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In order to improve the synchronous reliability and dependability of complex dynamical networks,
methods need to be proposed to enhance the quality and robustness of the synchronization
scheme. The present study focuses on the robust fault detection issue within the synchronization
for a class of nonlinear dynamical networks composed by identical Lur’e systems. Sufficient
conditions in terms of linear matrix inequalities (LMIs) are established to guarantee global
robust H−/H∞ synchronization of the network. Under such a synchronization scheme, the
error dynamical system is globally asymptotically stable, the effect of external disturbances
is suppressed, and at the same time, the network is sensitive to possible faults based on a
mixed H−/H∞ performance. The fault sensitivity H− index, moreover, can be optimized via a
convex optimization algorithm. The effectiveness and applicability of the analytical results are
demonstrated through a network example composed by the Chua’s circuit, and it shows that the
quality and robustness of synchronization has been greatly enhanced.

1. Introduction

In daily life, many physical systems can be characterized by various complex networkmodels
whose nodes are the elements of the network and the edges represent the interactions among
them [1]. Treated as typical versions of large-scale systems, the notion of complex dynamical
networks has drawn more and more attentions in recent years [2, 3]. One of the interesting
and significant phenomena in complex dynamical networks is the synchronization of all
dynamical nodes, which is a kind of typical collective behaviors and basic motions
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in nature [4–9]. Aiming at deriving global synchronization conditions, attempts have
been made to consider the synchronization for a special class of networks composed of
nonlinear Lur’e systems [10–12]. The main reason is that, in various fields of theory and
engineering applications, vast amounts of nonlinear systems can be represented as the Lur’e
type, including the Chua’s circuit [13], the Goodwin model [14], and the swarm model [15].
Primary methods of dealing with such problems, among others, are developed under the
framework of absolute stability theory [16].

In order to improve the synchronous reliability and dependability, methods have been
proposed to enhance the quality and robustness of the synchronization scheme. Due to the
instability and poor performance that caused by noise or disturbances, it is reasonable to
take the noise phenomenon into account during the synchronization process of complex
dynamical networks [17, 18]. On the other hand, research in fault diagnosis has been gaining
increasing consideration worldwide in the past decades [19–23]. One of the key issues related
to fault detection is concerned with its robustness. Large amounts of the relevant jobs have
been done for the linear systems in order to examine the robust fault detection (RFD)
problem (see [22, 23] and the references therein). In a recent work, we have investigated
the robust fault sensitive synchronization of nonlinear Lur’e systems coupled in a master-
slave fashion [24]. Similarly, in complex dynamical networks, since it is inevitable for faults
to happen within each of the single node, a fault-free synchronization process cannot always
be guaranteed. Even though, there is a few work concentrating upon the RFD problem of
large-scale nonlinear systems, and hardly there is any previous work that brought the notion
“fault” into physical aspects such as synchronization of nonlinear dynamical networks.

Based on these considerations, this present study considers the fault detection and
disturbance rejection problem within robust synchronization for a class of dynamical net-
works. The network model is composed by identical nodes with each node being a perturbed
nonlinear Lur’e system, while at the same time, subject to possible faults. The main challenge
in evaluating the synchronization scheme is to distinguish failures from other disturbances,
and accordingly, theH−/H∞ paradigm is introduced [25]. For the purpose of description, the
robustness objectives during synchronization are considered in virtue of theH∞ norm, while
the fault sensitivity specifications are expressed by utilizing the formulation of H− index. In
this manner, the closed-loop error system is asymptotically stable with theH∞-norm from the
disturbance input to controlled output reduced to a prescribed level, and at the same time,
with theH− performance index maximized. By transforming the synchronization problem of
dynamical networks into absolute stability problem of corresponding error systems as well
as applying Lur’e system method in control theory [16], sufficient conditions to the global
robust H−/H∞ synchronization within nonlinear Lur’e networks are developed in terms
of sets of linear matrix inequalities (LMI) [26]. Furthermore, the derived high-dimensional
LMI condition is simplified into three groups of lower-dimensional LMIs, which are easier
to handle. It should be pointed out that no linearization technique is involved through
derivation of all the synchronization criteria.

The rest of the paper is organized as follows. Section 2 proposes the model to be
examined in this study, and gives themathematical formulations of the global robustH−/H∞
synchronization problem to be solved. In Section 3, the global robust H∞ synchronization
scheme of the networks is firstly studied, based on which the criteria on H−/H∞ syn-
chronization are then proposed in virtue of the LMI technique. Moreover, performance
analysis of the network is also discussed in this part. The dynamical network composed by
ten identical Chua’s circuits is adopted as a numerical example in Section 4, and Section 5
closes the paper.
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2. Notations and Preliminaries

The notations used in this study are fairly standard. R
n×n is the set of n × n real matrices. For

a matrix A, AT denotes its transpose. He is the Hermit operator with He A = A +AT . If A is
a real symmetric negative definite matrix, it is shown by A < 0. diag(·) implies a diagonal or
block-diagonal matrix.A⊗B indicates the Kronecker product of an n×mmatrixA and a p×q
matrix B, that is,

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B · · · a1mB

...
. . .

...

an1B · · · anmB

⎞
⎟⎟⎟⎠. (2.1)

If not explicitly stated, matrices are assumed to have compatible dimensions, and the terms
replaced by ∗ of a matrix refer to the terms in a symmetric position that do not need to be
written out.

