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The mixed convection of Newtonian fluid flow along a moving horizontal plate with higher-order
chemical reaction, variable concentration reactant, and variable wall temperature and concen-
tration is considered. Velocity slip and the thermal convective boundary conditions are applied
at the plate surface. The governing partial differential equations are transformed into similarity
equations via dimensionless similarity transformations developed by one-parameter continuous
group method. The numerical solutions of the transformed ordinary differential equations are
constructed for velocity, temperature and concentration functions, the skin friction factor, the rate
of heat, and the rate of mass transfer using an implicit finite difference numerical technique. The
investigated parameters are buoyancy parameters λ1, λ2, chemical reaction parameterK, suction/
injection parameter fw, velocity slip parameter a convective heat transfer parameter γ , magnetic
parameterM, Prandtl number Pr and Schmidt number, Sc. Comparison with results from the open
literature shows a very good agreement.

1. Introduction

A convection situation involving both free and forced convection is known as mixed
convection and has been an important topic because of its application in electronic equipment
cooled by a fan and flows in the ocean and in the atmosphere ([1, 2]). In mixed convection
flows, the forced and the free convection effects are of comparable magnitude. Thus, mixed
convection occurs if the effect of buoyancy forces on a forced flow or vice versa is significant.
The laminar mixed convection takes place in various applications in thermal engineering
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and science and has drawn attention from researchers in the past decades. Examples of
these applications include atmospheric boundary layer flows, solar energy systems, boilers,
compact heat exchangers, and cooling of electronic devices [3, 4]. Many studies exist for the
mixed convection boundary layer flow about vertical/inclined/horizontal plate and wedge
surfaces immersed in a viscous fluid. The details of mixed convection can be found in books
by Chen and Armaly [5], Jaluria [6], Gebhart et al. [7], Bejan [8], Pop and Ingham [9] and in
the articles in the literatures by Lloyd and Sparrow [10], Schneider [11], Wilks [12], Yao [13],
Ramachandran et al. [14], Moulic and Yao, [15], Daskalakis et al. [16], Fan et al. [17], Magyari
et al. [18], Hassanien et al. [19], Aydin and Kaya [20], Ishak [21], Moulic and Yao [22], Datta
et al. [23], Ishak et al. [24], Magyari [25].

In all these studies, conventional no slip boundary conditions were applied at the
surface. However, fluid flows in micro/nanoscale such as micronozzles, micropumps, micro-
turbines, microheat exchangers, microvalves, turbines, sensors, and actuators are important
for micro and nanoscience and the conventional no slip boundary condition at the solid fluid
interface must be replaced with the slip condition [26]. The slip condition states that the
tangential component of the velocity at the surface is equal to the velocity gradient normal
to the surface ([27, 28]). Slips may occur on a stationary/moving boundary when the fluid
is in particulate form such as in the form of emulsions, suspensions, foams, and polymer
solutions [29, 30]. An excellent review for the fundamentals, theory, and applications of these
microscale systems may be found in the text by Duncan and Peterson [31] Gad-el-Hak [32].
Slips effect on flow field has been studied by various authors; Fang and Lee [33], Martin and
Boyd [34], Matthews and Hill [35], Wang [36]. Cao and Baker [37] studied laminar mixed
convection over an isothermal vertical plate with first-order momentum and thermal discon-
tinuities at the wall. The hydrodynamic and thermal slip flow boundary layer over a flat plate
with constant heat flux boundary condition has been investigated by Hak [27] who con-
cluded that as the slip parameter increases, the slip velocity increases and the wall shear
stress decreases.

Due to the nonlinearities of the governing equations, no analytical solution is available
and the nonlinear equations usually solved numerically subject to initial/boundary con-
ditions. The solution of differential equations with/without initial/boundary conditions
is presented by different authors such as Ames [38], Boyce [39], Na [40], Zauderer [41],
Seshadri and Na [42], Kincaid and Cheney [43], Strauss [44], Aziz [45], and White and
Subramanian [46].

