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Structure of data set is of critical importance in identifying clusters, especially the density differ-
ence feature. In this paper, we present a clustering algorithm based on density consistency, which is
a filtering process to identify same structure feature and classify them into same cluster. This meth-
od is not restricted by the shapes and high dimension data set, and meanwhile it is robust to noises
and outliers. Extensive experiments on synthetic and real world data sets validate the proposed the
new clustering algorithm.

1. Introduction

As one important stage of the data mining process, data clustering is a division of data into
groups of similar objects. Each group, called cluster, consists of objects similar among them-
selves and dissimilar to other groups. Representing data by fewer clusters necessarily loses
certain fine details, but achieves compact representation. Clustering is the basis of pattern
recognition and knowledge discovery. Tremendous literatures on clustering techniques have
appeared since the last century. These techniques are widely applied in image segmentation
[1], information retrieval [2], text mining [3], image quantization [4], and so on.

Clustering algorithms can be basically divided into two categories of approaches, the
partitional approach [5, 6] and the hierarchical approach [7–9]. The partitional approach gen-
erally obtains a partition of the data set by minimizing a cost function, which is commonly
modeled to prefer the clusters with maximal intracluster similarities and minimal inter-clus-
ter similarities. The existing algorithms that belong to this kind of approach include FORGY
[10], ISODATA [11], WISH [5, 6], and so forth.
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Hierarchical clustering algorithms are the most commonly used clustering techniques
specially useful in biology and medicine. The basic idea of such algorithms is to successively
cluster a data set into clusters in a hierarchical fashion. Hierarchical clustering algorithms are
able to produce multilevel clusters, which is necessary for the applications in biology and
other applications. Examples of hierarchical clustering algorithms are CURE [7], ROCK [8],
and Chameleon [9].

Density-based algorithm is a kind of classical clustering algorithm. One method of
density clustering algorithm is based on the assumption for the whole data set, and the other
method is based on the local density feature to mine the structure of data set.

In order to assume the distribution of the whole data set to clustering, the first thing is
to suppose different distribution functions on different density zones of data set, and which
commonly uses the nonparametric density estimation. Using the nonparametric density es-
timation with a kernel function to estimate the distribution, the clusters of a data set are
obtained by repeatedly moving the data to the local maximal points of the estimated density.
There exist density-based clustering algorithms such as famous Mean Shift [12–15], CSSF
[16], and so on. The computation of the algorithm is simple and the cluster number is not
required to be known in advance. However, they tightly depend on the density estimation
quality of the data set. Without any prior knowledge on structure of the data set, it is difficult
to provide a good density estimation to fit the data set, so the clustering results might not be
desirable for real data sets or images.

Describing structure of data set by mining the local density feature, the clustering is to
agglomerate the data points with same density feature. For a data set, the density difference
of each data point can be measured with k-NN neighborhood, in which the larger k-NN
neighborhood represents that the local density is low or the data points in this region are
sparse. The data points classified into same cluster should have same local density value or
same radius of k-NN neighborhood. The work in [17] and DBScan [18] are of this kind. This
kind of method need not to assume the distribution of the whole data set and are not be
restricted the shape of data set. However, the algorithms need to compare the density differ-
ence to agglomerate the data points.

The present research is a new clustering based on density consistency to cluster data
set with filtering process. Through describing the local structure feature of data set, the data
points with same feature can be classified into same cluster. This new clustering algorithm is
not restricted by the shapes and high dimension data set, meanwhile it is robust to noises and
outliers.

The reminder of this paper is organized as follows. In Section 2 we introduce some
useful structure features of data set, which is important to clustering problems. Section 3 in-
troduces the clustering process, includes the modeling of filters, the feature extraction process
and feature integration process following with top-down process. The experiments and con-
clusion are given in Sections 4 and 5.

2. Density Feature of Data Sets for Clustering

Structures of data sets and clustering are closely related. It is commonly considered that the
clusters are made of some discrete data points according to some structure features, and
these structure features contain local and large scale structure features. Local structure is
mainly described with the spatial relationship between near data points, which is also called
neighborhood relationship. Local spatial relationship is the most original and elementary for
clustering problem. As shown in Figure 1(a), there are lots of tiny clusters, which may be
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Figure 1: Structure features of data sets. (a)Adata set with no structure. (b)Adata set with density feature:
two clusters of data with different densities. (c) A data set with connectedness feature: it contains two
connected manifolds. (d) A data set with orientation feature.

extracted at local scale though the data set follows uniform distribution and has only one
cluster at large scale.

