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Fabrication defects and perturbations affect the behavior of a vibratory MEMS gyroscope sensor,
which makes it difficult to measure the rotation angular rate. This paper presents a novel adaptive
approach that can identify, in an online fashion, angular rate and other system parameters. The
proposed approach develops an online identifier scheme, by rewriting the dynamic model of
MEMS gyroscope sensor, that can update the estimator of angular rate adaptively and converge
to its true value asymptotically. The feasibility of the proposed approach is analyzed and proved
by Lyapunov’s direct method. Simulation results show the validity and effectiveness of the online
identifier.

1. Introduction

Gyroscopes are commonly used sensors for measuring angular velocity in many areas of
applications such as navigation, homing, and control stabilization. Vibratory gyroscopes are
the devices that transfer energy from one axis to another axis through Coriolis forces. The
conventional mode of operation drives one of the modes of the gyroscope into a known
oscillatory motion and then detects the Coriolis acceleration coupling along the sense mode
of vibration, which is orthogonal to the driven mode. The response of the sense mode of
vibration provides information about the applied angular velocity. Fabrication imperfections
result in some cross-stiffness and cross-damping effects that may hinder the measurement of
angular velocity of MEMS gyroscope. The angular velocity measurement and minimization
of the cross-coupling between two axes are challenging problems in vibrating gyroscopes.

Ioannou and Sun [1] and Tao [2] described themodel reference adaptive control. Chou
and Cheng [3] proposed an integral sliding surface and derived an adaptive law to estimate
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the upper bound of uncertainties. Some control algorithms have been proposed to control
the MEMS gyroscope. Batur and Sreeramreddy [4] developed a sliding mode control for
a MEMS gyroscope system. Leland [5] presented an adaptive force balanced controller for
tuning the natural frequency of the drive axis of a vibratory gyroscope. Novel robust adaptive
controllers are proposed in [6, 7] to control the vibration of MEMS gyroscope. Sung et al. [8]
developed a phase-domain design approach to study the mode-matched control of MEMS
vibratory gyroscope. Antonello et al. [9] used extremum-seeking control to automatically
match the vibration mode in MEMS vibrating gyroscopes. Feng and Fan [10] presented
an adaptive estimator-based technique to estimate the angular motion by providing the
Coriolis force as the input to the adaptive estimator and to improve the bandwidth of
microgyroscope. Tsai and Sue [11] proposed integrated model reference adaptive control
and time-varying angular rate estimation algorithm for micromachined gyroscopes. Raman
et al. [12] developed a closed-loop digitally controlledMEMS gyroscope using unconstrained
sigma-delta force balanced feedback control. Park et al. [13] presented an adaptive controller
for a MEMS gyroscope which drives both axes of vibration and controls the entire operation
of the gyroscope.

The adaptive control of MEMS gyroscope is system identification problem. The iden-
tification is a very rich investigation subject in the last decades. The persistence of excitation
is the most important problem in the system identification. There are several ways to deal
with it; one is to use a sufficient number of frequencies in the reference signal. Sometimes, the
use of multiestimation-type schemes with appropriate switching among the various single
multiestimation schemes integrating the whole tandem has been done successfully since
this guarantees directly sufficiently frequency richness/excitation persistence. Guillerna
et al. [14] proposed a robustly stable multiestimation scheme for adaptive control and
identification with model reduction issues. Sen and Alonso [15] presented adaptive control
of time-invariant systems with discrete delays subject to multiestimation. Moreover, there
are some articles devoted to identification in practical real problems. Paulraj and Sumathi
[16] compared the redundant constraints identification methods in linear programming
problems. Ho and Chan [17] developed hybrid differential evolution algorithm for parameter
estimation of differential equation models with application to HIV dynamics. Blais [18]
derived a novel least squares method for practitioners.

In this paper, a novel adaptive online identifier is designed to estimate the angular
rate and system parameters. The motivation of this paper is to propose a novel series-parallel
online identifier that could estimate all the system parameters using observed state and
control signals. The advantage of proposed adaptive approach is that it is easy to implement
in practice and it avoids the complicated algorithm derivation; therefore, it is better than other
control algorithm for the vibratory MEMS gyroscope.

The paper is organized as follows. In Section 2, the dynamics of MEMS gyroscope
sensor is introduced. In Section 3, the online identifier is developed to achieve the system
parameters and angular rate. In Section 4, simulation results are presented to verify the
design of online identifier. Conclusion is provided in Section 5.