We study combined convective Newtonian fluid flow adjacent to a moving horizontal
permeable flat plate with higher order chemical reaction taking into account velocity slip
and convective surface boundary conditions. The governing boundary layer equations are
converted into a two point boundary value problem using similarity transformations devel-
oped by group method and the transformed equations are solved by means of an implicit
finite difference numerical method. Graphs are plotted for velocity, temperature and con-
centration profiles as well as the skin friction factor, the rate of heat transfer and the rate of
mass transfer to exhibits the influences of the parameters involving in our problem.

2. Mathematical Formulations of the Problem

Consider a continuous moving permeable horizontal flat plate which moves with a non-
uniform velocity U(x) as shown in Figure 1. A variable magnetic field of strength B(x)
is applied to the normal direction of the plate. The bottom surface of the plate is heated
by convection from a hot fluid of temperature Tf(x) which provides a heat transfer
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Figure 1: Physical configuration and coordinate system the problem.

coefficient hf(x). The viscous dissipation in the energy equation is neglected. Assume that
fluid properties are constant accepts in buoyancy term. We will further assume the magnetic
Reynolds number; the electric field owing to the polarization of charges and Hall effects are
negligible. Under the forgoing assumptions the governing equations in dimensional form can
be written as [47, 48]

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

∂2u

∂y2
− σB2(x)

ρ
u

− 1
ρ

∂p

∂y
+ g βT (T − T∞) + g βC(C − C∞) = 0,

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
,

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k0(C − C∞)n.

(2.1)

The boundary conditions are [49]

u = U(x) +N1(x)ν
∂u

∂y
, v = −vw(x), −k∂T

∂y
= hf(x)

[
Tf(x) − Tw

]
,

C = Cw(x) at y = 0,

u −→ 0, v −→ 0, T −→ T∞, C −→ C∞ as y −→ ∞,

(2.2)
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where vw(x): velocity normal to the plate, ν: coefficient of kinematic viscosity, ρ: density of
the fluid, σ: electric conductivity, p: pressure, k: thermal conductivity, α: thermal diffusivity,
D: mass diffusivity of species in fluid, βT : volumetric thermal coefficient, βC: volumetric
concentration coefficient, g: acceleration due to gravity, k0: reaction rate, n: order of chemical
reaction, andN1(x): velocity slip factor with dimension (velocity)−1.

Introducing stream function ψ, dimensionless temperature function θ and concentra-
tion function φ are defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
, θ =

T − T∞
Tf − T∞ , φ =

C − C∞
Cw − C∞

. (2.3)

Using (2.3) we get from (2.1)
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, (2.4)

−1
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∂y
+ gβTθΔT + βCφΔC = 0, (2.5)
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Eliminating the pressure gradient terms from (2.4) and (2.5) by cross-differentiation, we get

ν
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(2.8)

The boundary conditions (2.2) become

∂ψ

∂y
= U(x) + νN1(x)

∂2ψ

∂y2
, −∂ψ

∂x
= vw(x)

∂θ

∂y
= −hf(x)

k
[1 − θ(0)], φ = 1 at y = 0,

∂ψ

∂y
−→ 0 ,

∂ψ

∂x
−→ 0, θ −→ 0, φ −→ 0 as y −→ ∞.

(2.9)
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3. Application of Group Theory

We will now search group invariant solutions (similarity solutions) of (2.8) to (2.9) under a
particular continuous one-parameter group. We define the following one-parameter group
transformations Γ:

x∗ = eεα1x, y∗ = eεα2y , ψ∗ = eεα3ψ, θ∗ = eεα4θ, φ∗ = eεα5φ, B∗ = eεα6B

ΔT ∗ = eεα7ΔT, ΔC∗ = eεα8ΔC, U = eεα9U, v∗
w = eεα10vw, h∗f = eεα11hf

(3.1)