2.1. Basic Knowledge on Lur’e Systems

The basic model of nonlinear Lur’e systems subject to input noise and possible faults
considered in this paper is described by

ẋ = Ax + Bϕ
(
y
)
+ Bdd0 + Bff0, y = Cx,

z = Hx +Df,
(2.2)

where x ∈ R
n is the state vector and z ∈ R

m represents the measurement output vector.
d0 ∈ R

p is an unknown input vector (including disturbance, uninterested fault as well as
some norm-bounded unstructured model uncertainty) belonging to L2[0,+∞), while f0 ∈ R

q

denotes the process, sensor, or actuator fault vector to be detected and isolated. Depending
on specific situations under consideration, f0 and d0 can be modeled as different types of
signals. The matrices A,B,C,D, Bd, Bf andH, are known constant matrices with appropriate
dimensions. Nonlinearity ϕ : R

m × R+ → R
m is continuous and locally Lipschitz in the first

argument with ϕ(0) = 0, y = (yT
1 , . . . , y

T
m)

T and ϕ(y) = (ϕT
1 (y1), . . . , ϕT

m(ym))
T , where the

functions ϕl(yl), l = 1, 2 . . . , m are assumed to satisfy the following inequalities:

0 ≤ ϕl

(
yl

)
yl ≤ θly

2
l , l = 1, 2 . . . , m, (2.3)

where θl ∈ R, l = 1, 2 . . . , m. Denoting Θ0 = diag(θ1, θ2, . . . , θm), it is obvious to get

ϕT(y)(ϕ(y) −Θ0y
) ≤ 0, (2.4)

and the nonlinearity ϕ(y) is said to be in the sector [0,Θ0] if it satisfies (2.4).
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Definition 2.1. Nonlinear system (2.2) is said to be absolutely stable with respect to the sector
[0,Θ0], if the equilibrium point x = 0 is globally asymptotically stable for the nonlinearity
ϕ(y) satisfying (2.4).

In order to characterize the influence of the disturbance and fault input, several def-
initions are introduced.

Definition 2.2. Consider the following transfer function d0 �→ z of system (2.2):

Kzd0(s) � H(sI −A)−1Bd. (2.5)

Then itsH∞ norm is defined as ‖Kzd0‖∞ = supd0∈L2
σ[Kzd0(jω)] = supd0∈L2

(‖Kzd0d0‖2/‖d0‖2),
where σ represents the maximal singular value.

Definition 2.3. For system (2.2), the transfer function from the input f0 to output z is given as:

Kzf0(s) � H(sI −A)−1Bf +D, (2.6)

whose H− index is defined by ‖Kzf0(s)‖[0, ω]
− � infω∈[0, ω]σ[Kzf0(jω)] = inff0∈L2(‖Kzf0f0‖2/

‖f0‖2), where σ stands for the minimum singular value and ω denotes the frequency band
[0, ω].

Remark 2.4. The H− index defined has been widely adopted to measure the sensitivity of
residual to fault in the frequency domain. A system is said to possess a better level of
RFD, if the H∞ norm of its transfer function from the disturbances to the performance
variable is small; meanwhile, the H− index of the transfer function from fault to the output
variable is large [19]. Various kinds of H−/H∞ performance criteria have been proposed to
determine the RFD issue [21], and the performance is mostly adopted as a trade-off between
robustness and sensitivity. In this study, for the sake of simplicity, we will consider the case
of maximizing the fault sensitivity ‖Krf (s)‖− with disturbance attenuation ‖Krd(s)‖∞ being
a prescribed constant.

2.2. Dynamical Networks Composed of Lur’e Nodes

Consider a class of complex dynamical network model with each node being a general Lur’e
system (2.2) shown as follows:

ẋi = Axi + Bϕ
(
yi

)
+

N∑
j=1

gijΓzj + Bdd0 + Bff0, yi = Cxi,

zi = Hxi +Df0, i = 1, 2, . . . ,N,

(2.7)

where xi ∈ R
n and zi ∈ R

m are the state andmeasurement output of the ith node, respectively.
d0 and f0 are defined as in system (2.2), which are supposed to be the same with respect to
each node. The inner coupling matrix Γ = (τij)n×n denotes the coupling pattern between two
nodes. G = (gij)N×N is the outer coupling matrix, standing for the coupling configuration
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of the network. If there is a connection between node i and node j(i /= j), then gij = gji = 1;
otherwise, gij = gji = 0(i /= j). The row sums of G are zero, that is,

∑N
j=1, j /= i gij = −gii, i =

1, 2, . . . ,N. Let ϕi = (ϕT
i1, . . . , ϕ

T
im)

T ∈ Rm and ϕ(yi) = (ϕT
1 (yi1) · · ·ϕT

m(yim))
T ∈ Rm with the

following properties:

0 ≤ ϕl

(
yil

)
yil ≤ θ1ly

2
il
, 0 ≤ ϕ′

l

(
yil

) ≤ θ1l, i = 1, 2, . . . ,N, l = 1, 2, . . . , m. (2.8)

Denote Θ1 = diag(θ11, . . . , θ1m) then the nonlinear function ϕ(y) belongs to the sector [0,Θ1].

Lemma 2.5 (Wu [27]). The eigenvalues of an irreducible matrix G0 = (G0ij) ∈ RN×N with∑N
j=1, j /= i G0ij = −G0ii, i = 1, 2, . . . ,N satisfy the following.

(i) 0 is an eigenvalue of G0 associated with the eigenvector (1, 1, . . . , 1)
T .

(ii) IfG0ij ≥ 0 for all 1 ≤ i, j ≤ N, i /= j, then the real parts of all eigenvalues ofG0 are less than
or equal to 0 and all possible eigenvalues with zero part are 0. In fact, 0 is its eigenvalue of
multiplicity 1.

Assume that the network (2.7) has no isolate clusters; namely, the network is con-
nected. Under this circumstance, the coupling matrix G is symmetric and irreducible; hence
it satisfies all the properties given in Lemma 2.5. Besides, suppose that the coupling matrix G
has q distinct different eigenvalues λ1, . . . , λq; then there exists a nonsingular matrix U with
UTU = IN such that UTGU = Λ, where Λ is in the following form:

Λ = diag

⎛
⎜⎜⎝λ1, λ2, . . . , λ2︸ ︷︷ ︸

m2

, λ3, . . . , λ3︸ ︷︷ ︸
m3

, . . . , λq, . . . , λq︸ ︷︷ ︸
mq

⎞
⎟⎟⎠. (2.9)

Here, λ1 = 0 is the maximum eigenvalue of multiply 1 and λi is the eigenvalue of multiply
mi, i = 2, 3, . . . , q satisfying m2 + · · · +mq = N − 1 and λ2 > λ3 > · · · > λq.

