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This paper considers the design and practical implementation of linear-based controllers for a
cart-type double inverted pendulum (DIPC). A constitution of two linked pendulums placed on
a sliding cart, presenting a three Degrees of Freedom and single controlling input structure. The
controller objective is to keep both pendulums in an up-up unstable equilibrium point.Modeling is
based on the Euler-Lagrange equations, and the resulted nonlinear model is linearized around up-
up position. First, the LQR method is used to stabilize DIPC by a feedback gain matrix in order to
minimize a quadratic cost function. Without using an observer to estimate the unmeasured states,
in the next step we make use of LQG controller which combines the Kalman-Bucy filter estimation
and LQR feedback control to obtain a better steady-state performance, but poor robustness.
Eventually, to overcome the unknown nonlinear model parameters, an adaptive controller is
designed. This controller is based on Model Reference Adaptive System (MRAS) method, which
uses the Lyapunov function to eliminate the defined state error. This controller improves both the
steady-state and disturbance responses.

1. Introduction

The nonlinear systems like the classic inverted pendulum have been widely used as a test
bed in control laboratories to investigate the effectiveness of control methods on real systems
[1, 2]. The cart-type Double inverted pendulum (DIPC) is an extension for the single inverted
pendulum (SIP) system. The control problem is more difficult and challenging, because the
controller must bring both pendulums, from the stable equilibrium hanging point to the up-
up unstable equilibrium point and keep the system state around this point.
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The problem of controlling DIPC is separated into two stages: a swing-up control and
a balancing control strategy [3, 4]. Common approaches to balance control of DIPC are based
on stabilizing the system by a feedback gain matrix which is also used in this paper. Optimal
and SDREmethods, Neural Networks, GA, and other model-based and intelligent algorithms
are widely used to adjust this gain matrix [1, 2]. Most of these methods are computationally
expensive and require perfect modeling or training processes. Also some model-based robust
approaches such as H2 and H∞ optimization are utilized to overcome the uncertainties due
to modeling imperfectness. In this paper we take the optimal solution as our baseline and
try to have the least changes while passing from simulation to practical running by using an
adaptivemethod to adapt the optimal gain against the upcoming uncertainties. The proposed
approach is the so-called lyapunov-based MRAS adaptive control. Designing procedure in
this method is simple and does not involve excessive computations, though easily track the
uncertainties.

In order to design the adaptive controller, primarily we use the LQR method where, a
quadratic performance criterion is considered for designing an optimal controller. It is proved
that, this performance index can be minimized by a constant feedback gain matrix, which
is the solution of Riccati equation [5]. In addition, a Kalman-Bucy filter as a modification
for LQR is used to predict the absent states yielding the so-called LQG method. In the next
step, an adaptive controller is designed based on MRAS approach in which the stabilized
closed loop system, produced by LQR method, has been declared as a reference model and
to achieve a parameter adjustment law, a Lyapunov function is introduced to eliminate the
state error.

We consider the disturbance response and steady-state behavior of the system as two
factors to investigate the efficiency of LQR and adaptive controllers. In steady-state situation,
DIPC acts almost as a linear system however, nonlinearities like stick-slip friction causing
unwanted behaviors like limit cycle [6] result in a poor steady state behavior. However,
under deviated situation, the intrinsic nonlinearities of DIPC are dominant which make the
closed loop system unstable. Discussed nonlinearities are not considered in designing LQR
controller, because it deals with linear models. To cope with these problems designing of two
separate adaptive controllers for steady-state and deviated conditions is proposed, because
the major nonlinearities are different in these two conditions.

2. Double Inverted Pendulum System

A schematic view of a mechanical DIPC system is depicted in Figure 1. The first pendulum
is placed on a cart and the second pendulum pivots on the first one. The cart can move freely
along a horizontal track and a force u exerted to the cart in order to balance the whole system.
Some usual assumptions have been made to simplify the modeling of the system, that is, the
masses of the pendulums and the cart are homogeneously distributed and concentrated in
their centers of gravity and we neglect frictions. Though, the latter causes some difficulties in
practical running of the system.