Here ε is the parameter of the group and αi (i = 1, 2, 3, . . . , 11) are the arbitrary real numbers
whose interrelationship will be determined by our investigation. Transformations in (3.1)
may be considered as point transformations which transform the coordinates

(
x, y, ψ, θ, φ, B,ΔT,ΔC,U, vw, hf

)
to

(
x∗, y∗, ψ∗, θ∗, φ∗, B∗,ΔT ∗,ΔC∗, U∗, v∗

w, h
∗
f

)
. (3.2)

We now find the relationship among the exponents αi such that (2.8) with the boundary
conditions in (2.9) are invariant (the structure of the equations remains same before and after
the transformations) under the transformation group in (3.1). Substituting transformations
in (3.1) into (2.8) and equating various exponents of e for constant conformally invariant, we
get the following algebraic equations:

4α2 − α3 = α1 + 3α2 − 2α3 = α1 − α4 − α7 = α1 − α5 − α8 = 2α2 − α3 − 2α6,

2α2 − α4 − α7 = α1 + α2 − α3 − α4 − α7,
2α2 − α5 − α8 = α1 + α2 − α3 − α5 − α8 = n(−α5 − α8).

(3.3)

Using (3.1) in boundary conditions (2.9) and equating various exponents of e, we get

α2 − α3 = − α9, α1 − α3 = − α10, α2 = −α11. (3.4)

Without loss of generality, we may put α4 = α5 = 0.
Solving (3.3) and (3.4)we have the following relationship among the exponents

α1 =
(7 − 5n)
4α8

, α2 =
(1 − n)
2α8

, α3 =
(5 − 3n)
4α8

, α4 = 0, α5 = 0,

α7 = α8, α9 =
(3 − n)
4α8

, α6 = α10 = α11 =
(n − 1)
2α8

.

(3.5)

It can be easily verified that (2.8) and the boundary conditions (2.9) are invariant under the
transformations in (3.1) subject to the conditions in (3.5).
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3.1. Similarity Transformations

Using the relationships in (3.5), we have from (3.1)

x∗ = eε(7−5n)/4α8x, y∗ = eε(1−n)/2α8y, ψ∗ = eε(5−3n)/4α8ψ, θ∗ = θ, φ = φ,

B∗ = eε(n−1)/2α8B, ΔT ∗ = eεα8ΔT, ΔC∗ = eεα8ΔC, U∗ = eε(3−n)/4α8U,

v∗
w
= eεα8(n−1)/2vw, h∗f = eεα8(n−1)/2hf .

(3.6)

Expanding each of the transformations in (3.6) in powers of ε, keeping the first order term
and neglecting higher order terms, we get the following characteristic equations:

4dx
(7 − 5n)x

=
2dy

(1 − n)y =
4dψ

(5 − 3n)ψ
=
dθ

0
=
dφ

0
=

2dB
(n − 1)B

=
d(ΔT)
ΔT

=
d(ΔC)
ΔC

=
4dU

(n − 3)U
=

2dvw
(n − 1)vw

=
2dhf

(n − 1)hf
.

(3.7)

Solving the system of first order linear differential equations in (3.7), we get

η∗ = β1yx(2n−2)/(7−5n), ψ∗ = β2x(5−3n)/(7−5n)f
(
η
)
,

θ∗ = θ, φ∗ = φ, B∗ = β3x(2n−2)/(7−5n),

ΔT ∗ = β4x4/(7−5n), ΔC∗ = β5x4/(7−5n), U∗ = β6x(3−n)/(7−5n),

v∗
w = β7x

(2n−2)/(7−5n), h∗f = β8 x
(2n−2)/(7−5n)

,

(3.8)

where βi (i = 1, 2, 3, . . . 8) are real constants. To get dimensionless form of the transforma-
tions, we define the following dimensionless transformations:

η =
√
Re

y

L

(x
L

)(2n−2)/(7−5n)
, ψ = ν

√
Re

(x
L

)(5−3n)/(7−5n)
f
(
η
)
,

θ = θ
(
η
)
, φ = φ

(
η
)
,

B = B0

(x
L

)(2n−2)/(7−5n)
, ΔT = (ΔT)0

(x
L

)4/(7−5n)
, ΔC = (ΔC)0

(x
L

)4/(7−5n)
,

U = U0

(x
L

)(3−n)/(7−5n)
, vw = v0

(x
L

)(2n−2)/(7−5n)
, hf(x) = h0

(x
L

)(2n−2)/(7−5n)
,

(3.9)

where f(η), θ(η) and φ(η), represent dimensionless velocity, temperature, and concentration
functions, respectively. B0, (ΔT)0, (ΔC)0, U0, v0 and h0 are constants.
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Using (3.9), (2.8) become

f ′′′′ +
5 − 3n
7 − 5n

ff ′′′ − n + 1
7 − 5n

f ′f ′′ −Mf ′ − λ1
[
2n − 2
7 − 5n

η θ′ +
4

7 − 5n
θ

]

− λ2
[
2n − 2
7 − 5n

η φ′ +
4

7 − 5n
φ

]
= 0,

Pr−1θ′′ +
5 − 3n
7 − 5n

fθ′ − 4
7 − 5n

f ′θ = 0,

Sc−1φ′′ +
5 − 3n
7 − 5n

fφ′ − 4
7 − 5n

f ′φ −Kφn = 0,

(3.10)

subject to the boundary conditions

f(0) =
7 − 5n
5 − 3n

fw, f ′(0) = 1 + af ′′(0), θ′(0) = − γ[1 − θ(0)], φ(0) = 1,

f(∞) = f ′(∞) = θ(∞) = φ(∞) = 0,
(3.11)

where fw = v0L/ν
√
Re is the suction/injection parameter, γ = Lh0/Re k is the convective

heat transfer parameter, λ1 = Gr/Re2.5 is the thermal buoyancy parameter, λ2 = Gc/Re2.5 is
the concentration buoyancy parameter, M = σB2

0L
2/ρν Re is the magnetic parameter,

K = L2k0 (ΔC)n−10 /ν Re is the reaction parameter, Gr = g βc(ΔT)0L
3/ν2 is the thermal

Grashof number, Gc = g βc (ΔT)0L
3/ν2 is the solutal Grashof number, and a = ν

√
ReN0/L

is the velocity slip parameter. Note that similarity solutions will exist if N1(x) =
N0x

(2−2n)/(7−5n), N0 is a constant.
The physical quantities of interest are the local skin friction coefficient Cfx, local

Nusselt number Nux (rate of heat transfer), and local Sherwood number Shx (rate of mass
transfer), which are defined as

Cfx =
−τW
ρU2

, Nux =
−xqw
k ΔT

, Shx =
−mwx

D ΔC
, (3.12)

where τw is the wall shear stress, qw is the wall heat flux, mw is the quantity of mass transfer
through the unit area of the surface, which are given by

τw = μ
(
∂u

∂y

)

y=0
, qw = k

(
∂T

∂y

)

y=0
, mw = D

(
∂C

∂y

)

y=0
. (3.13)

It can be shown that physical quantities are proportional to −f ′′
(0), −θ′(0) and −φ′(0).

4. Results and Discussion

Equations (3.10) with boundary conditions (3.11) were solved using the dsolve command
in MAPLE 14 with numeric option. Depending upon the nature of the ordinary differential
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Table 1: Comparison of results for f
′′
(0) and −φ′

(0) for different values of parameters.