Definition 2.6. When d0 = f0 = 0, the dynamical network (2.7) is said to achieve global
(asymptotical) synchronization if

lim
t→∞

‖xi − xs‖2 = 0, i = 1, 2, . . . ,N, (2.10)

where ‖ · ‖2 means the Euclidean norm. xs ∈ Rn is a solution of an isolate node given by

ẋs = Axs + Bϕ
(
ys

)
, ys = Cxs,

zs = Hxs,
(2.11)

which can be an equilibrium point, a periodic orbit, or even a nonperiodic orbit.
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From the properties of the internal coupling matrix G, the following condition holds:

ẋs = Axs + Bϕ(Cxs) +
N∑
j=1

gijΓHxs. (2.12)

Define error signals ei = xi−xs and residual signals ri = zi−zs for i = 1, 2, . . . ,N. By subtracting
(2.12) from (2.7), one arrives at the dynamics of synchronization residual error:

ėi = Aei + Bφ(Cei;xs) +
N∑
j=1

gijΓHej + Bdd0 + Bff0 +
N∑
j=1

gijΓDf0,

ri = Hei +Df0, i = 1, 2, . . . ,N,

(2.13)

where φ(Cei;xs) = ϕ(Cei + Cxs) − ϕ(Cxs). Let φ(·) = (φT
1 (·), . . . , φT

m(·))
T ; it is not difficult to

derive from (2.8) that for cTi e /= 0, the nonlinear functions φl(cTl ei;xs), l = 1, 2, . . . , m, satisfy
the following sector restrictions:

0 ≤ φl

(
cTl ei;xs

)

cTl ei
=

ϕ
(
cTl ei + cTl xs

) − ϕ
(
cTl xs

)

cTl ei
≤ θ1l, i = 1, 2, . . . ,N, l = 1, 2, . . . , m, (2.14)

which leads to

φl

(
cT
l
ei;xs

)(
φl

(
cT
l
ei;xs

) − θ1lc
T
l
ei
) ≤ 0, i = 1, 2, . . . ,N, l = 1, 2, . . . , m, (2.15)

and thus φ(Cei;xs) also belongs to the sector [0,Θ1].

Remark 2.7. Based on the basic knowledge of synchronization, the residual error dynamics
must be asymptotically stable in order for the whole process to work. Note that the dynamics
of the residual error signal r depends not only on f0, d0, and φ(y) but also on the states of each
isolated node xi. In consequence, this study aims at ensuring the residual error dynamical
system to be sensitive to possible faults in the regard ofH− index, but the error dynamics also
remain robustly asymptotically stable to external disturbance in the H∞ sense. Under such
circumstances, the dynamical network composed of Lur’e nodes is said to achieve global
synchronization with a guaranteed H−/H∞ performance.

Reformulating system (2.13) in virtue of the Kronecker product [28] as

ė = (IN ⊗A + G ⊗ ΓH)e + (IN ⊗ B)Φ((IN ⊗ C)e;Xs) + (IN ⊗ Bd)d +
(
IN ⊗ Bf +G ⊗ ΓD

)
f

� Ae + BΦ
(
Ce;Xs

)
+ Bdd + Bff,

r = (IN ⊗H)e + (IN ⊗D)f � He +Df,

(2.16)
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where

e =

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

e2

...

eN

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RNn, d =

⎛
⎜⎜⎜⎜⎜⎜⎝

d0

d0

...

d0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RNp, f =

⎛
⎜⎜⎜⎜⎜⎜⎝

f0

f0

...

f0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RNq,

Φ
(
Ce;Xs

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

φ(Ce1;xs)

φ(Ce2;xs)

...

φ(CeN ;xs)

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RNm, Xs =

⎛
⎜⎜⎜⎜⎜⎜⎝

xs

xs

...

xs

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RNn,

(2.17)

with Θ = IN ⊗ Θ1 ∈ RNm > 0 and Φ(Ce;Xs) belonging to the sector [0,Θ]. accordingly, the
residual error dynamical system (2.16) can be treated as an Nn-dimensional nonlinear Lur’e
system, and the H−/H∞ synchronization of the nonlinear dynamical networks (2.7) can be
transformed into the performance analysis and stabilization problem of the corresponding
residual error dynamics (2.16).

For system (2.16), the transfer function d �→ r is given by Krd(s) � H(sI −A)
−1
Bd,

whileKrf(s) � H(sI −A)
−1
Bf +D denotes the transfer function f �→ r. Specifically speaking,

the main objective of this present study is to determine under what condition the residual
error dynamics (2.16) could be asymptotically stable and, at the same time, satisfy the
following conditions:

∥∥Krf(s)
∥∥
− > β, ‖Krd(s)‖∞ < γ, (2.18)

where γ is a prescribed positive constant, and β is a constant to be optimized. By applying the
well-known Parseval theorem to the frequency-domain expressions (2.18), where the ratios
H∞ norm andH− index are presented in Definitions 2.2 and 2.3, respectively, we arrive at the
equivalent statements as follows:

J1 =
∫∞

0

[
r(t)T r(t) − γ2dT (t)d(t)

]
dt < 0, (2.19)

J2 =
∫∞

0

[
r(t)T r(t) − β2fT (t)f(t)

]
dt > 0. (2.20)

Accordingly, the definition of robust H−/H∞ synchronization is derived as follows.

Definition 2.8. The dynamical networks composed of nonlinear Lur’e nodes in (2.7) are said
to achieve global robust H−/H∞ synchronization with disturbance attenuation γ and fault
sensitivity β over the frequency range [0, ω] (where ω could be both finite and infinite),
if with zero disturbance and zero fault, the synchronization residual error signal (2.16) is
asymptotically stable, while with zero initial condition and given constants γ > 0, β > 0,
conditions (2.19)-(2.20) hold.
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3. Main Results

The intention of this part is to investigate the fault sensitivity as well as disturbance rejection
ability of the complex dynamical network (2.7). In order to quantify these two performance
indices, one borrows the concept of H− index andH∞-norm defined in the previous section.

3.1. Global H∞ Synchronization of Nonlinear Lur’e Networks

In this subsection, we first consider the case that there is no fault existed in the network by
extending previous results on H∞ synchronization between two identical Lur’e systems to
that of nonlinear Lur’e dynamical networks. Accordingly, the network model is described by

ẋi = Axi + Bϕ
(
yi

)
+

N∑
j=1

GijΓzj + Bdd0, yi = Cxi,

zi = Hxi, i = 1, 2, . . . ,N,

(3.1)

and the corresponding error dynamics in form of Kronecker product is expressed as

ė = Ae + BΦ
(
Ce;Xs

)
+ Bdd,

r = He.