The large scale structure featuresmainly contain density, connectedness, and direction,
and we will give explanation to these structure features in the following section.

Density Feature

Density characterizes the distribution feature of a data set, which can be measured with the
number of data in a certain volume of pattern space. According to the proximity and simi-
larity laws in psychology, a region of data set with higher density is prone to be recognized as
a cluster by human eyes. See Figure 1(b) for example, where two regions of datawith different
densities are very naturally perceived to be two different clusters, despite the fact that they are
very close to each other. A uniformly distributed data set is naturally accepted as no feature
because no visual difference is observed (see Figure 1(a)).

Connectedness Feature

The neighbor regions with local structure feature may connect each other and form curve or
manifold structure as Figure 1(c). By the Gestalt continuity law, the connected data are easily
perceived to be a same cluster, but the disconnected data are prone to be perceived as different
clusters.

Direction Feature

If the local regions connect each other and have same principal direction, then the principal
direction is called the direction feature of the data set, see Figure 1(d) as an example, which
has two different direction features.

The local and large scale structure features are the most typical features for valid clus-
tering of data set. Local structure features can form large scale structure features with bottom-
up process while the large scale features provides feedback information with top-down proc-
ess. In next section, wewill introduce clustering process to extract and integrate these features
into clusters.

3. Clustering Process

Since the data set to be clustered has many native structure features, in this section we pro-
pose feature extraction and feature integration methods to obtain valid clustering results.
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Let X = [x1, x2, . . . , xN]N×d be a pattern matrix and xT
i ∈ Rd be a pattern. The data set

to be clustered can be viewed as a kind of imaginary image with its native structure features,
and then the clustering problem is viewed as a cognition problem. To extract the structure fea-
tures, we employ filtering methods in the theory of vision research. Given a stimuli, the re-
sponse of a neuron in primary visual system can be measured

f(x;Θ) = I(x) ∗K(x;Θ) =
∫
I
(
y − x

) ·K(
y;Θ

)
dy, (3.1)

where ∗ is convolution operation, I(x) is stimuli (an image or imaginary image), K(x;Θ) is
a series of filters (or kernel function), and Θ is a set of parameters. In (3.1), f(x;Θ) is the re-
sponse of the neuron with stimuli I(x), which is the filtering response and is called as a feature
of I(x).

Data sets may have many native structure features, which need to be extracted based
on (3.1)with different filters (or kernels). These filters should be determined automatically to
deal with different structure features of different data sets. Next we introduce how to con-
struct filters automatically based on these salient structural features.

3.1. Modeling of Filters to Extract Local Structure Features

Like image processing, each data point is corresponding to the center of a filter, and for clus-
tering problem here we model a new type of low-pass filter

K
(
xi;x〈j|i〉, k

)
= expx〈j|i〉∈Ω(xi;k)

(
−(xi − x〈j|i〉

)
A
(
xi − x〈j|i〉

)T)
, (3.2)

where Ω(xi; k) is k-NN of xi with new special method, and x〈j|i〉 is the jth neighbor of data
point xi. The matrix A is a covariance which can control similarity measurement according
to the neighborhood relationship and structure of data set.

To determine the special neighborhood for each data point is very important for the
new clustering algorithm, and the aim is to depict Ω(xi; k) according to density difference.
Then we will introduce how to determine the data setΩ(xi; k) for each data point xi and how
to scale the neighborhood Ω(xi; k) according to matrix A.

3.1.1. Determination of Neighborhood

Unlike classical k-NN strategy, we use a new method to find nearest neighborhood for each
data point. First, we initialize k nearest neighborhood data points [19] in which each new
adding data point is the nearest to origin data set, then we select proper neighbors among the
initial k data points.

Definition 3.1 (acceptable neighborhood radius). Each data point has k initial neighbors, and
di(x) is the distance between ith new adding nearest neighbor xi while data set containing
origin i data points. Then the neighborhood radius of the data point x is defined as

r(x; k) =
1
k

∑k

i=1
di(x). (3.3)
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Take Figure 2(a) as an example, in which we find the nearest 4 data points from a. First
the data point b is the nearest to a and its distance is d1, then a and b can be viewed as awhole,
and the second nearest data point to a is c rather than d, its distance is d2. So in this way the
acceptable neighborhood radius of data point a is (d1 + d2 + d3 + d4)/4.