Pr = 0.72, Pr = 0.72, λ1 = 1, λ2 = 1, K = 1

Sc Fan et al. [17] Present results
f

′′
(0) φ

′
(0) f

′′
(0) −φ′

(0)
0.1 0.9098 0.13678 0.9099 0.1368
0.72 0.47511 0.28697 0.4751 0.287
5 0.23157 0.77288 0.2316 0.7729

Pr = 0.72, Pr = 0.72, Sc = 0.72, λ2 = 1, K = 1
λ1 Fan et al. [17] Present results
0 0.06194 0.29757 0.0619 0.2976
0.4 0.24155 0.29252 0.2415 0.2925
1 0.47511 0.28697 0.4751 0.287

Pr = 0.72, Pr = 0.72, λ1 = 1, Sc = 0.72, K = 1
λ2 Fan et al. [17] Present results
0 0.14425 0.29487 0.1442 0.2949
0.4 0.2835 0.29133 0.2835 0.2913
1 0.47511 0.28697 0.4751 0.287

Pr = 0.72, Pr = 0.72, λ1 = 1, λ2 = 1, Sc = 0.72
K Fan et al. [17] Present results
0 0.53159 0.00015 0.5316 0.00015
1 0.47511 0.28697 0.4751 0.287
3 0.42378 0.61989 0.4238 0.6199

equations, MAPLE uses a suitable scheme based on trapezoid or midpoint rule with
Richardson extrapolation or deferred correction enhancement. In order to justify the accuracy
of our numerical method, we compared our results with available data in Table 1 and found
a good agreement. The influence of different parameters on the dimensionless velocity,
temperature, and concentration is shown in Figures 2, 3, and 4, respectively. Figure 2(a)
exhibits the influence of thermal buoyancy parameter λ1 and suction/injection parameter fw,
whilst Figure 2(b) shows the effects of solutal buoyancy parameter λ2 and suction/injection
parameter fw, on the dimensionless fluid velocity f ′(η) profiles. We further observed that
velocity increases with buoyancy parameters λ1 and λ2. Figure 2(c) describes the influence
of magnetic field parameter M on velocity f ′(η) profiles. It is found that as M increases,
the fluid velocity decreases. The effect of velocity slip parameter on the dimensionless
velocity is depicted in Figure 2(d). It is observed that an increase in the velocity slip reduces
the dimensionless velocity at the surface. In all cases suction increases the velocity whilst
injection decreases the velocity, as expected.

Figures 3(a), 3(b), 3(c), and 3(d) display effects of various parameters on the
dimensionless temperature function. The dimensionless temperature decreases with suction
and increases with injection, as expected. Note that as we increase the values of λ1 and λ2, the
values of θ(η) decrease (Figures 3(a) and 3(b)). It is found that magnetic field increases tem-
perature whilst Prandtl number decreases the temperature. Figures 4(a), 4(b), 4(c), and 4(d)
exhibit influence of suction/injection fw, buoyancies λ1, λ2, the magnetic field M and the
Schmidt number Sc on the dimensionless concentration φ(η) function. The dimensionless
concentration decreases with the increase of fw. We also notice from Figures 4(a) and
4(b) as we increase the values of λ1 and λ2, values of φ(η) decrease. Figure 4(c) shows that
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Figure 2: Effects of different parameters on the dimensionless velocity.

the increasing values of magnetic field parameter lead to increase the concentration whilst
Figure 4(d) shows that increasing values of Schmidt number Sc leads to decrease the con-
centration, as expected.

Figures 5(a) and 5(b) depict the variation of the buoyancies λ1, λ2, the slip a and the
suction/injection fw parameters on the dimensionless shear stress. It is observed that suction
enhanced the values of the dimensionless shear stress. We also see that the velocity slip a and
the parameters λ1, λ2 increase the values of the dimensionless shear stress fall. The effect of
Prandtl number Pr, convective heat transfer parameter γ , order of chemical reaction n, and
the suction/injection parameter fw on the dimensionless rate of heat transfer is shown in
Figures 6(a) and 6(b). From Figure 6(a) we can conclude that as Pr, γ and fw increase, the
values of the dimensionless rate of heat transfer increase. An increase in the order of reaction