(3.2)

The disturbance rejection problem within the synchronization of nonlinear dynamical net-
work (3.1) is summarized in the following definition.

Definition 3.1. Given constant scalar γ > 0, the dynamical network (3.1) is said to achieve
global robust H∞ synchronization, if system (3.2) is globally asymptotically stable with
zero disturbance, and meanwhile, the performance index (2.19) is satisfied with zero initial
conditions.

The robustH∞ synchronization can be determined in virtue of the following criterion.

Theorem 3.2. Suppose that γ > 0 is a prescribed constant. For a given scalar α, if there exist
positive-definite matrices P = PT > 0, diagonal matrices Δ1 = diag(δ1, . . . , δm) > 0, Π1 =
diag(π1, . . . , πm) > 0, and Ω1 = diag(ω1, . . . , ωm) > 0, and matrices Q1 and Q2 such that the
following LMI

Ξ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−He
(
Q1A

)
+H

T
H C

T
ΘΔ −Q1B P +Q1 −A

T
Q

T

2 C
T
ΘΩ −Q1Bd

∗ −HeΔ −BT
Q

T

2 0 0

∗ ∗ HeQ2 C
T
Π −Q2Bd

∗ ∗ −HeΩ 0

∗ ∗ ∗ ∗ −γ2I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (3.3)
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holds, whereΔ = IN ⊗Δ1,Π = IN ⊗Π1, and Ω = IN ⊗Ω1, then the dynamical network (3.1) achieves
global robustH∞ synchronization with disturbance attenuation γ .

Proof. See Appendix A.

Remark 3.3. Theorem 3.2 has provided a sufficient condition for the global robust H∞
synchronization of nonlinear Lur’e networks by introducing slack matrices Q1 and Q2
into LMI (3.3). It is thus expected that Theorem 3.2 will be less conservative than some
existing results due to the increasing freedom of these slack variables [29]. With the derived
H∞ synchronization conditions on Lur’e networks, the fault detection issue will then be
examined in the next subsection. However, if the number of nodes is large, condition (3.3)
would become a high-dimensional LMI, which is rather tedious to verify. To this end, both
of these criteria will be further simplified to the test of three groups of lower-dimensional
LMIs.

3.2. Fault Detection within Global H∞ Synchronization

The RFD within a synchronization configuration can be treated as a multiple objective
design task; that is, the design objective is not only being as sensitive as possible to faults
such that early detection of faults is possible, but on the other hand, the sensitivity of
possible faults is maximized, also suppressing the effect of disturbances and modeling errors
on the synchronization error and subsequently on the residual, in order to prevent the
synchronization process from being destroyed. Next theorem gives an LMI formulation for
global robust H−/H∞ synchronization.

Theorem 3.4. Suppose that γ > 0, β > 0 are prescribed constant scalars. For a given constant α,
if there exist a positive-definite matrix P = PT > 0, diagonal matrices Δ1 = diag(δ11, . . . , δ1m) >

0,Π1 = diag(π11, . . . , π1m) > 0, andΩ1 = diag(ω11, . . . , ω1m) > 0, and matrices Q1 andQ2 such
that LMIs (3.3) as well as

Ξ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−He
(
Q1A

)
−H

T
H C

T
ΘΔ −Q1B P +Q1 −A

T
Q

T

2 C
T
ΘΩ −HD −Q1Bf

∗ −HeΔ −BT
Q

T

2 0 0

∗ ∗ HeQ2 C
T
Π −Q2Bf

∗ ∗ −HeΩ 0

∗ ∗ ∗ ∗ β2I −D
T
D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0

(3.4)

hold, then the dynamical network in (2.7) achieves global robust H−/H∞ synchronization with
disturbance attenuation γ and fault sensitivity β.

Proof. See Appendix B.
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Theorem 3.5. Suppose that α, β > 0 and γ > 0 are given scalars. If there exist matrices Wi > 0, Vi,
and diagonal matrices Δ1 > 0,Π1 > 0, and Ω1 > 0 such that the following conditions for i = 1, 2 and
q hold:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Υ11 +HTH CTΘ1Δ1 − ViB Υ31 CTΘ1Ω1 −ViBd

∗ −HeΔ1 −αBTV T
i 0 0

∗ ∗ HeαVi CTΠ1 −αViBd

∗ ∗ −HeΩ1 0

∗ ∗ ∗ ∗ −γ2I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.5)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Υ11 −HTH CTΘ1Δ1 − ViB Υ31 CTΘ1Ω1 −HD − ViBf − λiViΓD

∗ −HeΔ1 −αBTV T
i 0 0

∗ ∗ HeαVi CTΠ1 −αViBf − λiαViΓD

∗ ∗ −HeΩ1 0

∗ ∗ ∗ ∗ β2I −DTD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.6)

where Υ11 = −He(ViA + λiViΓH) andΥ31 = Wi + Vi − αATV T
i − λiαH

TΓTV T
i , then the conditions

given in Theorem 3.4 are ensured.

Proof. See Appendix C.

Corollary 3.6. For a constant α, let β > 0 and γ > 0 be prescribed constant scalars. The dy-
namical network (2.7) is said to achieve global robust H−/H∞ synchronization with disturbance
attenuation γ and fault sensitivity β, if there exist matrices Wi > 0, ViTi, and diagonal matrices
Δ1 > 0, Ω1 >,Π1 > 0 such that the LMI conditions (3.5)-(3.6) hold for i = 1, 2 and q (corresponding
to the largest, second largest, and smallest eigenvalues, resp.).

Remark 3.7. If the number of nodes N is large, the H−/H∞ synchronization criterion of the
dynamical network would become a group of LMIs with rather high dimensions. In order
to tackle this problem, the synchronization of the nN × nN-dimensional network has been
disposed in a lower n-dimensional space through verifying three groups of n-dimensional
LMIs in Corollary 3.6, and the derived conditions are quite convenient to use.