With the definition, each data point is corresponding to a neighborhood radius. In
order to select true neighbors for a data point, the neighbors should have similar features as
the data point. So the consistency criterion is built up.

Definition 3.2 (internal consistency criterion (ICC)). If data point y is neighbor of data point
x according to Euclidean distance, they must satisfy

max
{
r(x; k), r

(
y; k

)} ≤ α ·min
{
r(x; k), r

(
y; k

)}
,

di ≤ α · r(x; k),
(3.4)

where di is the ith adding distance in (3.3) and α is a parameter.

The aim of the ICC is to wipe density different data point out. With the criterion, the
neighbors of each data point can be determined by the structures of data set, meanwhile the
selection mechanism for neighbors can also explore the structures of data set. In Figure 2(b),
the neighbors of data point a are b, c, d, and e according to classical k-NN. However, the
data point a and b are not satisfied with the two-criterion (3.4), so the data point a has no
neighbor and it is an outlier. The two criteria can also detect the density structure as shown
in Figure 2(c), and the initial 6 nearest neighbors are b, c, d, e, f , and g. The first three data
points b, c and d are the neighbors of a because they satisfy the criterions. However, the data
points d, e and distance d4 are not satisfied the criterions, so the number of nearest neighbors
are 3, {b, c, d}. Thus, the data points e, f , and g are not its neighbors. Note that the number of
nearest neighbors may not be the initial number k. Note that the method to select neighbors
according to ICC is not related to sequence of nearest neighbors.

3.1.2. Local Scale and Direction of Neighborhoods

Combined with neighbors, data point x has a neighborhoodΩ(xi;x, k)which is important to
depict the interaction between x and each of its neighbors. The matrix A in (3.2) cannot only
provide the scale restriction, but endow each data point with the direction feature. Then the
matrix A can be concreted by employing covariance matrix

B(x) =

∑
xi∈Ω(xi;x,k)(x − xi)T (x − xi)

|Ω(xi;x, k)| , (3.5)

where | · | is the number of neighbors in the neighborhood. Then in (3.2), the local scale matrix
can be represented with

A(x) = B−1(x). (3.6)

Whenever B is irreversible, we add each diagonal element of B by an any small positive con-
stant.
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Figure 2: Criterions to determine nearest neighbors for each data point. (a) Initial 4 nearest neighbors
for data point a. (b) An example to determine neighbors for data point e according to the two criterions.
(c) An example to determine neighbors for data point a according to the two criterions.

With the local scale matrix A in (3.2), the neighborhood of each data point has a local
scale which can restrict the similarity (or the relationship) between each pair of data points in
a proper scope. Meanwhile, the biggest eigenvector of A(x) is the local direction at the point
x which can provide other agglomerate criterion and feedback information to refine clusters.

3.2. Agglomeration Process of Clusters

In this subsection, we introduce the agglomerate process of clusters, in which different clus-
tering feature can be extracted, from local features into large scale features and then clusters.
The main process contains three steps: feature extraction with local similarity, feature cog-
nition with large scale structure features and the reidentification with top-down process. In
the procedure of feature extraction, the data set is successively filtered (convolved)with mul-
tiscale filters, yielding various feature representation of the data set. In the procedure of fea-
ture cognition, the clustering result is obtained by integrating various large scale features. In
top-down process, the clusters are rechecked to form satisfied ones, such as noisy data points,
manifold clusters, clusters with principle direction, and so on.
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3.2.1. Extraction of Local Scale Features with Filtering Process

Local scale features embody the local structures of data sets which are based on the local simi-
larity. Neighbor data points with close relationship can form local structure features, such as
the density feature of the neighborhood, shape, and principal direction of the neighborhood
and so on. In order to extract these local scale features automatically, we use a series of self-
tuning filters to agglomerate local neighborhood data points.

Let X(t) be the feature of data set extracted at t-layer, and X(0) simply corresponds to
X. Then X(t) can be expressed as

X(t + 1) = U(X)X(t), X(0) = X, t = 1, 2, . . . , (3.7)

where U is a data-driven filtering matrix according to(3.2)

U(X) =
[
uij

]
1�i,j�N

=

[
K
(
xi;xj , k

)
∑N

s=1K(xi;xs, k)

]
i,j=1,...,N

. (3.8)

The filtering matrix is a sparse matrix, in which each element uij represents the relationship
between i and j. If they are not neighbors, the element is zero.

