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This paper considers the problem of guaranteed cost repetitive control for uncertain discrete-time
systems. The uncertainty in the system is assumed to be norm-bounded and time-varying. The
objective is to develop a novel design method so that the closed-loop repetitive control system
is quadratically stable and a certain bound of performance index is guaranteed for all admissible
uncertainties. The state feedback control technique is used in the paper. While for the case that
the states are not measurable, an observer-based control scheme is adopted. Sufficient conditions
for the existence of guaranteed cost control law are derived in terms of linear matrix inequality
(LMI). The control and observer gains are characterized by the feasible solutions to these LMIs.
The optimal guaranteed cost control law is obtained efficiently by solving an optimization problem
with LMI constraints using existing convex optimization algorithms. A simulation example is
provided to illustrate the validity of the proposed method.

1. Introduction

In practice, many tracking systems have to deal with periodic reference and/or disturbance
signals, for example, industrial robots, computer disk drives, and rotating machine tools.
Repetitive control, which is based on the internal model principle proposed by Francis and
Wonham [1], has been proved to be a useful control strategy for this class of systems. Up to
date, researchers have devoted considerable efforts to the analysis and design of repetitive
control systems. For the continuous-time case, Weiss and Häfele [2] discussed the repetitive
control of MIMO systems using H∞ design; Tsai and Yao [3] derived upper and lower
bounds of the repetitive controller parameters that ensure stability and desired performance;
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Doh and Chung [4] presented a linear matrix inequality- (LMI-) based repetitive controller
design method for systems with norm-bounded uncertainties, while for the discrete-time
case, Osburn and Franchek [5] developed a method for designing repetitive controllers using
nonparametric frequency response plant models; Freeman et al. [6] proposed an optimality-
based repetitive control algorithm for time-invariant systems; Pipeleers et al. [7] proposed a
novel design approach for SISO high-order repetitive controllers.

It is well known that in many practical systems, the system model always contains
some uncertain elements due to poor plant knowledge, reduced-order models, and
nonlinearities such as hysteresis or friction, slowly varying parameters, and so forth, and
the uncertainties frequently lead to deterioration of system performance and instability of
systems. Hence, robust stability and stabilization for uncertain systems have been the focus
of much research in the recent years. However, for the repetitive control of uncertain discrete-
time systems, to the best of our knowledge, there are no previous results reported in the
literature. This motivates our research.

When controlling a system involving uncertainties, it is often desirable to design a
robust controller that not only stabilizes the closed-loop system but also guarantees an ideal
level of performance for all admissible uncertainties. One way to address this problem is the
so-called guaranteed cost control technique (see, e.g., [8, 9]). Furthermore, LMI approach is
a powerful tool in the control theory and applications and has been applied to a wide range
of control problems, such as the output feedback control [9] and filter design of time-delayed
systems [10]. In this paper, we will adopt these two useful methodologies (i.e., guaranteed
cost control technique and LMI approach) to discuss the state feedback repetitive control
for discrete-time systems with norm-bounded and time-varying uncertainties. The objective
is to develop a novel design method that not only provides an ideal level of performance
while preserving system stability but also can be efficiently implemented using existing
software. The approach taken in this paper is as follows: we first combine the state vectors
of the repetitive controller and the uncertain system and derive the sufficient condition in
the form of LMI for the existence of guaranteed cost control law. Next, for the case that the
states of a system are not available for measurement, we present an observer-based control
scheme. The control and observer gains are characterized by the feasible solutions to some
LMIs. Finally, a convex optimization problem with LMI constraints is introduced to solve the
optimal guaranteed cost control law using existing LMI software [11].

Notation. Rn denotes the n-dimensional Euclidean space; Rn×m is the set of all n × m real
matrices; I is the identity matrix; null matrix or null vector of appropriate dimension is
denoted by 0; the superscript “T” stands for the transpose of a matrix; the notation P > 0
and P ≥ 0 for P ∈ Rn×n means that the matrix P is real symmetric positive definite or positive
semidefinite, respectively; the symmetric terms in a symmetric matrix are denoted by ∗, for
example,

[
X Y
∗ Z

]
=
[

X Y
YT Z

]
.