As an immediate consequence, we arrive at the simplified criterion for global robust
H∞ synchronization of nonlinear dynamical network (3.1) summarized as in the following
corollary.

Corollary 3.8. For a constant α, let β > 0 and γ > 0 be prescribed constant scalars. If there exist
matrices Wi > 0, ViTi, and diagonal matrices Δ1 > 0,Ω1 >,Π1 > 0 such that the LMIs (3.5) for
i = 1, 2 and q are feasible, then the dynamical network (2.7) is said to achieve global robust H∞
synchronization.



Mathematical Problems in Engineering 11

3.3. H−/H∞ Performance Analysis

It comes from Corollary 3.6 that the H−/H∞ synchronization within a dynamical network
can be cast into that of three sets of independent systems whose dimensions are the same as
that of each isolate node. Namely, if the following systems

ėλi = (A + λiΓH)eλi + Bφ(Ceλi) +
(
Bf + λiΓD

)
f0 + Bdd0,

rλi = Heλi +Df0,
(3.7)

satisfy (3.5)-(3.6) for i = 1, 2 and q, then the conditions given in Definition 2.8 will be
guaranteed. Suppose the transfer function of system (3.7) from d0 �→ rλi and f0 �→ rλi for
i = 1, 2, . . . ,N as Krdi and Krfi , respectively. Then denote

Krdλ = diag(Krd1, . . . , KrdN),

Krfλ = diag
(
Krf1, . . . , KrfN

)
,

(3.8)

where Krdλ and Krfλ are in the following form:

Krdλ = (IN ⊗H)(sI − IN ⊗A −Λ ⊗ ΓH)−1(IN ⊗ Bd),

Krfλ = (IN ⊗H)(sI − IN ⊗A −Λ ⊗ ΓH)−1
(
IN ⊗ Bf −Λ ⊗ ΓD

)
+ (IN ⊗D).

(3.9)

On the other hand, consider the following system:

ėλ = (IN ⊗A + Λ ⊗ ΓH)eλ + (IN ⊗ B)Φ((IN ⊗ C)e;Xs) + (IN ⊗ Bd)d +
(
IN ⊗ Bf + Λ ⊗ ΓD

)
f

rλ = (IN ⊗H)eλ + (IN ⊗D)f,
(3.10)

where eλ = (eT
λ1, . . . , e

T
λN

)T and rλ = (rT
λ1, . . . , r

T
λN

)T . It can be found that the transfer functions
from d �→ rλ and f �→ rλ of system (3.10) are just those defined in (3.8). Moreover, by
carrying out unitary transformation, Krdλ is similar to Krd, and so do Krfλ and Krf . Recall
the definition of theH∞ norm andH− index previously stated in Definitions 2.2 and 2.3; then
we arrive at the following relationships between theH∞ norms ofKrd andKrdi as well as the
H− indexes of Krf and Krfi for i = 1, 2, . . . ,N:

‖Krd‖∞ = ‖Krdλ‖∞ = max
i=1,...,N

‖Krdi‖∞,
∥∥Krf

∥∥
− =

∥∥Krfλ

∥∥
− = min

i=1,...,N

∥∥Krfi

∥∥
−.

(3.11)

Conditions (3.11) show that theH∞ norm of the transfer function from d �→ r in (2.16)
equals to the maximum of those of the N systems (3.7), whilst the corresponding H− index
is the minimum value within those of (3.7). Accordingly, the RFD of the network (2.7) can be
cast into those of (3.7); thus we have the following corollary.
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Corollary 3.9. For a given scalar γ > 0, the performance indexes of the dynamical network (2.7)
satisfy ‖Krd‖∞ < γ, and ‖Krf‖− > β, if maxi=1,...,N‖Krdi‖∞ < γ and mini=1,...,N‖Krfi‖− > β hold in
the decoupled systems (3.7) for i = 1, 2, . . . ,N.

The following corollary presents a method of deriving the maximum value of fault
sensitivity and, at the same time, suppresses the external disturbance to a prescribed level for
the global robust H−/H∞ synchronization of network (2.7).

Corollary 3.10. The nonlinear dynamical networks (2.7) are said to achieve global synchronization
with guaranteed H∞ performance γ and the maximum fault detection sensitivity β0 = √

ρ, where ρ
is the global minimum of the following generalized eigenvalue minimization problem with respect to
matricesWi > 0, Vi for i = {1, 2, q} as well as diagonal matrices Δ1 > 0,Π1 > 0, and Ω1 > 0:

min−ρ
⎛
⎜⎜⎜⎜⎜⎜⎝

Υ11 −HTH CTΘ1Δ1 − ViB Υ13 −HD − ViBf

∗ −HeΔ1 Π1C − αBTV T
i 0

∗ ∗ HeαVi −αViBf

∗ ∗ ∗ ρI −DTD

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0,
(3.12)

as well as the LMI condition (3.5) holds. Here, Υ11 and Υ13 are described in Theorem 3.5 with constant
scalars α and γ > 0 prescribed.

4. Numerical Examples

A lower-dimensional dynamical networkmodel is concerned in this part so as to demonstrate
the applicability and effectiveness of the approaches proposed in the previous sections.
Throughout our numerical simulations, each node of the network is supposed to be a concrete
Chua’s circuit, which is frequently observed in various fields of theory and engineering
applications [30].

In the first stage, it will be shown that how the results derived in Section 3.1 can be
used to guarantee the global robustH∞ synchronization of the dynamical network (2.7). Let
us take a group of ten dimensionless state equations of Chua’s oscillators, for example, where
one of the node system is shown as system Sa in Figure 1, a = 1, 2, . . . , 10:

⎛
⎜⎜⎝

v̇a1

v̇a2

i̇a3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
C1

(
va2 − va1

R
− g(va1)

)
+

10∑
j=1

Gaj

R1C1
Hvj1

1
C2

(
va1 − va2

R
+ ia3 + iad

)

− 1
L
(va2 + R0ia3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.1)

Here, R0 and R are linear resistors. The voltages across the capacitors C1 and C2 are denoted
by va1 and va2, ia3 is the current through the inductances L, and iad is an external disturbance
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−

−
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R
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ib3

vb2 vb1 NR

g(vb1)

R1+

−

F

iad ibd

(Sa) (Sb)