2. Dynamics of MEMS Gyroscope

A typical MEMS vibratory gyroscope sensor configuration includes a proof mass suspended
by spring beams, electrostatic actuations, and sensing mechanisms for forcing an oscillatory
motion and sensing the position and velocity of the proof mass as well as a rigid frame which
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Figure 1: Simplified model of a z-axis MEMS gyroscope sensor.

is rotated along the rotation axis. Dynamics of a MEMS gyroscope sensor is derived from
Newton’s law in the rotating frame.

As we known, Newton’s law in the rotating frame becomes

Fr = Fphy + Fcentri + FCoriolis + FEuler = mar. (2.1)

In (2.1), Fr is the total applied force to the proof mass in the gyro frame, Fphy is the total
physical force to the proof mass in the inertial frame, Fcentri is the centrifugal force, FCoriolis is
the Coriolis force, FEuler is the Euler force, and ar is the acceleration of the proof mass with
respect to the gyro frame. Fphy, FCoriolis, and FEuler are inertial forces caused by the rotation of
the gyro frame.

With the definition of rr , vr as the position and velocity vectors relative to the rotating
gyroscope frame andΩ as the angular velocity vector of the gyroscope frame, the expressions
for the inertial forces reduce to

FCoriolis = −2mΩ × vr, Fcentri = −mΩ × (Ω × rr), FEuler = −mdΩ
dt

× rr , (2.2)

then

mar +mΩ × (Ω × rr) + 2mΩ × vr +mΩ̇ × rr = Fphy, (2.3)

where Fphy contains spring, damping, and control forces applied to the proof mass.
In a z-aixs gyroscope sensor, by supposing the stiffness of spring in z direction much

larger than that in x,y directions, motion of poof mass is constrained to only along the x-y
plan as shown in Figure 1. Assuming that the measured angular velocity is almost constant
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over a long enough time interval, the equation of motion of a gyroscope sensor based on (2.3)
is simplified as follows

mẍ + dxẋ +
[
kx −m

(
Ω2

y + Ω2
z

)]
x +mΩxΩyy = ux + 2mΩzẏ,

mÿ + dyẏ +
[
ky −m

(
Ω2

x + Ω2
z

)]
y +mΩxΩyx = uy − 2mΩzẋ,

(2.4)

where x and y are the coordinates of the proof mass with respect to the gyro frame in a
Cartesian coordinate system, dx,y and kx,y are damping and spring coefficients, Ωx,y,z are the
angular rate components along each axis of the gyro frame, and ux,y are the control forces. The
last two terms in (2.4), 2mΩzẏ and 2mΩzẋ, are the Coriolis forces and are used to reconstruct
the unknown input angular rate Ωz. Under typical assumptions Ωx ≈ Ωy ≈ 0, only the
component of the angular rate Ωz causes a dynamic coupling between x and y axes.

Taking fabrication imperfections into account, which cause extra coupling between x
and y axes, the governing equation for a z-axis MEMS gyroscope sensor is

mẍ + dxxẋ + dxyẏ + kxxx + kxyy = ux + 2mΩzẏ,

mÿ + dxyẋ + dyyẏ + kxyx + kyyy = uy − 2mΩzẋ,
(2.5)

In (2.5), dxx and dyy are damping, kxx and kyy are spring coefficients dxy, and kxy, called
quadrature errors, are coupled damping and spring terms, respectively, mainly due to the
asymmetries in suspension structure andmisalignment of sensors and actuators. The coupled
spring and damping terms are unknown, but can be assumed to be small. The nominal values
of the x and y axes spring and damping terms are known, but there are small unknown
variations. The proof mass can be determined accurately.

Dividing both sides of (2.5) by m, q0, and w2
0, which are a reference mass, length, and

natural resonance frequency, respectively, where m is the proof mass of a gyroscope sensor,
we get the form of the nondimensional equation of motion as

ẍ + dxxẋ + dxyẏ +w2
xx +wxyy = ux + 2Ωzẏ,

ÿ + dxyẋ + dyyẏ +wxyx +w2
yy = uy − 2Ωzẋ,

(2.6)

where dxx/mw0 → dxx, dxy/mw0 → dxy, dyy/mw0 → dyxy, Ωz/w0 → Ωz,
√
kxx/mw2

0 →
wx,

√
kyy/mw2

0 → wy, kxy/mw2
0 → wxy. Rewrite the gyroscope sensor model (2.6) in state-

space form as

ẋ = Ax + Bu, (2.7)