2. Preliminaries of Guaranteed Cost Control

Consider an uncertain discrete-time system described by the following state equation:

x(t + 1) = (A +HF(t)E)x(t), (2.1)
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where x(t) ∈ Rn is the state vector with initial condition x(0), A, H and E are known real
constant matrices with appropriate dimensions, and F(t) is a real uncertain matrix function
satisfying FT(t)F(t) ≤ I.

Associated with the uncertain system (2.1) is the following quadratic cost function
with a given weighting matrix Q > 0:

J =
∞∑

t=0

xT (t)Qx(t). (2.2)

Definition 2.1 (see [8]). A positive definite real matrix P is said to be a quadratic cost matrix
for the system (2.1) and cost function (2.2) if

(A +HF(t)E)TP(A +HF(t)E) − P +Q < 0 (2.3)

for all F(t) satisfying the bound FT(t)F(t) ≤ I.

Lemma 2.2 (see [8]). Suppose that P > 0 is a quadratic cost matrix for the uncertain system (2.1)
and cost function (2.2). Then the system is quadratically stable and the cost function satisfies the
bound J ≤ xT (0)Px(0).

The following theorem shows that the existence of a quadratic matrix is equivalent to
the feasibility of an LMI.

Theorem 2.3. Consider the system (2.1) and cost function (2.2). There exists a quadratic cost matrix
if and only if there exist a scalar ε > 0 and matrix X > 0 such that

⎡

⎢
⎢⎢⎢
⎢
⎣

−X + εHHT AX 0 0

∗ −X XET X

∗ ∗ −εI 0

∗ ∗ ∗ −Q−1

⎤

⎥
⎥⎥⎥
⎥
⎦

< 0. (2.4)

Moreover, the cost function (2.2) satisfies the bound J ≤ xT (0)X−1x(0).

To prove the theorem, we need the following lemma.

Lemma 2.4 (see [12]). Let Σ1 and Σ2 be real constant matrices of compatible dimensions and M(t)
a real matrix function satisfying MT (t)M(t) ≤ I. Then the following inequality holds:

Σ1M(t)Σ2 + ΣT
2M

T (t)ΣT
1 ≤ εΣ1ΣT

1 + ε−1ΣT
2Σ2, for any ε > 0. (2.5)

Proof of Theorem 2.3. By an obvious application of Schur’s complement formula [13], the
inequality (2.3) is equivalent to

[−P−1 A +HF(t)E

∗ −P +Q

]

< 0. (2.6)
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The inequality (2.6) can be further written as

[−P−1 A

∗ −P +Q

]

+

[
H

0

]

F(t)
[
0 E

]
+

[
0

ET

]

FT (t)
[
HT 0

]
< 0. (2.7)

In light of Lemma 2.4, the inequality (2.7) holds for any F(t) satisfying FT (t)F(t) ≤ I if
and only if there exists a scalar ε > 0 such that

[−P−1 + εHHT A

∗ −P +Q + ε−1ETE

]

< 0, (2.8)

which is further equivalent to

⎡

⎢
⎢
⎣

−P−1 + εHHT A 0

∗ −P +Q ET

∗ ∗ −εI

⎤

⎥
⎥
⎦ < 0. (2.9)

Premultiplying and postmultiplying the inequality (2.9) by the matrix diag{I, P−1, I}
yield

⎡

⎢⎢
⎣

−P−1 + εHHT AP−1 0

∗ −P−1 + P−1QP−1 P−1ET

∗ ∗ −εI

⎤

⎥⎥
⎦ < 0. (2.10)

By denoting X := P−1 and using Schur complements again, it is straightforward to
verify that the inequality (2.10) is equivalent to (2.4). This completes the proof.