Figure 1: Coupling of any of the two identical Chua’s circuits with disturbance signal, a = 1, 2, . . . ,N, and
b = 1, 2, . . . ,N.

current that system Sa subjects to. The nonlinear characteristic g(v1) represents the current
through the nonlinear resistor NR, which is a piecewise-linear function expressed as

g(va1) = M1va1 +
1
2
(M0 −M1)[|va1 + 1| − |va1 − 1|], (4.2)

and it satisfies min{M0,M1} ≤ g ′(v1) ≤ min{M0,M1}.
Suppose that each node of the dynamical network developed by (2.7) is a circuit in

the form of (4.1). The possible coupling between two arbitrary Chua’s circuits, as shown in
Figure 1, indicates that there is a connection from Sb to Sa but none from Sa to Sb, where
the element F plays the role of unicommunication. Depending on different values of the
controller gain, the resistor R1 can be adjusted. It is straightforward to reformulate system
(4.1) into the Lur’e form as

ẋi = Axi + Bϕ(Cxi) +
10∑
j=1

gijΓHxj + Bddi, (4.3)

where

x =

⎛
⎜⎜⎝

v1

v2

i3

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

−p(M0 + 1) p 0

1 −1 1

0 −q −s

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

−p(M1 −M0)

0

0

⎞
⎟⎟⎠,

C =
(
1 0 0

)
, Bd =

⎛
⎜⎜⎜⎝

0

1
C2
0

⎞
⎟⎟⎟⎠, di = iad,

(4.4)

and the nonlinear function ϕ(Cx) = (1/2)(|x1 + 1| − |x1 − 1|) satisfies the sector condition on
[0, 1]. Furthermore, suppose the output equation to be as

zi = Hxi, (4.5)
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Figure 2: The time responses of synchronization errors of the nominal dynamical network.

with parameter matrix H = (1 0 0). Choose system parameters as R = C2 = 1, p = 1/RC1 =
5.5, q = 1/L = 7.3, s = R0/L = 4,M0 = −1/7,M1 = 2/7. In the following, R1 = 0.3Ω is taken.
The network topology is assumed as star-like with ten nodes; thus G has the eigenvalues as
follows:

λ1 = 0, λ2 = · · · = λ9 = −1, λ10 = −10. (4.6)

Picking α = 3, and prescribing disturbance attenuation γ = 0.9, we arrive at the feasible
solutions given in Appendix B by solving the LMIs (3.5), which, according to Corollary 3.8,
implies that the dynamical network composed of Chua’s circuits has achieved the global
robust H∞ synchronization.

Simulation results also confirm the effectiveness of the design. Figure 2 depicts
the time response of synchronization error of the nominal dynamical network without
disturbance signal d(t), and it shows that the synchronization error converges to zero
exponentially. Herein, initial values are taken arbitrarily.
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Figure 3: The fault-free residual responses ri with di(t) = 0.5 sin(2t), i = 1, 2, . . . , 10.

To observe the H∞ performance with disturbance attenuation, assume the unknown
input noise disturbance di to be as

di(t) = 0.5 sin(2t), t ≥ 0, i = 1, 2, . . . , 10. (4.7)

Accordingly, the time response of the output residual error of Lur’e dynamical network with
the above disturbance signals and zero initial conditions are shown in Figure 3.

In what follows, let us consider the global robust H−/H∞ synchronization of the
dynamical network (4.4) in the presence of fault signal f . For the purpose of illustration,
the process fault is supposed to be a faulty current flowing in the same direction as im3 along
with the leftmost branch of each of the circuits, whichwill be simulated as two different types.
Accordingly, it leads to

ẋi = Axi + Bϕ(Cxi) +
10∑
j=1

gijΓHxj + Bddi + Bff,

zi = Hxi +Df, i = 1, 2, . . . , 10

(4.8)

with Bf = (0 1/C2 − R0/L)
T and D = 1.

Remaining γ = 0.9 and picking the fault sensitivity β = 0.6, we arrive at solution of
the LMI (3.5)-(3.6) with α = 3 presented in Appendix C, which on its turn ensures that the
network (4.4) has achieved global robustH−/H∞ synchronization in the presence of possible
faults and external disturbances.

As for the corresponding simulation results, first let the process fault be a pulse of unit
amplitude occurred from 5s to 10s (and is zero otherwise). The generated residual signals
ri(t), i = 1, 2, . . . , 10 are depicted in Figure 4(a), from which one observes that the effect of
the disturbance input di(t) on the residual error signal ri(t), i = 1, 2, . . . , 10 has been greatly
reduced, and the residuals have rather large amplitudes so that the synchronization process
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Figure 4: The residual responses ri(t) with di(t) = 0.5 sin(2t) and (a) f(t) = f1(t); (b) f(t) = f2(t), i =
1, 2, . . . , 10.

remains sensitive to fault. With the same disturbance di(t), then redo the simulation with a
different:

f2(t) =

⎧
⎨
⎩
0.4(t − 5), 10 ≤ t < 20,

0, elsewhere,
(4.9)

and the results are plotted in Figure 4(b).
By solving the generalized eigenvalue problem corresponding to the minimization

problem given in Corollary 3.6, we get estimates of themaximum values of fault sensitivity as
β1m = 0.7961, β2m = · · · = β9m = 0.8548, and β10m = 0.9524., which also guarantees in terms of
Corollary 3.6 that Lur’e dynamical networks achieve H−/H∞ synchronization with β < β0m,
where β0m = mini=1,...,10{βim} = 0.7961.

5. Conclusion and Future Work

Aiming at enhancing the reliability and robustness of synchronization, the global robust
H−/H∞ synchronization scheme has been introduced into a class of nonlinear dynamical
networks in the existence of possible faults and external disturbances. The criterion on
synchronization was developed in virtue of the LMI technique such that each of the node
systems of the network is robustly synchronized as well as sensitive to faults according to
a mixed H−/H∞ performance. Since both of the external disturbance and system fault are,
respectively, considered, such synchronization scheme proposed here may be more practical
than the synchronization in the previous literature. Moreover, the fault sensitivity H− index
could be optimized via a convex optimization algorithm. In order to demonstrate the
effectiveness and applicability of the derived results, a low-dimensional dynamical network
with each node being a Chua’s circuit has been adopted as an example.