The representation (3.7) defines a scale space {X(t+1) = U(X)tX(t) | t � 0}, which we
call the discrete scale space (DSS) of the data set deduced from its feature. For definiteness, we
assume that the feature extraction procedure is accomplished within T layers of processing.
Furthermore, it can be proved that X(t) defined by (3.7) will be finally stabilized as t → ∞.
So we can also assume that T is so large that X(t) reaches to a stationary state when t � T ,
when the data points with strong relationship will shrink into a same destination to form a
cluster.

3.2.2. Integration of Large Scale Feature Clusters

At local scales, the data points with close relationship will be grouped together to form local
structure features, and these structure features are rudiments of clusters. These rudiments of
clusters then can be grouped according to some aggregative properties to final clusters. Next
we introduce the integration of large scale features.

The two similar regions (clusters) merge together, with the precondition that the two
regions (clusters) are close, and the average distances of each one are almost equal. The dis-
tance of sets is represented with d(Ci, Cj) = min{d(x, y) | x ∈ Ci, y ∈ Cj}. As for the distance
between the two clusters, we use the modified distance of sets. m minimal distances of
clusters are selected and the average is set to be the intracluster distance. In this paper, the
value is set as 3 to make the algorithm more robust. Then the average distance of cluster is
defined as follows.

Definition 3.3 (average distance of cluster). Ci is the ith cluster obtained with filtering process
and x ∈ Ci, the neighborhood of x is Ω(x′;x, k), then the average distance d(Ci) of cluster Ci

is defined as

d(Ci) =
∑

x∈Ci

∑|Ω(x′;x,k)|
j=1

dj(x)
|Ω(x′;x, k)| . (3.9)



8 Mathematical Problems in Engineering

As the discussion above, the two clusters Ci and Cj merge together when the two cri-
teria are satisfied as

max
{
d(Ci), d

(
Cj

)} ≤ β ·min
{
d(Ci), d

(
Cj

)}
,

d
(
Ci, Cj

) ≤ β ·min
{
d(Ci), d

(
Cj

)}
.

(3.10)

With the definitions of average distance and the intradistance between two close clus-
ters, also with the agglomerating criterions (3.10) the local structure features will integrate
into large scale structure features, such as connectedness and direction features. This proce-
dure is a rough agglomerating and a bottom-up procedure, in which different local structure
features may merge together. Then the Top-down process should be considered to analyze
whether these local features should merge or not.

3.2.3. Top-Down Procedure

The identification of noisy data points and large scale structure features of data set are difficult
for clustering problem and are parallel with clustering algorithm. Here the identification
process embeds Top-down procedures because the agglomerating process is only a bottom-
up procedure without any large scale feature information. In this paper, the identification of
noisy data points, connectedness, and direction features are considered.

Identification of Noisy Data Points or Outlier

Lots of noisy data points or outliers may appear with the local features agglomeration in the
filtering process. These data points strongly depend on the local similarity and may not be
true noises, andwhether they are noisy data points or not depends on the large scale structure
features after agglomeration.

Some outliers appear in the seeking of neighbors for each data point, and then some of
these outliers may agglomerate in clusters in the filtering process. To avoid this, the outliers
should be identified whether they are noisy or not, or whether they should be classified into
close clusters according to the statistical properties (such as mean and variance of Gaussian).
An example is given in Section 3.2.4 to demonstrate the identification procedures.

Identification of Connectedness and Direction Feature

With the whole agglomeration procedure, fine clusters merge into coarse clusters, and the
number of clusters decrease. The coarse clusters are made of small fine clusters which have
their own local principal directions. The fine clusters are regions with various shapes, and the
region of a fine cluster Ci can be measured with covariance matrix

Σi =
∑

x∈Ci
(x − x̂)T (x − x̂), (3.11)

where x̂ is themean of the local cluster. The principal direction ofΣi is the local direction of the
cluster. In agglomerating procedure into coarse clusters, if the directions of subagglomerates
are almost the same, the coarse cluster has a direction feature.
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Input: Data set X, in which each row is a pattern; parameters: k, \alpha, \beta.
Output: Label vector L, in which each element is cluster label.

Step (1): Find k nearest neighbors for each data point x according to
Euclidean distance.

Step (2): Find nearest neighbors for each data point x according to
Definition 3.2.