3. State Feedback Repetitive Control

In this paper, we will consider the uncertain discrete-time SISO system described by

Σp :

⎧
⎨

⎩

xp(t + 1) =
(
Ap + ΔAp

)
xp(t) +

(
Bp + ΔBp

)
up(t),

yp(t) =
(
Cp + ΔCp

)
xp(t) +

(
Dp + ΔDp

)
up(t),

(3.1)

where xp(t), up(t), and yp(t) are the state vector, control input, and measured output,
respectively; Ap, Bp, Cp, and Dp are real constant matrices with appropriate dimensions; the
pairs (Ap, Bp) and (Ap, Cp) are stabilizable and detectable, respectively; ΔAp,ΔBp,ΔCp, and
ΔDp are parameter uncertainties which are norm-bounded and can be described by

[
ΔAp ΔBp

ΔCp ΔDp

]

=

⎡

⎣
H1

H2

⎤

⎦Δ(t)
[
E1 E2

]
, (3.2)
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where H1, H2, E1, and E2 are known constant matrices with appropriate dimensions, and
Δ(t) is an uncertain matrix satisfying the bound ΔT (t)Δ(t) ≤ I.

According to the internal model principle, in order to achieve zero tracking error in
steady state, it is necessary to include in the loop the generator of periodic reference and/or
disturbance signal, which is usually known as the repetitive controller. The transfer function
of digital periodic signal generator with period L is [14]

Σr =
1

1 − z−L
. (3.3)

As can be seen from (3.3), the periodic signal generator introduces L open-loop poles
uniformly distributed over a circumference of unit radius, which makes great differences
between the design of repetitive control system and that of conventional feedback control
system, and increases the difficulty of design work.

The state-space description of Σr can be written as

Σr :

⎧
⎨

⎩

xr(t + 1) = Arxr(t) + Bru(t),

up(t) = Crxr(t) +Dru(t),
(3.4)

where

Ar =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
. . . . . . . . .

...
...

0 0 0 · · · 1 0

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

,

Br =
[
1 0 0 · · · 0 0

]T
,

Cr =
[
0 0 0 · · · 0 1

]
,

Dr = 1.

(3.5)

Remark 3.1. To enhance the robust stability, additional filtering is usually added to the
repetitive controller. Selecting Σr = 1/(1 − γz−L) with γ ∈ (0, 1) yields a commonly
used repetitive control scheme which sacrifices the high-frequency performance for system
stability. All the results in this section can be extended with elements of Ar and Cr modified
to include this scheme.

By using the augmented state vector x = [xT
p , x

T
r ]

T , we combine (3.1) and (3.4) to yield
the following system:

x(t + 1) = (A +H1Δ(t)E1)x(t) + (B +H1Δ(t)E2)u(t),

y(t) = (C +H2Δ(t)E1)x(t) + (D +H2Δ(t)E2)u(t),
(3.6)
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where

A =

[
Ap BpCr

0 Ar

]

, B =

[
BpDr

Br

]

,

C =
[
Cp DpCr

]
, D = DpDr,

H1 =

[
H1

0

]

, H2 = H2, E1 =
[
E1 E2Cr

]
, E2 = E2Dr.

(3.7)

Associated with the system (3.6) is the quadratic cost function with given weighting
matrices Q > 0 and R > 0:

J =
∞∑

t=0

(
xT (t)Qx(t) + uT(t)Ru(t)

)
. (3.8)

Remark 3.2. For square m ×mMIMO linear systems, by selecting the repetitive controller as

Σr =
1

1 − z−L
× Im×m, (3.9)

the design technique proposed in this paper is also applicable by just rewriting the state-space
description of Σr to obtain the corresponding state-space matrices Ar, Br, Cr , andDr .

The problem in this section is to design a memoryless state feedback control law

u(t) = Kx(t) (3.10)

such that for any admissible uncertain matrix Δ(t), the resulting closed-loop system

x(t + 1) = (A + BK +H1Δ(t)(E1 + E2K))x(t) (3.11)

is not only stable, but also gives an upper bound for the closed-loop cost function

J =
∞∑

t=0

xT (t)
(
Q +KTRK

)
x(t). (3.12)

Remark 3.3. By combining the state vectors of the repetitive controller and the uncertain
discrete-time system, the resulting closed-loop system with state feedback control law has
a form similar to that of (2.1). Although similar problems have been investigated by some
researchers for conventional uncertain systems without the repetitive controller, it is the merit
of the paper that the simultaneous consideration of robust stability and performance for
the repetitive control of uncertain discrete-time systems is achieved for the first time, and
an optimal guaranteed cost control law, which not only preserves system stability but also
ensures an adequate level of performance, can be obtained by the approach presented in the
paper.
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Definition 3.4. Consider the uncertain system (3.6) and cost function (3.8). The controller of
the form (3.10) is said to be a state feedback guaranteed cost controller with cost matrix P >
0 if the matrix P > 0 is a quadratic cost matrix for the closed-loop system (3.11) and cost
function (3.12).