Mathematical Problems in Engineering 5

Gyroscope
−

Estimation
error

Estimate of
the angular

rate

ꉱx

xPE u

ε

Online
identifier

Figure 2: Block diagram of the online identifier.

where

x =

⎡
⎢⎢⎢⎢⎢⎣

x

ẋ

y

ẏ

⎤
⎥⎥⎥⎥⎥⎦
, A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

−wx
2 −dxx −wxy −(dxy − 2Ωz

)

0 0 0 1

−wxy −(dxy + 2Ωz

) −wy
2 −dyy

⎤
⎥⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎢⎢⎣

0 0

1 0

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎦
, u =

[
ux

uy

]
.

(2.8)

From (2.8), it is obvious that all the unknown or uncertain parameters including the input
angular rate are lumped in the A. Then, this paper will develop a novel adaptive approach
that can identify the system matrix A in an online fashion.

The dynamics of MEMS gyroscope sensor described by (2.6) can be considered as a
mass, spring, and damper system, which implies that A is stable. With the assumption that
the control inputs ux and uy are bounded, the system state vector x is then also bounded.
This prior knowledge will be used for the design of the online identifier.

3. The Design of Online Identifier

The objective of this section is to generate an adaptive law for identifying A online by using
the observed signals x(t) and u(t). Figure 2 shows the block diagram of the online identifier.

First of all, rewrite the dynamic model (2.7) by adding and subtracting a term Amx,
where Am is an arbitrary stable matrix:

ẋ = Amx + (A −Am)x + Bu. (3.1)
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The adaptive law for generating the estimate Â of A is to be driven by the estimation error

ε = x − x̂, (3.2)

where x̂ is the estimated value of x, that is, the state output of the identifier, by using the
estimate Â. The state x̂ is generated by an equation that has the same form as the gyroscope
sensor model but with A replaced by Â. Deriving from the gyroscope sensor equation (3.1),
the model of the online identifier is

˙̂x = Amx̂ +
(
Â −Am

)
x + Bu. (3.3)

The estimation error ε = x − x̂ satisfies the differential equation

ε̇ = Amε − Ãx, (3.4)

where

Ã = Â −A. (3.5)

Equation (3.4) indicates how the parameter error affects the estimation errors ε. Because Am

is stable, zero parameter error implies that ε converges to zero exponentially. Indeed, Ã is
unknown and ε is the only measured signal that we can monitor in practice to check the
successfulness of estimation. We have the following theorem to gain the objective.

Theorem 3.1. Consider the online identifier system (3.3) and with the control input u. By utilizing
parameter adjusting law (3.6)

˙̃A = ˙̂A = PεxT , (3.6)

then the proposed adaptive identifier scheme can guarantee the following properties:

(1) the identifier scheme is stable;

(2) limt→∞ε(t) = limt→∞(x − x̂) = 0, namely, asymptotic observer property;

(3) limt→∞
˙̂A(t) = limt→∞

˙̃A(t) = 0, namely, asymptotic preidentification property;

(4) limt→∞Â(t) = A, limt→∞Ã(t) = 0, namely, asymptotic identification property if the
persistent excitation condition is satisfied.

Proof. Utilizing the measured signals, we assume the adaptive law is of the form

˙̂A = F(ε,x, x̂, u), (3.7)

where F is the function of measured signals, and is to be chosen so that the equilibrium state

Âe = A, εe = 0 (3.8)
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of the differential equation described by (3.4) and (3.7) is uniformly stable, or if possible,
uniformly asymptotically stable, or, even better, exponentially stable.

Consider the following Lyapunov function candidate of the estimation error system
(3.4):

V
(
ε, Ã

)
= εTPε + tr

(
ÃT Ã

)
, (3.9)

where tr(A) denotes the trace of the matrix A and P = PT > 0 is chosen as the solution of the
Lyapunov equation:

AT
mP + PAm = −Q, (3.10)

where Q = QT > 0, whose existence is guaranteed by the stability of Am.
The time derivative V̇ of V along the trajectory of (3.4), (3.7) is

V̇ = εTPε̇ + ε̇TPε + tr
(

˙̃A
T
Ã + ÃT ˙̃A

)

= εT
(
AT

mP + PAm

)
ε − 2εTPÃx + tr

(
˙̃A
T
Ã + ÃT ˙̃A

)
.