Step (3): Construct filtering matrix U based on (3.2) and (3.8).
Step (4): Filtering process X = UX, obtain elementary clusters, which are

the element with various kind of structure features. Top-down
process is included to identify connectedness and direction.

Step (5): Integrate elementary clusters with same structure features into
meaningful clusters according to (3.9).

Step (6): Top-down process to identify noisy data points and outliers.

Algorithm 1: The process of new clustering algorithm.

3.2.4. Algorithm Outline

The clustering algorithm includes three procedures, the local structure feature extraction with
filtering process, integration of large scale features, and the top-down process to refine clus-
tering results. The clustering algorithm is summarized by an outline in Algorithm 1.

An example is shown in Figure 3, where two Gaussian data sets have different mean
and variance. From left to right, and from the top to down are the agglomerating procedure
of clustering. The second subfigure is the result of local features integration under filtering
procedure, and then the second subfigure is the result after the integration of large scale struc-
ture features. And the last is the result with top-down process, where some noisy data points
attribute to the two final clusters according to the variance of the two main clusters.

3.2.5. Complexity of the Algorithm

The high complexity of clustering algorithm is difficulty to deal with large datasets, and
meanwhile the preprocessing origin datasets is expensive. So in the scope of this paper, we
do not intend to solve efficiently the preprocessing. The KNN procedure (typically k = 40) is
used in step (1) of the new algorithm. In low dimension, KNN has complexity ofO(N logN),
while in high dimension the complexity is O(N2), where N is the number of data points.

The complexity of our clustering algorithm is O(N). In the filtering process, the com-
plexity is not more than O(N · k · d) because the filtering matrix is a sparse matrix, in which
the number of each nonzero element in each row is not more than k (typically k = 40), and d
is the dimension of each pattern. So the complexity of the filtering process is n O(N). In the
integration procedure, the complexity isO(N2

c ) andNc is the number of elementary clusters.
In practiceNc 
 N, and the total complexity of the algorithm is linear in the size of the data
set, which is much lower than CSSF [20] and VClust [21] (O(N3)).

4. Experiment

We provide a series of experiments and applications in this section to demonstrate the effect-
iveness of the proposed clustering algorithm. The test data sets include synthetic data sets



10 Mathematical Problems in Engineering

Seven clusters exist
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Two clusters and
a noisy data point

Eight clusters exist

Ten clusters exist

Figure 3: An example to show the clustering procedure.

and a set of real world data sets from public domains that are extensively used in testing the
performance of classical clustering algorithms. The synthetic data sets are specially generated
to exhibit complex structure features, such as the unbalanced and complex manifold shaped.
The real world data sets are those derived from image segmentation and a runway detection
task from remote sensing image.

We have applied the new algorithm to the above data sets with comparison to several
well-known clustering algorithms. These algorithms are known to be representatives of the
existing clustering approaches. The method of clustering by scale space filtering-(CSSF-)
[20] in the vision-simulation-based approach, the Chameleon [9]method in the graph-based
approach, the spectral-Ng method [22] in the spectrum-based approach, Mean Shift algo-
rithm [15] in the density-based algorithm, and the latest LEGClust algorithm [23] from the
information entropy-based approach.

In experiments, we have used the normalized mutual information (NMI) [24], as the
criterion of measuring the performance of a clustering algorithm, whenever the data sets are
of high dimension. There are three parameters in the algorithm: initial neighbor parameter
k, agglomerating criterion parameters α and β. These parameters are very stable for the
algorithm, k (usually 10 ≤ k ≤ 40) is only an initial number of neighbors for each data point
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(a) new (b) CSSF (c) Chameleon (d) Spectral-Ng (e) LEGClust

Figure 4:Comprising results with different classical algorithms on three toy data sets. (a)Clustering results
with the new algorithm on three data sets. (b) Clustering results with the CSSF. (c) Clustering results with
Chameleon. (d) Clustering results with Spectral Ng. (e) Clustering results with LEGClust.

and proper neighbors are less than k, as the same, the other two parameters are very stable.
Usually in this paper, k = 40, α = 4, and β = 2.

The three toy data sets and the results of different clustering algorithms are shown
in Figure 4, where each row is a synthetic data set, and each column contains the results of
three data sets with a same algorithm. We have employed 50 people who are familiar with
clustering problem to evaluate these results with the figures, and most acceptable results are
labeled with red box. From the results with each cluster algorithm (each column), the new
algorithm and VClust are better than the others. The only advantage of the new algorithm is
that the computation load is lower (O(N2)) than VClust (O(N3)).