2.1. Modeling

According to the schematic depiction of DIPC system, the mathematical model is derived
using the Lagrange method, assuming that thereis negligible damping between mechanical
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Figure 1: Schematic of a DIPC.

parts [1]. The resulted nonlinear model, including the motor force, is given by

D(θ)θ̈ + F
(
θ, θ̇
)
θ̇ +G(θ) = Hu, (2.1)

where

D(θ) =

⎛

⎜⎜
⎝

d1 d2 cos θ1 d3 cos θ2

d2 cos θ1 d4 d5 cos(θ1 − θ2)

d3 cos θ2 d5 cos(θ1 − θ2) d6

⎞

⎟⎟
⎠,

F
(
θ, θ̇
)
=

⎛

⎜⎜
⎝

0 −d2 sin(θ1)θ̇1 −d3 sin(θ2)θ̇2

0 0 d5 sin(θ1 − θ2)θ̇2

0 −d5 sin(θ1 − θ2)θ̇1 0

⎞

⎟⎟
⎠,

(2.2)

where

G(θ) =

⎛

⎜⎜
⎝

0

−f1 sin θ1
−f2 sin θ2

⎞

⎟⎟
⎠,

H =
(
1 0 0

)T
.

(2.3)

Assuming that centers of mass of the pendulums are in the geometrical center of the
links, which are solid rods, we have

li =
Li

2
, Ii =

miL
2
i

12
. (2.4)

The nomenclature and parameters ofD(θ), F(θ, θ̇), andG(θ) are given at the end of the paper.
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2.2. Control

The control system is designed to stabilize the pendulums in the up-up position. Therefore,
the designed controllers are the regulatory type, which force the states to remain near zero.
The controllers discussed in this paper are based on linear model.

To design a control law we introduce the state vector as

x =
(
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

)
. (2.5)

The Lagrange equations of motion (2.1) can be reformulated into a sixth-order system
of ordinary differential equations:

ẋ =

(
0 I

0 −D−1F

)

x +

(
0

−D−1G

)

+

(
0

D−1H

)

u. (2.6)

The required linear model can be achieved by the linearization of above equation
around x = 0 which yields

ẋ = Ax + Bu,

y = Cx,
(2.7)

where

A =

⎛

⎜
⎝

0 I

−D(0)−1
∂G(0)
∂θ

0

⎞

⎟
⎠, B =

(
0

D(0)−1H

)

. (2.8)

2.3. Linear Quadratic Regulator (LQR)

The linear system in (2.7) can be stabilized using a linear control law:

u = −Kx. (2.9)

In order to design an optimal control law, K must be calculated such that a given
performance criterion or cost function be minimized. A quadratic cost function is proposed
for DIPC stabilization as

J =
∫ t1

t0

(
xTQx + uTRu

)
dt, (2.10)

where Q and R in (2.10) are the states and control weighting matrices and are chosen to be
square and symmetric.
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It is proved [5] that minimization of the quadratic cost function for a linear system,
has a mathematical solution which yields in an optimal control law of the form (2.9) and is
given by

uopt = −Kx = −R−1BTPx, (2.11)

where P is the solution of Riccati equation:

PA +ATP − PBR−1BTP +Q = 0 (2.12)

and K is the optimal linear feedback gain

K = R−1BTP. (2.13)

2.4. Linear Quadratic Gaussian (LQG)

An important issue on state feedback controllers is to obtain the states of the system in
order to produce an input signal. But some states may not be available so that, some kind
of an observer system is required to predict the states. This may be obtained by a pole
placement procedure but another problem ariseswhen our measurements and input signal(s)
are infected with noises, then it would be a convergence problem using ordinary observer. In
this case an optimal observer called Kalman-Bucy filter is proposed.

Suppose the noisy system is modeled as

ẋ = Ax + Bu +w1(t),

y = Cx +w2(t),
(2.14)

where w1 and w2 denote input and measurement noises, respectively, with covariance
matrices Q0 and R0. Using an observer the system’s equation of predicted states would be
as follows:

˙̂x = Ax̂ + Bu + L
(
y − Cx̂

)
, (2.15)

where x̂ is the predicted state and L is the correction gain of prediction. The problem of
designing an optimal observer, then reduces to find a gain, L, to minimize the quadratic cost
function for state error, e(t):

e(t) = x(t) − x̂(t). (2.16)

Desired value of L, is given by

L = P0C
TR−1

0 (2.17)
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with P0, satisfying the Riccati equation:

P0A +ATP0 − P0C
TR−1

0 CP0 +Q0 = 0. (2.18)

Now with optimal state feedback gain, K, and optimal observer gain, L, derived separately,
according to the so-called Separation Principal, the LQG controller could be constructed.

