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We address a state estimation problem over a large-scale sensor network with uncertain
communication channel. Consensus protocol is usually used to adapt a large-scale sensor
network. However, when certain parts of communication channels are broken down, the accuracy
performance is seriously degraded. Specifically, outliers in the channel or temporal disconnection
are avoided via proposed method for the practical implementation of the distributed estimation
over large-scale sensor networks. We handle this practical challenge by using adaptive channel
status estimator and robust L1-norm Kalman filter in design of the processor of the individual
sensor node. Then, they are incorporated into the consensus algorithm in order to achieve the
robust distributed state estimation. The robust property of the proposed algorithm enables the
sensor network to selectively weight sensors of normal conditions so that the filter can be
practically useful.

1. Introduction

The estimation problem for a multisensor environment has been investigated for two decades
[1–5]. Mainly two schemes are discussed to design the system: centralized fusion and
distributed fusion.

Centralized fusion is a fusion architecture composed of one fusion center linked
with multiple sensors. This architecture does not require a particular fusion rule; instead
observations from multiple sensors are stacked as one sensor measurement whose size is
very large. It is relatively easy to implement; however, communication bottle neck problems,
sensor scheduling, and lack of flexibility are known as disadvantages [1]. Furthermore, if
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some communication channels between the central processor and sensor node are uncertain,
it is difficult to manage in an adaptive manner.

On the other hand, decentralized fusion has been studied in the literature to tackle
disadvantages of the centralized fusion [1]. Initial study of decentralized fusion is known
as a decentralized Kalman filter in [2] which is mathematically equivalent to the centralized
one. However, its usage is restricted only when sensor nodes are fully connected each other
[2]. Namely, only one kind of network topology is allowed (e.g., all-to-all communication).

Based on this observation, the distributed fusion algorithm is suggested to consider
issues in the practical implementation of the networked system [6]. For instance, the
distributed fusion is required to resolve a network topology, measurement outliers, that is,
sensor failure and limited communication bandwidth.

The network topology in multiagent systems has been actively investigated in control
community and applied in the sensor network [3]. It was assumed that the network has fixed
topology when sensor nodes are geometrically distributed and all communication channels
operate in normal.

In parallel, regarding uncertain communication channel, single Kalman filter with
intermittent observation gets explosive attentions in the network control system applications
[4, 5]. The main direction of conducted research was the stability analysis of the system under
uncertain communication channels [4]. In this case, it is assumed that the communication
channel uses TCP-like protocol that means that a packet is dropped based on its acknowl-
edgement. Afterwards it has been extended for multisensor network systems [5]. The authors
proposed the estimation algorithm using a sequential Kalman filtering using a set of recent
observations collected from adjacent linked nodes. A tree topology is exploited for each node
to understand the network topology of limited sensing range.

In another type of applications, however, we may not know the acknowledgement
of the packet when the channel link between sensors is not reliable or changed due to the
evolution of the network topology. For instance, mobile robots may change their topology
based on the agents’ location or there exit temporal disconnections in channels. In such cases,
the packet arrival event should be estimated.

Previous research in data fusion and intermittent observation problem basically
assumes that the noise statistic is known a priori, for example, Gaussian or bounded [4, 5, 7].
However, this assumption is often violated when outlier measurement happens.

The outlier can be originated from several practical challenges such as sensor failures,
measurement outliers, or even intentional jamming. To solve this problem robust statistics has
been investigated, for example, M-estimator [8]. L1-norm optimization was also considered
as a solution because it is common that L1-norm optimization is robust against the outlier
noise compared to the L2-norm optimization (e.g., Kalman filter). However, the use of L1-
norm is overlooked due to the computational complexity. With the help of advances in real-
time convex optimization, L1-norm optimization is recently revisited and its application is
rigorously investigated [9].