As for future work, it will be interesting to study the synchronization of complex
networks with different disturbance from various sources. Also, it is possible to extend the
present results to stochastic complex networks [31–34].
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Appendices

A. Proof of Theorem 3.2

Proof. First, wewill show the global asymptotical stability of the residual error dynamics (3.2)
with d = 0 (no fault is taken into account here), and accordingly (3.2) is represented as

ė = Ae + BΦ
(
Ce;Xs

)
. (A.1)

Under the given conditions, the performance indexes J1 in condition (2.19) are then proven
to be satisfied.

Choose a Lyapunov functional candidate in the form of

V = eTPe + 2
N∑
i=1

m∑
j=1

πij

∫ cTij ei

0
ϕj(α)dα, (A.2)

where P > 0 and Π = IN ⊗ Π1 with Π1 = diag(π11, . . . , π1m) > 0 need to be determined. By
calculating the time derivative of V along with the trajectory of the residual error dynamics
(3.2), it yields

V̇ = 2eTPė + 2
N∑
i=1

m∑
j=1

πijϕj

(
cTijei

)
cTij ėi = 2eTPė + 2ΨT

(
Ce

)
ΠCė, (A.3)

where Ψ(Ce) = (ϕT (Ce1), . . . , ϕT (CeN)). Then consider the sector restrictions that nonlineari-
ties Φ(Ce;Xs) and Ψ(Ce) satisfy, namely, for any diagonal matrices Δ1 = diag(δ11, . . . , δ1m) >
0 and Ω1 = diag(ω11, . . . , ω1m) > 0:

2
N∑
i=1

m∑
j=1

δijφj

(
cTijei;xs

)(
φj

(
cTijei;xs

)
− θjc

T
ijei

)

= 2ΦT
(
Ce;Xs

)
ΔΦ

(
Ce;Xs

)
− 2ΦT

(
Ce;Xs

)
ΔΘCe ≤ 0,

2
N∑
i=1

m∑
j=1

ωijϕj

(
cTijei

)(
ϕj

(
cTijei

)
− θjc

T
ijei

)

= 2ΨT
(
Ce

)
ΩΨ

(
Ce

)
− 2ΨT

(
Ce

)
ΩΘCe ≤ 0

(A.4)

with Ω = IN ⊗ Ω1Δ = IN ⊗ Δ1. The results are obtained with the assumption that each
subsystem has the same diagonal matricesΠ1,Ω1, andΔ1 which does not affect the feasibility
of inequality (2.18). For the sake of simplicity, denote Φ � Φ(Ce;Xs) and Ψ � Ψ(Ce) in the
following contexts. Moreover, it is known from (A.1) that there exist free-weighting matrices
Q1 and Q2 with appropriate dimensions such that

eTQ1

(
ė −Ae − BΦ

)
= ėTQ2

(
ė −Ae − BΦ

)
= 0. (A.5)
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Incorporating formulations (A.4)-(A.5) into equality (A.3) derives

V̇ ≤ 2eTPė + 2ΨTΠCė − 2ΦTΔΦ + 2ΦTΔΘCe − 2ΨTΩΨ + 2ΨTΩΘCe

+ 2eTQ1

(
ė −Ae − BΦ

)
+ 2ėTQ2

(
ė −Ae − BΦ

)

= ηTΞη,

(A.6)

where

η =

⎛
⎜⎜⎜⎜⎜⎝

e

Φ

ė

Ψ

⎞
⎟⎟⎟⎟⎟⎠

, Ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

HeQ1A C
T
ΘΔ −Q1B P +Q1 −A

T
Q

T

2 C
T
ΘΩ

∗ −HeΔ −BT
Q

T

2 0

∗ ∗ HeQ2 C
T
Π

∗ ∗ −HeΩ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.7)

and it follows that Ξ < 0 is guaranteed by the upper left block of LMI (3.3); hence the
synchronization residual error dynamics (3.2) is globally asymptotically stable.

In the following, we will show that the restriction on performance index J1 given in
(2.19) is satisfied under zero initial conditions for all nonzero d ∈ L2[0,∞). In this case, the
error dynamics (3.2) is expressed by

ė = Ae + BΦ
(
Ce;Xs

)
+ Bdd, r = He. (A.8)

Based on (A.6) and (A.8), it is not difficult to derive

rTr − γ2dTd + V̇ ≤ ηT
1Ξ1η1, (A.9)

where η1 = [eT ΦT ėT ΨT dT ]T , and Ξ1 is described in condition (3.3) with Ξ1 < 0. It further
implies that for any d /= 0, r(t)T r(t) − γ2dT (t)d(t) + V̇ (t) < 0. Under zero initial condition, the
Lyapunov function V defined in (A.2) satisfies V (0) = 0 and V (t) ≥ 0 for t > 0, hence

J1 ≤
∫∞

0

[
r(t)T r(t) − γ2dT (t)d(t)

]
dt + V (t)|t→∞ − V (0)

=
∫∞

0

[
r(t)T r(t) − γ2dT (t)d(t) + V̇ (t)

]
< 0,

(A.10)

and (2.19) is satisfied, which completes the proof.

B. Proof of Theorem 3.4

Proof. On the basis of Theorem 3.2, it is known that if there exist solutions to LMI (3.3),
the network achieves global synchronization and robust to input disturbances. As for the
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condition of fault detection within the H∞ synchronization, namely, the synchronization
process should be sensitive to possible input faults, it then comes to an extra verification
of condition (2.20) under zero initial conditions for all nonzero f ∈ L2[0,∞]. In this situation,
the error dynamics is given by

ė = Ae + BΦ
(
Ce;Xs

)
+ Bff, r = He +Df. (B.1)

Following the same line of the proof of J1 < 0 in Theorem 3.2, we know that if

−J2 ≤
∫∞

0

[
β2fT (t)f(t) − r(t)T r(t)

]
dt + V (t)|t→∞ − V (0)

=
∫∞

0

[
β2fT (t)f(t) − r(t)T r(t) + V̇ (t)

]
< 0

(B.2)

holds, then the constraint (2.20)will be satisfied where V is defined in (A.2), and further, the
inequality condition (B.2) is guaranteed by

β2fTf − rTr + V̇ ≤ ηT
2Ξ2η

T
2 < 0, (B.3)

where η2 = [eT ΦT ėT ΨT fT ]T with Ξ2 < 0 given in (3.4). Thus the performance index J2 > 0
is satisfied, and the proof is completed.