(3.11)

Use the properties of trace of a matrix

V̇ = −εTQε + 2 tr
( ˙̃AÃT − PεxT ÃT

)
. (3.12)

The obvious choice for ˙̃A to make V̇ negative is

˙̃A = ˙̂A = F = PεxT . (3.13)

This adaptive law yields

V̇ = −εTQε ≤ 0. (3.14)

Equation (3.14) implies that the equilibrium Âe = A, εe = 0 of the respective equations
is uniformly stable and Ã, ε are all uniformly bounded for all t; that is, the online identifier
scheme is stable. On condition that x is bounded, ε̇ is also bounded obtained from (3.4).

It can be proved that limt→∞ε(t) = limt→∞(x − x̂) = 0, limt→∞
˙̂A(t) = limt→∞

˙̃A(t) = 0
using the following Barbalat’s lemma.

Lemma 3.2. If f(t) is a uniformly continuous function, such that limt→∞
∫ t
0 f(τ)dτ exists and is

finite, then f(t) → 0 as t → ∞.

Corollary 3.3. If g, ġ ∈ L∞ and g ∈ Lp, for some p ∈ [1,∞), then g(t) → 0 as t → ∞.
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Since

V̇ = −εTQε ≤ −λmin(Q)|ε|2 ≤ 0, (3.15)

where λmin(Q) is the minimum eigenvalue of Q and satisfies λmin > 0, inequality (3.15) implies that

ε is integrable as
∫ t
0 |ε|

2
dt ≤ (1/λmin)[V(0) − V(t)]. Since V(0) is bounded and 0 ≤ V(t) ≤ V(0),

it can be concluded that limt→∞
∫ t
0 |ε|2dt is bounded. Since limt→∞

∫ t
0 |ε|2dt, ε and ε̇ are bounded,

according to Barbalat’s lemma, limt→∞ε(t) = 0, which, in turn, implies that ‖ ˙̂A‖ → 0. Therefore, it
can be concluded that this scheme is not only an asymptotic identifier but also an asymptotic observer.

Like in other adaptive control problems, the persistent excitation condition is an
important factor to estimate the angular rate correctly. From (2.7), (2.8), the dynamics of a
MEMS gyroscope sensor can be considered as a fourth-order system, which implies that if the
control input u contains two different nonzero frequencies, then the persistency of excitation
is satisfied. Then, we define

ux = A1 sin(w1t), uy = A2 sin(w2t), (3.16)

where w1, w2 satisfy w1 /=w2, w1 /= 0, w2 /= 0. Under these assumptions, the estimate Â
converges to its true value A, namely, limt→∞Â(t) = A, limt→∞Ã(t) = 0.

In summary, if ux = A1 sin(w1t) and uy = A2 sin(w2t) are used, then ε converge to
zero asymptotically. Consequently, angular rate and system parameters converge to their true
values.

This completes the proof of the theorem.

Remark 3.4. In this section, we consider the design of online parameter estimators for the plant
that is stable, whose states are accessible for measurement and whose input u is bounded.
Because no feedback is used and the plant is not disturbed by any signal other than u, the
stability of the plant is not an issue. The main concern, therefore, is the stability properties
of the estimator or adaptive law that generates the online identifier for the unknown plant
parameters. However, it should be recognized that, in more general cases where A is either
unstable or critically stable, the control should be designed in a closed-loop fashion to achieve
closed-loop stability.

Remark 3.5. we are able to design online parameter estimation schemes that guarantee that
the estimation error ε converges to zero as t → ∞, that is, the predicted state x̂ approaches
that of the plant as t → ∞ and the estimated parameters change more and more slowly
as time increases. Because the input signal u is sufficiently rich, it is sufficient to establish
parameter convergence to the true parameter values. To be sufficiently rich, u has to have
enough frequencies to excite all the modes of the plant.

Remark 3.6. The properties of the adaptive scheme developed in this section rely on the
stability of the plant (MEMS gyroscope model) and the boundedness of the plant input
u. Consequently, they may not be appropriate for use in connection with control problems
where u is the result of feedback and is, therefore, no longer guaranteed to be bounded a
priori. Fortunately, online parameter estimation scheme that uses the adaptive laws with
normalization does not rely on the stability of the plant and the boundedness of the plant
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input. In plain terms the unboundedness obstacle can be avoided by dividing u and x (plant
states) with some normalizing signal m > 0, to obtain u/m, x/m belonging to L∞ space and
use the normalized signal to drive the adaptive law instead of u and x. In this paper, this is
not discussed in detail.