3. Adaptive Controller

The goal of the adaptive controller used in this paper for the DIPC system which follows a
Model Reference approach, is to modify a feedback gain matrix, K, such that the behavior
of the main system which has been infected with various kinds of uncertainties, tend to
that of a desired and deterministic closed loop system, so that the uncertainties would
be compensated with an appropriate feedback gain. Here the reference system is the
deterministic mathematical model of the DIPC that is controlled with the feedback gain
obtained by LQR method.

3.1. Model Reference Adaptive System (MRAS)

It is desirable that the system

ẋ = Ax + Bu (3.1)

behaves as the reference system

ẋm = Amxm (3.2)

and this should be performed with

u = −Kadx, (3.3)

whereKad is the parameter to be adjusted. Thus, the systems (3.1) and (3.2) could be written
as

ẋ = Acx = (A − BKad)x,

ẋm = Amx =
(
A − BK̂ad

)
x.

(3.4)

Naturally the next step is to define an error term to illustrate the efficiency of the
adaptation task and then a Lyapunov function is introduced to stabilize the error dynamics
[7]. The error is defined as

e = x − xm. (3.5)
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Differentiating e, gives

ė = ẋ − ẋm = Ax + Bu −Amxm (3.6)

and some manipulation on (3.6) results in the error dynamic:

ė = Ame + Ψ
(
Kad − K̂ad

)
, (3.7)

where

Ψ = −BxT . (3.8)

To find a relation between adjustment of Kad, and elimination of e, a quadratic
Lyapunov function is proposed:

V (e,Kad) =
1
2
ζeTPe +

1
2

(
Kad − K̂ad

)T(
Kad − K̂ad

)
, (3.9)

where P and ζ are positive definite matrices and thus V is also positive definite. Differentiat-
ing V , gives the criterion such that V , represents a Lyapunov function:

V̇ = −1
2
ζeTQe +

(
Kad − K̂ad

)(
K̇ad + ζΨTPe

)
, (3.10)

where Q is positive definite such that

AT
mP + PAm = −Q. (3.11)

SinceAm is stable there always exists a pair of positive definite matrices P andQ. Now
if we choose

K̇ad = −ζΨTPe (3.12)

(3.10) would be negative definite and hence, the error goes to zero by time.
Ultimately, combining (3.12) with (3.8) the parameter adjustment law becomes

K̇ad = ζxBTPe. (3.13)

This shows an iterative adaptation:

Kad(t) = Kad(t − 1) + Ts
(
ζx(t − 1)BTPe(t − 1)

)
, (3.14)

where Ts denotes the sampling period and ζ is a weighting factor whose effect will be
addressed later.
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4. Practical Implementation

The last step is to apply the discussed controllers to the practical system of DIPC. A
constructed system is depicted in Figure 2 (this system is mounted on the Robotic Lab of
electrical and computer faculty in Tabriz university). For the aim of the forced motion, a
rubber belt is attached to the cart and a 144W PMDC motor drives it which is controlled via
a PWM driver. Three shaft encoders are the only sensors applied and measure the positions
of the cart and pendulums. Not using any gearbox, backlash phenomena is not observed,
also, using ball-bearings, relaxed us from considering friction in rotating parts. However,
horizontal displacement, face some nondeterministic friction. The structure of DIPC control
system is also depicted in Figure 3. The interface between hardware and software parts of
the system is a National Instruments PCI-6601 data acquisition card which provides encoder
readers and I/O ports. The software used for controlling the system is implemented in xPC
target toolbox fromMATLAB. No discretization is used at all and the controller implemented
continuously with a sampling frequency of 50KHz.