C. Proof of Theorem 3.5

Proof. To facilitate the design of the coupling matrix Γ, we designate Q1 = S and Q2 = αS,

respectively, where α is a constant scalar; also it can be seen from (3.3) that α(S+S
T
) < 0, and

thus S is nonsingular.
Recall that there exists a unitary matrix U such that UTGU = Λ with Λ defined in

(2.9). Pre- and postmultiplying to both sides of LMIs (3.3) byU = diag(UT ⊗IN,UT ⊗Im,UT ⊗
Im,U

T ⊗ Im) and U
T
yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−He
(
VAΛ

)
+H

T
H C

T
ΘΔ − V B W + V − αA

T

λV
T

C
T
ΘΩ −V Bd

∗ −HeΔ −αBT
V

T
0 0

∗ ∗ HeαV C
T
Π −αV Bd

∗ ∗ −HeΩ 0

∗ ∗ ∗ ∗ −γ2I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (C.1)

where V = (UT ⊗ IN)S(U ⊗ IN),W = (UT ⊗ IN)P(U ⊗ IN), and AΛ = I ⊗ A + Λ ⊗ ΓH. It
implies from (C.1) that all the matrices appearing in this LMI are diagonal except for matrices
V ,W . To this end, suppose that there exist matrices Vi and Wi such that for i = 1, 2, . . . ,N,
the N LMIs (3.5) hold; then there must exist diagonal matrices V = diag(V1, V2, . . . , VN)
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and W = diag(W1,W2, . . . ,WN) as solutions to condition (C.1), and accordingly (3.3) holds.
In a similar pattern, the feasibility of LMI (3.6) means that condition (3.4) holds.

Moreover, since the coupling matrix G has q distinct different eigenvalues as (2.9), it is
evident to find that the number of LMI groups to be examined in (3.5)-(3.6) can be reduced
from N to q. On the other hand, it is noted that due to the convex property of LMI [26], each
of the rest q−3 groups of LMIs for i = 3, . . . , q−1 can be written as a linear combination of the
two groups of LMIs corresponding to the second-maximum λ2 and the minimum eigenvalue
λq. In this situation, the synchronization condition only requires the feasibility of three groups
LMIs (3.5)-(3.6)with i = 1, 2 and q; thus it completes the proof.

D. Solution of LMIs (3.5) for i = 1, 2 and q

One has

W1 =

⎛
⎜⎜⎝

14.4037 −10.8380 0.4396

−10.8380 30.5854 3.0167

0.4396 3.0167 7.0477

⎞
⎟⎟⎠, V1 =

⎛
⎜⎜⎝

−1.6269 −2.0020 −0.2305
−1.0598 −6.5768 −0.7952
0.0584 0.3076 −0.2281

⎞
⎟⎟⎠,

Π1 = 1.9512, Δ1 = 7.6035, Λ1 = 2.5538,

W2 = · · · = W9 =

⎛
⎜⎜⎝

11.0778 −5.0711 1.8522

−5.0711 17.0729 3.4321

1.8522 3.4321 9.6299

⎞
⎟⎟⎠,

V2 = · · · = V9 =

⎛
⎜⎜⎝

−0.9218 −1.0373 −0.1830
−0.3643 −3.0024 −0.4393
−0.0293 0.3875 −0.3124

⎞
⎟⎟⎠,

Π2 = · · · = Π9 = 1.8828, Δ2 = · · · = Δ9 = 5.0301, Λ2 = · · · = Λ9 = 2.9445

W10 =

⎛
⎜⎜⎝

7.1144 −1.1548 0.5316

−1.1548 5.1002 1.5201

0.5316 1.5201 4.5129

⎞
⎟⎟⎠, V10 =

⎛
⎜⎜⎝

−0.1892 −0.1842 −0.0411
−0.0345 −0.7973 −0.1416
0.0078 0.2423 −0.1422

⎞
⎟⎟⎠,

Π10 = 1.0396, Δ10 = 1.9588, Λ10 = 2.0045.

(D.1)

E. Solution of LMIs (3.5)-(3.6) for i = 1, 2 and q

One has

W1 =

⎛
⎜⎜⎝

19.4357 −10.2421 −0.2580
−10.2421 50.9203 4.7464

−0.2580 4.7464 0.5780

⎞
⎟⎟⎠, V1 =

⎛
⎜⎜⎝

−2.5375 −4.4290 −0.4708
−2.4266 −15.4850 −1.8584
−0.3124 −1.6514 −0.2009

⎞
⎟⎟⎠,
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Π1 = 2.1700 × 10−6, Δ1 = 12.8948, Λ1 = 1.0216 × 10−12,

W2 = · · · = W9 =

⎛
⎜⎜⎝

31.7702 −9.3411 0.1724

−9.3411 56.7357 5.3885

0.1724 5.3885 0.6592

⎞
⎟⎟⎠,

V2 = · · · = V9 =

⎛
⎜⎜⎝

−3.0576 −6.0476 −0.6670
−1.8406 −15.4908 −1.8934
−0.2677 −1.7028 −0.2106

⎞
⎟⎟⎠,

Π2 = · · · = Π9 = 1.5037 × 10−6, Δ2 = · · · = Δ9 = 20.8139,

Λ2 = · · · = Λ9 = 2.0313 × 10−12w

W10 =

⎛
⎜⎜⎝

275.7624 −44.0445 1.2220

−44.0445 59.4247 5.0031

1.2220 5.0031 0.6368

⎞
⎟⎟⎠, V10 =

⎛
⎜⎜⎝

−7.0320 −9.6985 −1.1098
0.4957 −10.1060 −1.2957
−0.0845 −1.1706 −0.1522

⎞
⎟⎟⎠,

Π10 = 3.6238 × 10−6, Δ10 = 114.4167, Λ10 = 3.0198 × 10−12.

(E.1)
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