Remark 3.5. Using the results of last section, it follows that if (3.10) is a guaranteed cost control
law with cost matrix P > 0, then the resulting closed-loop system will be quadratically stable.
Furthermore, the closed-loop system guarantees an adequate level of performance.

The following theorem provides an efficient way to solve the guaranteed cost state
feedback control law (3.10) by existing convex optimization algorithms.

Theorem 3.6. If there exist a scalar ε > 0 and matrices X > 0, Y such that the following LMI holds:

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

−X + εH1H
T
1 AX + BY 0 0 0

∗ −X YT X XET
1 + YTET

2

∗ ∗ −R−1 0 0

∗ ∗ ∗ −Q−1 0

∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

< 0, (3.13)

then u(t) = YX−1x(t) is a guaranteed cost control law for the uncertain system (3.6).

Proof. According to Theorem 2.3, the existence of a quadratic cost matrix for the closed-loop
system (3.11) and cost function (3.12) is equivalent to

⎡

⎢⎢
⎣

−X + εH1H
T
1 (A + BK)X 0

∗ −X +X
(
Q +KTRK

)
X X(E1 + E2K)T

∗ ∗ −εI

⎤

⎥⎥
⎦ < 0. (3.14)

By using Schur complements, the inequality (3.14) is further equivalent to

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

−X + εH1H
T
1 AX + BKX 0 0 0

∗ −X XKT X XET
1 +XKTET

2

∗ ∗ −R−1 0 0

∗ ∗ ∗ −Q−1 0

∗ ∗ ∗ ∗ −εI

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

< 0. (3.15)

Now setting Y = KX, it is ready to see that (3.15) yields (3.13). Moreover, the guaranteed cost
control gain is K = YX−1. This completes the proof.

In this paper, we are interested in designing a controller of the form (3.10) to minimize
the upper bound of (3.8). However, this bound is dependent on the initial condition x(0).
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To remove this dependence on the initial condition, we adopt the approach proposed by
Petersen et al. [8]. Suppose that the initial condition is arbitrary but belongs to the set

Ω :=
{
x(0) ∈ Rn | x(0) = Ψν, νTν ≤ 1

}
, (3.16)

where Ψ is a given matrix. Then, the cost bound (3.8) leads to

J ≤ λmax

(
ΨTX−1Ψ

)
, (3.17)

where λmax(·) denotes the maximum eigenvalue.
Furthermore, introduce a scalar λ satisfying

λmax

(
ΨTX−1Ψ

)
< λ,

⇐⇒ −λI + ΨTX−1Ψ < 0,

⇐⇒
[−λI ΨT

∗ −X

]

< 0.

(3.18)

Consequently, the design problem of the optimal guaranteed cost state feedback control law
(3.10) can be formulated as the following optimization problem:

minimize
ε>0,X>0,Y

λ

subject to LMIs (3.13), (3.18),
(3.19)

which is a convex optimization problem with LMI constraints and can be effectively solved
by MATLAB LMI Toolbox.

4. Observer-Based Controller Design

In many practical control systems and applications, the states of a system are not always
available for measurement. Hence, it is very necessary to introduce a state observer to
reconstruct the states of the system. In the following work, we will focus on the design of
an observer-based controller.

The dynamic observer-based control for the system (3.6) is constructed as

Σo :

⎧
⎨

⎩

x̂(t + 1) = Ax̂(t) + Bu(t) + Γ
(
y(t) − ŷ(t)

)
,

ŷ(t) = Cx̂(t) +Du(t),
(4.1)

u(t) = Kx̂(t), (4.2)
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where x̂ is the estimation of x, ŷ is the observer output, K and Γ are the control gain and
observer gain, respectively.

