Figure 10: When c2 < a1, the bifurcation phase portraits of system (5.3) and the locations ofmi and ni (i =
1, 2, 3).

Letmi and ni (i = 1, 2, 3) be, respectively,

m1 =
−2a2 −

√
2
(
a22 − 9a1a3 + 9a3c2

)

3a3
,

n1 =
−2a2 +

√
2
(
a22 − 9a1a3 + 9a3c2

)

3a3
,

m2 =
−a2 − 3

√
ω − 2

√
a2
(
a2 + 3

√
ω
)

6a3
,

n2 =
−a2 − 3

√
ω + 2

√
a2
(
a2 + 3

√
ω
)

6a3
,

m3 =
−a2 + 3

√
ω − 2

√
a2
(
a2 − 3

√
ω
)

6a3
,

n3 =
−a2 + 3

√
ω + 2

√
a2
(
a2 − 3

√
ω
)

6a3
.

(5.6)

Similarly, using the qualitative analysis of dynamical systems, we get the bifurcation
phase portraits of system (5.3) and the locations ofmi and ni (i = 1, 2, 3) as Figures 10 and 11.

It is easy to test that the closed orbit passing (mi, 0) passes (ni, 0) (i = 1, 2, 3). Thus,
using the phase portraits in Figures 10 and 11, we derive vi(ξ) (i = 1, 2, 3) as follows.
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Figure 11: When c2 > a1, the bifurcation phase portraits of system (5.3) and the locations ofmi and ni (i =
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(1) When c 2 < a1 and (a2, a3) ∈ W1 orW6, the closed orbit passing the points (m1, 0)
and (n1, 0) has expression

y = ±
√

a3
2c2

ψ
√
−m1n1 + (m1 + n1)ψ − ψ2, where m1 ≤ ψ ≤ n1. (5.7)

Substituting (5.7) into dψ/y = dξ, we have

dψ

ψ
√
−m1n1 + (m1 + n1)ψ − ψ2

=
√

a3
2c2

dξ. (5.8)

Integrating (5.8) along the closed orbit and noting that v = ψ(ξ), we get the solution v1(ξ) as
(3.3).

(2) When c2 < a1 and (a2, a3) ∈W5, or when c2 > a1 and (a2, a3) ∈ Ω1, the closed orbit
passing the points (m2, 0) and (n2, 0) has expression

y = ±
√

a3
2c2
(
ψ2 − ψ

)√−m2n2 + (m2 + n2)ψ − ψ2, where m2 ≤ ψ ≤ n2. (5.9)
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From dψ/y = dξ and (5.9), it follows that

dψ
(
ψ2 − ψ

)√−m2n2 + (m2 + n2)ψ − ψ2
=
√

a3
2c2

dξ. (5.10)

Integrating (5.10) along the closed orbit, we get v2(ξ) as (3.7).
(3) When c2 < a1 and (a2, a3) ∈W2, or when c2 > a1 and (a2, a3) ∈ Ω2, the closed orbit

passing the points (m3, 0) and (n3, 0) has expression

y = ±
√

a3
2c2
(
ψ − ψ1

)√−m3n3 + (m3 + n3)ψ − ψ2, where m3 ≤ ψ ≤ n3. (5.11)

Substituting (5.11) into dψ/y = dξ, we have

dψ
(
ψ − ψ1

)√−m3n3 + (m3 + n3)ψ − ψ2
=
√

a3
2c2

dξ. (5.12)

Integrating (5.12) along the closed orbit, we obtain v3(ξ) as (3.12). From the expressions
of these solutions, we get their limiting properties. This completes the derivation on
Proposition 3.1.

6. Discussions and Testing Orders

In this paper, Using the special closed orbits, we have obtained trigonometric function
periodic wave solutions for (1.1) and (1.2), respectively. Their limit forms have been given.
From these expressions, an interesting phenomena has been seen, that is, (1.1) and (1.2) have
similar periodic wave solutions. Our work has extended previous results on periodic wave
solutions.