4. Simulation Study

In this section, we will evaluate the proposed adaptive approach on the lumped MEMS
gyroscope sensor model by using MATLAB/SIMULINK. The objective of the adaptive
approach is to identify the parameters including the input angular velocity correctly.
Parameters of the MEMS gyroscope sensor are as follows [4]:

m = 1.8 × 10−7 kg, kxx = 63.955
N

m
, kyy = 95.92

N

m
, kxy = 12.779

N

m
,

dxx = 1.8 × 10−6
Ns

m
, dyy = 1.8 × 10−6

Ns

m
, dxy = 3.6 × 10−7

Ns

m
.

(4.1)

Since the general displacement range of the MEMS gyroscope sensor in each axis is
submicrometer level, it is reasonable to choose 1μm as the reference length q0. Given that
the usual natural frequency of each of the axles of a vibratory MEMS gyroscope sensor is
in the KHz range, choose the w0 as 1KHz. The unknown angular velocity is assumed Ωz =
100 rad/s. Then, the nondimensional values of the MEMS gyroscope sensor parameters are
as follows: w2

x = 355.3, w2
y = 532.9, wxy = 70.99, dxx = 0.01, dyy = 0.01, dxy = 0.002, and

Ωz = 0.1. According to (2.8), the system matrix A in this simulation example is then given by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

−355.3 −0.01 −70.99 0.198

0 0 0 1

−70.99 −0.202 −532.9 −0.01

⎤
⎥⎥⎥⎥⎥⎦
. (4.2)

The four eigenvalues of A are −0.0044+ 18.2i, −0.0044− 18.2i, −0.0056+ 23.62i, and −0.0056−
23.62i, which verify the stability of A. The initial value of estimator Â is Â(0) = 0.9 ∗ A. x(0)
and x̂(0) are zero initial conditions.

Given the arbitrariness of stable matrix Am, we choose Am = −20 ∗ I, for the simplicity
to choose the gain matrix P. With Am = −20 ∗ I, P can be an arbitrary positive symmetrical
matrix to ensure the positivity of matrix Q. Note that the choosing of P should take into
account the balance of the elements in ˙̂A. The control input forces are ux = 400 sin(2t), and
uy = 400 sin(10t), containing two different nozero frequencies, which are sufficiently rich. The
simulation results are shown in Figures 3, 4, and 5.

Figure 3 depicts the estimation errors. It is observed that the estimation errors
converge to zero quickly, under the sinusoidal input of two different nonzero frequencies,
which validates that the estimated states x̂(t) converge to the actual states x(t) asymptotically
and equilibrium εe = 0 is uniformly asymptotically stable. Error (1), Error (2), Error (3),
and Errror (4) stand for x-axis position estimation error, x-axis velocity estimation error,
y-axis position estimation error, and y-axis velocity estimation error, respectively. Figure 4
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Figure 3: The estimation errors.
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Figure 4: Adaptation of angular velocity.

obviously shows that the estimation of the angular rate reaches its actual value in finite time.
The regulating time is about 10 seconds, and the overshot is approximately 49%. Simulation
experiments show that the regulating time and the overshot of the angular rate estimation
are a pair of contradiction. Choosing a reasonable matrix P can find a compromise between
them. Figure 5 shows that all of the estimates of w2

x, w
2
y, wxy can reach their true values in a

very short time, respectively, with very small overshot.
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Simulation results verify that with the online identifier model (3.3) and the parameter
adaptive law (3.12), if the persistent excitation condition is satisfied, that is, two different
nonzero frequencies inputs, then the estimation errors converge to zero asymptotically and all
unknown parameters, including the angular velocity go to their true values quickly without
large overshot.

5. Conclusion

This paper investigates the design of adaptive control for MEMS gyroscope sensor. The
dynamics model of the MEMS gyroscope sensor is developed and nondimensionalized.
Novel adaptive approach with online identifier is proposed, and stability condition is
established. Simulation results demonstrate the effectiveness of the proposed adaptive online
identifier in identifying the gyroscope sensor parameters and angular rate. We should
recognize that model uncertainties and external disturbances have not been considered in
the proposed online adaptive identifier yet, which should be compensated for in the real
application; the next step is to incorporate the term of model uncertainties and external
disturbances into the online identifier to improve the robustness of the proposed method.
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