Define the state estimation error as

e(t) = x(t) − x̂(t). (4.3)

By applying the observer-based controller (4.1) and (4.2) to the system (3.6), we obtain the
closed-loop system of the form

x̂(t + 1) = (A + BK + ΓH2Δ(E1 + E2K))x̂(t) + (ΓC + ΓH2ΔE1)e(t),

e(t + 1) = (H1 − ΓH2)Δ(E1 + E2K)x̂(t) + (A − ΓC + (H1 − ΓH2)ΔE1)e(t),
(4.4)

which can be further written as

[
x̂(t + 1)

e(t + 1)

]

= (Φ +MΔN)

[
x̂(t)

e(t)

]

, (4.5)

where

Φ =

[
A + BK ΓC

0 A − ΓC

]

, M =

[
ΓH2

H1 − ΓH2

]

, N =
[
E1 + E2K E1

]
. (4.6)

As can be seen from (4.5), the expression of the closed-loop system with state observer
is identical with that of (2.1). Therefore, we can utilize the results given in Theorem 2.3
to design the control gain K and observer gain Γ. Associated with the system (4.5) is the
following cost function with Q1 > 0 and Q2 > 0:

J =
∞∑

t=0

(
xT (t)Q1x(t) + eT (t)Q2e(t)

)
. (4.7)

The following theorem gives the main result on observer-based controller design by
which the control gain K and observer gain Γ could be solved.
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Theorem 4.1. The uncertain system (3.6) is quadratically stable by the observer-based control (4.1)
and (4.2) provided that there exist a scalar ε > 0 and matrices P1 > 0, Y, Γ, such that

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

−P1 0 AP1 + BY ΓC ΓH2 0 0 0

∗ −I 0 A − ΓC H1 − ΓH2 0 0 0

∗ ∗ −P1 0 0 P1E
T
1 + YTET

2 P1

(
Q1/2

1

)T
0

∗ ∗ ∗ −I 0 ET
1 0

(
Q1/2

2

)T

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

< 0. (4.8)

Moreover, the stabilizing observer and control gains are given by Γ andK = YP−1
1 , respectively.

Proof. Define the Lyapunov function as V (x̂(t), e(t)) = x̂T (t)P1x̂(t) + eT (t)P2e(t), where P1 > 0
and P2 > 0. Then according to Lemma 2.2, the closed-loop system (4.5) is quadratically stable
if the following inequality holds:

(Φ +MΔ(t)N)TP(Φ +MΔ(t)N) − P +Q < 0, (4.9)

where P = diag{P1, P2}, Q = diag{Q1, Q2}.
By applying Schur complements and some basic matrix manipulations to the LMI

(2.4), the stability condition for system (4.5) can be equivalently written as

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

−P ΦP M 0 0

∗ −P 0 PNT PST

∗ ∗ −I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

< 0, (4.10)

where S = diag{Q1/2
1 , Q1/2

2 }.
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Note that

ΦP =

[
AP1 + BKP1 ΓCP2

0 AP2 − ΓCP2

]

,

PNT =

[
P1E

T
1 + P1KTET

2

P2E
T
1

]

,

PST =

⎡

⎢
⎣
P1

(
Q1/2

1

)T
0

0 P2

(
Q1/2

2

)T

⎤

⎥
⎦.

(4.11)

Then it is straightforward to prove that (4.10) is equivalent to (4.8) with P2 = I, K = YP−1
1 .

This completes the proof.

The optimal control gain K and observer gain Γ can be obtained by solving the
following optimization problem:

minimize
ε>0, P1>0,Y,Γ

λ,

subject to

⎡

⎢
⎢
⎣

−λI ΨT

∗ −
[
P1 0

0 I

]

⎤

⎥
⎥
⎦ < 0, LMI (4.8).