A primary issue to be regarded is obtaining the states of the system which, three of
them already have been measured using incremental shaft encoders, but the rest, namely,
the velocities of the parts are still absent. That is without using Tacho sensors; a derivation
process is required to produce the rest of states which is a challenging task because of the
quantized output of the position sensors. Except the LQG which uses an optimal estimator
to produce the states, a direct difference approximation combined with prefilters (used for
smoothing) is used in this paper, where a cut-off frequency for filtering is obtained by trial
and error.

Linearized model parameters, that is, A and B, around x = 0, for DIPC are as follows:

A =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −4.98 −0.05 0 0 0

0 41.66 −6.2 0 0 0

0 −31.17 32.92 0 0 0

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

,

B =
[
0 0 0 1.2 −2.87 −0.14]T .

(4.1)

To apply the LQR controller the weighting matrices, Q and Rwhich are used in (2.12)
and (2.13) are chosen as

Q = diag(1000, 50, 50, 20, 700, 700),

R = 1
(4.2)

which primarily obtained from [1] and then modified by trial and error to satisfy the con-
ditions of practical implementation for example, fast disturbance rejection and appropriate
steady-state behavior. The resulted feedback gain matrix is then

K =
[
31.6 −549.6 830 43.7 −21.8 149

]
. (4.3)
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Figure 2: Block diagram of whole system.
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Figure 3: Block diagram of whole system.

For application of LQG controller we will introduce some remarks on effects of shaft
encoders and process cycle on system. Incremental position sensors, using on-off optic
method to produce the position data, provide limited resolution on output, namely, 0.1
degree in our case. This also appears on input section, providing resolution of approximately
0.01Vm. These noncontinuous signals cause major problem and difficulty in derivation
process producing spikes on velocity signals, which is the main source of undesirable
chattering on steady-state behavior. The so-called chattering problem could be solved by
Kalman filter estimation of states, regarding the limited resolution discussed above as noises
according to (2.14). Covariance matrices required in (2.17) and (2.18) are derived by using
“Quantizer” blocks in Simulink. That is, subtracting the desired signals of simulations with
and without this blockgives the augmented noise signal and then it is easy to calculate the
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covariances required. Results are as follows:

Q0 = 1000B =
[
0 0 0 1200 −2870 −140]T ,

R0 =

⎡

⎢⎢
⎣

0.01 0 0

0 0.001 0

0 0 0.001

⎤

⎥⎥
⎦,

L =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

15.6 −26.5 −2.8
−26.5 68.2 2

−2.8 2 12.7

476.8 −1104 −70.7
−1120 2678 140.4

−61.6 92.9 86.3

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

.

(4.4)

And finally for implementation of adaptive controller, we consider the closed loop
system obtained by LQR method on an ideal mathematical model, as a reference model. So

Am = A − BKlqr. (4.5)

The adaptive controller by adjusting the feedback gain according to (3.14) and initially
tuned asKlqr, eliminates the state error between the practical system and the ideal mathemat-
ical reference model. In (3.14), ζ is adaptation gain which determines the convergence rate of
adjusted parameters and is tuned as follows.

As discussed earlier, DIPC shows different nonlinear characteristics in steady-state
and deviated situations, consequently using two separated adaptive controllers is rational.
In steady-state situation, gently changing of system states implies that the convergence rate
must be small. Thus the adaptation gain is chosen as

ζ = diag
(
1 1 1 0.2 0.1 0.1

)
(4.6)

however, in deviated condition, due to the fast changes in system states, a higher adaptation
gain chose

ζ = diag
(
2 1 1 3 2 2

)
(4.7)

and the following are the switch conditions from deviated adaptive controller to steady-state
adaptive controller

|x| < 0.1 (m), |ẋ| < 0.4 (m/s),

|θ1| < 0.0524 (rad),
∣∣θ̇1
∣∣ < 0.6981 (rad/s),

|θ2| < 0.0262 (rad),
∣
∣θ̇2
∣
∣ < 0.5236 (rad/s).