10 Mathematical Problems in Engineering

0 2 4 6 8
0

0.4

0.8

1.2

1.6

2

2.4

2.8

M = 0.5, n = 3, γ = 1

Sc = 1, K = 0.5

a = 0.1, λ2 = 1,Pr = 1

η

fw = −0.5, 0, 0.5

λ1

0.1
1

θ
(η
)

(a)

0 2 4 6
0

0.4

0.8

1.2

1.6

2

2.4

2.8

η

M = 0.5, n = 3

fw = −0.5, 0, 0.5

K = 0.5, a = 0.1

λ1 = 1,Pr = 1

γ = 1, Sc = 1

λ2

0.1
1

θ
(η
)

(b)

0 2 4 6
0

0.4

0.8

1.2

1.6

2

2.4

2.8

η

fw = −0.5, 0, 0.5

λ1 = 1, n = 3, γ = 1

Sc = 1, K = 0.5

a = 0.1, λ2 = 1,Pr = 1

M

0.5
1

θ
(η
)

(c)

fw = −0.5, 0, 0.5

λ1 = 1, n = 3, γ = 1

Sc = 1, K = 0.5

a = 0.1, λ2 = 1,M= 0.1

0 2 4 6 8
0

0.4

0.8

1.2

1.6

2

1
2

Pr
η

θ
(η
)

(d)

Figure 3: Effects of different parameters on the dimensionless temperature.

causes decrease in the dimensionless rate of heat transfer (Figure 6(b)). The variation of
the dimensionless rate of mass transfer with different parameters is shown in Figures 7(a)
and 7(b). Like the dimensionless rate of heat transfer, the dimensionless rate of mass transfer
increases with an increase in Sc, K, and fw (Figure 7(a)) and decreases with an increase in
the order of reaction n.

5. Conclusions

MHD boundary layer equations for mixed convection of Newtonian fluids along a
moving horizontal plate with velocity slip and thermal convective boundary condition are
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Figure 4: Effects of different parameters on the dimensionless concentration.

transformed into similarity equations using one-parameter continuous group method and
then solved numerically using an implicit finite difference numerical method. Our analysis
revealed that −f ′′(0) increases with suction fw and decreases with a, λ1, and λ2 whilst the
values of −θ′(0) enhance with fw, Pr, and γ . The values of −φ′(0) enhance with fw, Sc and k.

Nomenclature

a, B(x): Velocity slip parameter, variable magnetic field
C, cp: Concentration, specific heat at constant pressure
cfx: Skin friction factor
D, f : Mass diffusivity, dimensionless stream function
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Figure 5: Effects of different parameters on the dimensionless shear stress.
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Figure 6: Effects of different parameters on the dimensionless rate of heat transfer.

fw, g: Suction/injection parameter, gravitational acceleration
Gr, Gc: Thermal and solutal Grashof number
hf(x): Heat transfer coefficient
k, k0: Thermal conductivity, reaction rate constant
K, L: Chemical reaction parameter, characteristic length of the plate
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Figure 7: Effects of different parameters on the dimensionless rate of mass transfer.

M, n, Nux: Magnetic parameter, order of chemical reaction, Nusselt number
N1(x), p: Variable slip factor
Pr, Re, Sc: Prandtl, Reynolds, and Schmidt number
ShxT : Sherwood number, dimensional temperature
U, U0: Velocity of the plate and reference velocity
u, v: Velocity components in x-direction and y-direction
x, y: Coordinate along and normal to plate.

Greek Symbols

αi, βi: Real numbers
βT , βC: Coefficient of thermal and mass expansion
γ , Γ: Convective heat transfer parameter, group
μ, ν: Dynamic and kinematic coefficient of viscosity
ε, σ: Parameter of the group transformations, electric conductivity
λ1, λ2: Thermal, concentration buoyancy parameter
η, ψ: Similarity independent variable, stream function
θ, φ: Dimensionless temperature and concentration function
ρ: Density of the fluid.

Subscript

∞: Condition at infinity
w: Condition at the wall.
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