(4.12)

The LMI (4.8) of Theorem 4.1 provides an efficient way to solve the observer and
control gains by existing LMI software. However, it will undoubtedly yield conservative
results in view of the proof with P2 = I. As can be seen from the proof, since the entries
in (4.10) occur in nonlinear fashion with respect to its arguments, it would be impossible to
employ the standard LMI optimization approach to find the solutions if not letting P2 = I.
The conservativeness brought by Theorem 4.1 may rest in the sense that in some cases it will
fail to produce a feasible solution when one actually exists.

To reduce the conservativeness induced by setting P2 = I, in what follows, an
alternative approach, which can be divided into two steps, will be presented. Firstly, the
LMI result for the stability of closed-loop system (4.5), by which the suitable control gain
K and observer gain Γ could be obtained, is derived under the assumption that the original
system described by (3.1) is with no perturbations in the output equation (i.e.,H2 = H2 = 0).
Secondly, the observer gain Γ, which is solved in the first step, is supposed to be known a
prior. Then sufficient condition for the existence of guaranteed cost control gain K is derived
in terms of LMI, and a convex optimization problem is formulated to solve the optimal control
gain K by minimizing the upper bound of the cost function.

First we present an LMI result for the stability of closed-loop system (4.5) with no
perturbations in the output equation. Before proceeding, we need to introduce the following
lemma.
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Lemma 4.2 (see [15]). For a given full row rank C ∈ Rm×n with singular value decomposition
C = U[C0 0]V T , whereU ∈ Rm×m and V ∈ Rn×n are unitary matrices andC0 ∈ Rm×m is a diagonal
matrix with positive diagonal elements in decreasing order, assume that X ∈ Rn×n is a symmetric
matrix, then there exists a matrix X ∈ Rm×m such that CX = XC if and only if

X = V

[
X1 0

0 X2

]

V T , (4.13)

where X1 ∈ Rm×m, X2 ∈ R(n−m)×(n−m) . Moreover, the matrix X is given by X = UC0X1C
−1
0 UT .

The suitable control gain K and observer gain Γ for system (4.5) with H2 = 0 could be
solved by the following theorem.

Theorem 4.3. The uncertain system (3.6) with H2 = 0 is quadratically stable by the observer-based
control (4.1) and (4.2) provided that there exist a scalar ε > 0 and matrices P1 > 0, P21 > 0, P22 >
0, Y,W , such that

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

−P1 0 AP1 + BY WC 0 0 0 0

∗ −P2 0 AP2 −WC H1 0 0 0

∗ ∗ −P1 0 0 P1E
T
1 + YTET

2 P1

(
Q1/2

1

)T
0

∗ ∗ ∗ −P2 0 P2E
T
1 0 P2

(
Q1/2

2

)T

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

< 0, (4.14)

where the singular value decomposition of full row rank matrix C is C = U[C0 0]V T, P2 =
V
[
P21 0
0 P22

]
V T . Moreover, the suitable control and observer gains are given by K = YP−1

1 and

Γ = WUC0P
−1
21 C

−1
0 UT , respectively.

Proof. For SISO linear systems considered in this paper, it is obvious that the matrix C is full
row rank. For m × mMIMO systems, without loss of generality, we suppose that rank(Cp) =
m, which implies rank(C = [Cp DpCr]) = m.

Since P2 can be expressed as P2 = V
[
P21 0
0 P22

]
V T , then according to Lemma 4.2, there

exists a matrix P 2 such that the equality CP2 = P 2C holds. The matrix P 2 and its inverse are

given by P 2 = UC0P21C
−1
0 UT and P

−1
2 = UC0P

−1
21 C

−1
0 UT , respectively.
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Furthermore, noting that

ΦP =

[
AP1 + BKP1 ΓCP2

0 AP2 − ΓCP2

]

=

⎡

⎣
AP1 + BKP1 ΓP 2C

0 AP2 − ΓP 2C

⎤

⎦, (4.15)

then it is ready to see that (4.10) is equivalent to (4.14) with Γ = WP
−1
2 , K = YP−1

1 . This
completes the proof.

Once the observer gain Γ has been yielded from Theorem 4.3, we may now proceed
to design the optimal control gain K which minimizes the upper bound of the cost function
(4.7). The feasible control gain could be solved by the following theorem.