(4.8)



Mathematical Problems in Engineering 11

0 1 2 3 4 5
−50

0

50
Cart displacement (practical)

Time (s)

(d
eg

)
(a)

0 1 2 3 4 5
Time (s)

(d
eg

)

−20

0

20
1st pendulum angle (practical)

(b)

0 1 2 3 4 5
Time (s)

(d
eg

)

−10

0

10
2nd pendulum angle (practical)

(c)

0 1 2 3 4 5
Time (s)

(d
eg

)

−1

0

1
Control input (practical)

LQR
LQG
ADAPT

(d)

Figure 4: Disturbance reponses of DIPC.

5. Experimental Results

The practical results of applying discussed controllers on DIPC are depicted on Figure 4—
Disturbance Reponses—and Figure 5—Steady State Behavior—which clearly illustrate the
dominance of adaptive controller in stabilizing the pendulums. The major problem with
the LQG controller is lack of robustness; that is why it shows poor disturbance response.
However, compensating the shortcoming of encoders which was a major cause of chattering
brings out the LQG method as an effective control strategy in nondeviated working mode
which is obvious in Figure 5.
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Figure 5: Steady-state behavior of DIPC.

Comparing adaptive controller with LQR, it is clear that adaptive controller especially
for pendulums, has a shorter settling time. It is also possible to make this time even smaller
by adjusting adaptation gain, but it may reduce the stability range of the system.

According to Figure 5 and as mentioned previously, the effect of spikes on control
input and correspondingly on position graphs is clearly visible. Another observation is
the semiperiodic behavior of pendulums. Although an exact mathematical analysis is
missing here but we know that uncertainties caused by modeling inefficiencies, majorly on
friction, are the reason of getting such nonasymptotic however bounded results. A complete
discussion is in [6, 8].
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Excepting the LQG which has shown poor efficiency at all, the steady-state error of
LQR is approximately twice the adaptive controller’s error for pendulums. Generally by
taking into account both disturbance and steady-state responses, adaptive controller shows
superior performance than LQR.

6. Conclusion

Three linear model-based controllers were designed and implemented in this paper. The
LQGmethod also had a fantastic steady-state behavior but generally, it is not appropriate for
controlling DIPC. The LQR method presenting an average efficiency was used as a baseline
to demonstrate the advantages of adaptive controller.

DIPC intrinsically is a highly nonlinear system. Moreover, there are other unmodeled
phenomena such as friction, motor nonlinearities, and belt elasticity. That affects the system
behavior which is not considered in designing of LQR controller; however, detailedmodeling
of physical system is a laborious task. So, design of a model reference adaptive controller
(MRAS) is carried out: initiating with LQR and adapting itself by time. This controller shows
a satisfactory response in both steady-state and deviated conditions. It also uses less energy
than the LQR in the real system. Moreover, by estimation of the optimized feedback gain, one
may apply this gain directly to the system.

Ultimately, we will remark that, when DIPC is deviated from its linear region around
up-up position, the intrinsic nonlinearities are dominant whereas around the linear region,
other nonlinearities such as friction become important. This leads to the development of two
independent adaptation processes for each steady-state and deviated conditions. Also an
approach to obtain better results is to apply a dynamic adaptation gain, which results in a
faster convergence rate of adjusted parameters and may be regarded as future task.

Nomenclature and Parameter Values

m0: Equivalent mass of the cart system (0.71kg)
m1: Mass of first pendulum (0.35kg)
m2: Mass of second pendulum (0.2 kg)
l1: Distance from a pivot joint to the first pendulum center of the mass (0.277m)
l2: Distance from a pivot joint to the second pendulum center of the mass (0.176m)
L1: Total length of first pendulum (0.4m)
L2: Total length of second pendulum (0.35m)
I1: Moment of inertia of first pendulum (0.0145kg ·m2)
I2: Moment of inertia of first pendulum (0.007kg ·m2)
θ0: Wheeled cart position
θ1: First pendulum angle
θ2: Second pendulum angle
u: Control force
g: Gravity constant.

Parameters of D(θ), F(θ, θ̇), and G(θ)

d1 =
∑

mi,
d2 = m1l1 +m2L2,
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d3 = m2l2,
d4 = m1l

2
1 +m2L

2
1 + I1,

d5 = m2L1l2,
d6 = m2l

2
2 + I2,

f1 = (m1l1 +m2L1)g,
f2 = m2l2g.
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