Now, we point out that the trigonometric function periodic wave solutions can be
obtained from the limits of the elliplic function periodic wave solution. For given real number
μ, let

μ1 =
1

12ab

⎛
⎜⎝−4a(2 + bμ) +

4
(
1 + i

√
3
)
aF02

F
+ 2i
(
i +

√
3
)
F

⎞
⎟⎠,

μ2 =
1

12ab

⎛
⎜⎝−4a(2 + bμ) +

4
(
1 − i

√
3
)
aF02

F
− 2i
(
i +

√
3
)
F

⎞
⎟⎠,

μ3 =
1

6ab

(
−2a(2 + bμ) − 4aF02

F
+ 2F

)
,

(6.1)
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ϕ1 ϕ4 ϕμ e1 f1 μ1 μ2 μ3
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O

Figure 12: The locations of l1μ and l
2
μ when c < 0 and (a, b) ∈ A1.

where

F01 =
(
8 − 6bμ + 15b2μ2 + 10b3μ3

)
,

F02 =
(
−9bc + a

(
−2 + bμ + b2μ2

))
,

F03 =
√
a3
(
8F3

02 + a
(−54bc(−1 + bμ) + aF01

)2)
,

F =
(
54a2bc

(−1 + bμ) − a3F01 + F03

)1/3
.

(6.2)

Assume that c < 0, (a, b) ∈ (A1), and ϕ1 < μ < e1. It is easy to check that μi (i = 1, 2, 3)
are real and satisfy

μ < e1 < ϕ2 < f1 < μ1 < ϕ3 < μ2 < 0 < μ3 < ϕ4. (6.3)

There are two closed orbits l1μ and l2μ (see Figure 12). The closed orbit l1μ passes the
points (μ, 0) and (μ1, 0). The closed orbit l2μ passes the points (μ2, 0) and (μ3, 0).

On ϕ − y plane, the expression of l1μ is

y2 =
ab

6
(
μ3 − ϕ

)(
μ2 − ϕ

)(
μ1 − ϕ

)(
ϕ − μ), where μ ≤ ϕ ≤ μ1. (6.4)

Substituting (6.4) into dϕ/y = dξ and integrating it along l1μ, we have

g sn−1(sin z, k) =

√
ab

6
|ξ|, (6.5)
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where

g =
2√(

μ3 − μ1
)(
μ2 − μ

) ,

k =

√√√√
(
μ3 − μ2

)(
μ1 − μ

)
(
μ3 − μ1

)(
μ2 − μ

) ,

sin z =

√√√√
(
μ3 − μ1

)(
ϕ − μ)(

μ1 − μ
)(
μ3 − ϕ

) .

(6.6)

Solving (6.5) for ϕ and noting that u = ϕ(ξ), we obtain an elliptic function periodic
wave solution

u(ξ) =
μ
(
μ3 − μ1

)
+ μ3

(
μ1 − μ

)
sn2(ηξ, k)

μ3 − μ1 +
(
μ1 − μ

)
sn2
(
ηξ, k

) , (6.7)

where

η =

√
ab
(
μ3 − μ1

)(
μ2 − μ

)

24
. (6.8)

Letting μ → e1 − 0, it follows that μ1 → f1, μ2 → 0, μ3 → 0, k → 0, η →√
(abe1f1)/24 and sn2(ηξ, k) → sn2(

√
(abe1f1/24)ξ, 0) = sin2(

√
(abe1f1/24)ξ).

Therefore, in (6.7) letting μ → e1 − 0, we obtain the trigonometric function periodic
wave solution

u(ξ) =
e1f1

f1 +
(
e1 − f1

)
sin2
(√(

abe1f1/24
)
ξ
)

=
−6c

−a +
√
a(a + 6bc) − 2

√
a(a + 6bc)sin2

((√
|c|/2

)
ξ
)

=
6c

a −√a(a + 6bc) cos
(√

|c|ξ
) = u11(ξ).

(6.9)

Via Remark 2.2 and u11(ξ), further we get u12(ξ), u
1
3(ξ) and u1(ξ). Similarly, we can derive

others trigonometric function periodic wave solutions.
We also have tested the correctness of each solution by using the software

Mathematica. Here, we list two testing orders. Others testing orders are similar.
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(1) The orders for testing u1(ξ)

u =
6c

a +
√
a(a + 6bc) cos

[√−c(x − ct)
] (6.10)

Simplify [D[u, t] + a(1 + bu)D[u, x]u +D[u, {x, 3}]].
(2) The orders for testing v1(ξ)

R0 = 2
(
−a1 + c2

)
,

R1 =
2a2
3
,

R2 =

√
2a3(−a1 + c2) +

4a22
9
,

R3 =

√
a1 − c2

c2
,

v =
R0

R1 + R2 cos[R3(x − ct)]
,

vtt = D[v, {t, 2}] ,
vttxx =D[vtt, {x, 2}]

(6.11)

Simplify [vtt − vttxx −D[a1v + a2v2 + a3v3, {x, 2}]].
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