Theorem 4.4. Suppose that the observer gain Γ in (4.1) is solved a priori by Theorem 4.3. Then the
closed-loop system (4.5) is quadratically stable provided that there exist a scalar ε > 0 and matrices
P1 > 0, P2 > 0, Y satisfying the following LMI. Moreover, if this condition holds, then the control gain
is given by K = YP−1

1

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

−P1 0 AP1 + BY ΓCP2 ΓH2 0 0 0

∗ −P2 0 AP2 − ΓCP2 H1 − ΓH2 0 0 0

∗ ∗ −P1 0 0 P1E
T
1 + YTET

2 P1

(
Q1/2

1

)T
0

∗ ∗ ∗ −P2 0 P2E
T
1 0 P2

(
Q1/2

2

)T

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

< 0.

(4.16)

Proof. It can be completed immediately from (4.10) by setting Y = KP1.

Hence, the optimal guaranteed cost control gain K which minimizes the upper
bound of the cost function (4.7) can be obtained by solving the following LMI-constrained
optimization problem:

minimize
ε>0,P1>0,P2>0,Y

λ,

subject to

⎡

⎢⎢
⎣

−λI ΨT

∗ −
[
P1 0

0 P2

]

⎤

⎥⎥
⎦ < 0, LMI (4.17).

(4.17)
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Figure 1: Disturbance signal used in simulation.
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Figure 2: Time response of system output.

5. Simulation Example

Consider the uncertain system (3.1) with the following parameters:

Ap =

[
1.57 −0.776
0.776 0

]

, Bp =

[
1

0

]

, Cp =
[
1.056 −1.105], Dp = 4.4,

H1 =

[
0.2 0.1

0 0.1

]

, H2 =
[
0.1 0.2

]
, E1 =

[
0.1 0

0.2 0.1

]

, E2 =

[
0.2

0.1

]

,

Δ(t) =

[
sin 4πt 0

0 sin 2πt

]

.

(5.1)

The control performance specification is to design an observer-based state feedback controller
which stabilizes the closed-loop system and rejects a disturbance signal defined by d(t) =
0.7 + 0.5 sin(ωt) + 0.3 sin(2ωt) + 0.2 sin(3ωt) + 0.1 sin(4ωt), as shown in Figure 1, where
ω = 2π/L and L = 10.

Choose the weighting matrices as Q1 = Q2 = I12×12 and R = 0.2. Now, we are in
a position to solve the control gain K and observer gain Γ by the approach presented in
Section 4. Firstly, we consider utilizing the result given in Theorem 4.1. However, it is found
that the LMI (4.8) is infeasible, which, in some sense, validates the conservativeness induced
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by the proof with P2 = I. Next, we turn to the results given in Theorems 4.3 and 4.4. The
feasible solution of the observer gain Γ obtained by solving the LMI (4.14) is

Γ = [0.3138, 0.0201, 0.2089,−0.0007,−0.0013,−0.0007,

−0.0002, 0.0003, 0.0007, 0.0009, 0.0007,−0.0005]T .
(5.2)

Then, with the observer gain Γ known a prior, the optimal guaranteed cost control gain K is
obtained as follows by solving the optimization problem (4.17), and the corresponding cost
bound is J ≤ 31.33,

K = [−1.1577, 0.4636, 0.0158, 0.0006,−0.0027,
−0.0014,−0.0001, 0.0002, 0,−0.0001, 0,−1].

(5.3)

Figure 2 shows the response of the system output. It can be seen that the disturbance is
attenuated to about 2.76 percent in four-sample periods when considering the amplitude of
the disturbance and the output, although biggish amplitude oscillations occur as the output
tends to steady state.

6. Conclusion

In this paper, a solution to the problem of repetitive control for uncertain discrete-time
systems is presented. The state feedback control and guaranteed cost control techniques are
adopted. Sufficient conditions for the existence of guaranteed cost control law are derived in
terms of LMI, and it is shown that the control and observer gains can be characterized by
the feasible solutions to the LMIs. A convex optimization problem is introduced to solve the
optimal guaranteed cost control law. The validity of the proposed method is verified by a
simulation example.
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