We further compare the new algorithm with other clustering algorithms by applying
to real world problems. The real data sets are from UCI and USPS, where the noisy data
points follow uniform distribution. In Iris data set, the 30 noisy data points are set while in
USPS-01 the 100 uniform noisy ones are set. Due to the uniform unsatisfying performance of
the density-based algorithms in afore conducted simulations, we compare the the algorithm
only with the graph-based algorithms whose results are more better. Thus, as representatives,
Chameleon, spectral-Ng, noise robust spectral clustering (NRSC) [24], and self-tuning spec-
tral clustering (STSC) [25] are selected to apply, as compared with the new algorithm. All the
algorithms are applied to the four real data sets, shown in Table 1.

The clustering algorithms are applied in two natural images, which are shown in
Figure 5. The images are composed of regions with different textures and gradually changed
colors. Two well-known algorithms, which are very successful in image segmentation, are
normalize cut [26] and mean shift [15]. We apply the new algorithm and CSSF in the
chosen images, and compare the results with normalized cut and mean shift. The yielded
segmentation results are shown in Figure 5. Note that the second column shows one kind
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Table 1: Clustering results when different clustering algorithms, applied to four real world data sets.

Data-set NMI
New algorithm NRSC Spectral-Ng STSC Chameleon

Iris 0.8623 0.7612 0.8058 0.7612 0.7652
Noisy Iris 0.8623 0.7779 0.5759 0.5881 0.7652
Pendigit 0.6429 0.5899 0.4902 0.5107 0.7706
Noisy USPS-01 1.0 1.0 0.6234 0.7439 0.8972

Figure 5: Image segmentation using different clustering algorithms. From left to right: original image,
manual drawing, the new algorithm, CSSF and Normalized Cut.

of acceptable segmentation results through manual labeling, and the result of mean shift is
similar as normalized cut.

We also apply the new algorithm to the following identification problem to detect/
locate the airport runway from remotely sensed image shown as in Figure 6(a), which comes
from LANDSAT thematic mapper (TM) data acquired over a suburb area in Hangzhou,
China. The region contains the runway and parking apron of a certain civilian aerodrome. The
image consists of a finite rectangular 95×60 lattice of pixels. Similar to [27], we selected Band
5 as a feature variable. A feature subset of data shown in Figure 6(b) can then be extracted
by using a simple technique which selects a pixel point when its gray-level value is above a
given threshold (e.g., 250).

In [27], regression class mixture decomposition (RCMD) method was proposed to
mine line objects in the remotely sensed image. Using a feature subset of data in Figure 6(b),
RCMD method successfully detected two runways, which can be viewed as two regression
classes. At t = 0.05 level, two line equations identified by RCMD method are y = 0.774x +
34.874 and y = 0.341x + 22.717. The detected two runways are depicted in Figure 6(c). Here
we take this detection problem as a clustering problem, and then apply the new clustering
algorithm. The obtained clustering results are shown in Figure 6(d), where each cluster
corresponds to a runway. In the procedure of clustering with the new clustering algorithm,
two principal directions have been obtained by finding the mean principle directions from
the anisotropy matrices in each cluster. Therefore the detected two runways with the new
algorithm can be described by y = 0.332x + 23.04 and y = 0.714x + 37.362, as shown
in Figure 6(e). It is seen that the new clustering algorithm has been applied to yield an
almost similar result with RCMD.Nevertheless, we observe that the new clustering algorithm
provides a much more simpler approach to the identification problem than RCMD does.
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Figure 6: Runway detection in remote sensory image. (a) Remote sensory image. (b) Pixels extracted from
image. (c) Detected result with RCMD. (d) Clustering result with the new algorithm. (e) Two detected
runway with the new algorithm.

5. Conclusion

We have suggested a new clustering by identifying structure feature based on density consis-
tence. Through viewing a data set as an (imaginary) image and explaining the data clustering
as a cognition problem, it solves the problem via mimicking the mechanism of visual infor-
mation processing. First, the results with the new algorithm are most close to the cognition of
people for low dimension complex structure data sets. Second, it can deal with various struc-
tures of subspace clusters and is not restricted by shapes and high dimension. Third, almost
no parameters has to be considered and it is easily to use. Fourth, the computation load is
much lower than CSSF and VClust.
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