In this paper, we consider the estimation problem under multisensor environment
with uncertain communication channels. Main tasks to solve this problem are (1)
estimation of the channel status, (2) robust estimation to avoid outliers and uncertainty
in communication channels, and (3) measurement fusion algorithm regarding to (1) and
(2). The proposed work has a two-stage framework, that is, channel status estimation and
L1-norm optimization-based outlier rejection. Note that to the author’s knowledge there is
no intensive research in the model-based state estimation problem (e.g., Kalman filtering)
considering communication channel uncertainty over a large-scale sensor network.
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The remainder of the paper is organized as follows. Section 2 describes the problem
formulation and the Kalman-consensus filter is introduced as a basic framework. Proposed
algorithm is subsequently explained in Section 3 including channel status estimation, sparse
optimization via L1-norm optimization, and the modified robust Kalman-consensus filter as
an overall algorithm. A test example is provided to demonstrate the efficacy of the proposed
algorithm in Section 4. Then, conclusion is made in Section 5.

2. Problem Statement and Kalman-Consensus Filter

2.1. Problem Statement

Consider a time-invariant linear system with Jump Markov measurement model as

xt+1 = Axt +wt,

yi
t = C

(
γit

)
xt + υi

t + zit, i = 1, . . . ,M,
(2.1)

where xt ∈ �n is the state (to be estimated) and yi
t ∈ �m is the ith measurement of a node in

the network at time t, respectively. A ∈ �n×n is the system matrix, and C(γit ) ∈ �m×n is the
ith measurement matrix of the node governed by a random latent variable γit which describes
the measurement mode γit = 1 for packet received; γit = 0, otherwise. wt ∈ �n, υi

t ∈ �m

and zit ∈ �m; are system noise, measurement noise, and sparse noise in the measurement,
respectively. The sparse noise term zit models the outlier measurements whose magnitude
is considerably large compared to the observation noise; thus it cannot be modeled as the
standard Gaussian distribution. The process noise wt is independent identically distributed
(i.i.d.) N(0, Q) and the measurement noise υi

t is i.i.d. N(0, Ri). Assume that the initial state
x0, the process noise, and the measurement noise are mutually uncorrelated each other.

Then, the main goal is to estimate the state x0 given measurements fromM sensors up
to time t, that is, Yt = {y1

1:t, . . . , y
M
1:t}where yi

1:t = {yi
1, . . . , y

i
t}.

2.2. Kalman-Consensus Filter

In a large-scale sensor network, it is practically impossible that all the sensor nodes are
fully connected each other. Therefore, there should be data fusion algorithm to adaptively
aggregate sensor nodes into a globally reasonable estimate. In this study, we adopt a data
fusion algorithm using a consensus protocol combined with Kalman filters of each node,
called Kalman-consensus filter (KCF) [3]. Using a simple average consensus, individual
decentralized Kalman filter called micro-Kalman filter communicates information with its
neighbors and the state estimate. The flow of the information over the whole network is
possible due to the graph Laplacian of the network topology. As illustrated in [3], even
though the target state is partially observed with different groups of sensors and there is
no fusion center, individual nodes agree with the converged estimate of the state.

Compared to other data fusion algorithms, KCF has advantages when error-cross
covariance information is not available for pairs of sensor node. In addition, because the
sensor network topology is incorporated in the data fusion algorithm, local information is
propagated all over the network.



4 Mathematical Problems in Engineering

In KCF framework, the communication topology between sensor nodes is represented
by the directed graph G = (V, E), where V = {1, 2, . . . ,M} denotes the sensor node set. The
edge set E ⊂ V × V describes the communication links between each pair of nodes. The
neighbor of sensor node i is defined as Li : Ji = Li ∪ {i}. KCF is implemented based on the
information from of Kalman filter for each node and the consensus protocol to approach the
global estimate as follows.

Assume that the latent variable γit is known. The estimation of the latent variable will
be given in following section. Then, contribution terms of the information Kalman filter are
calculated for each node as follows:

ui
t =

(
C
(
γit

))T(
Ri
)−1

yi
t,

Ui
t =

(
C
(
γit

))T(
Ri
)−1

C
(
γit

)
.

(2.2)

Based on the known communication topology G, each node broadcasts its message mi
t =

(ui
t,U

i
t, x

i
t), where xi

t is the priori state estimate of the sensor node i and collects message
mr

t = (ur
t ,U

r
t , x

r
t ) from its neighbors. Then, all the contribution terms are aggregated as gi

t =∑
r∈Ji u

r
t , S

i
t =

∑
r∈Ji U

r
t .

With the aggregated contribution terms, each node calculates Kalman-consensus
estimate using update step and prediction step as follows.

Update:

Mi
t =

((
Pi
t

)−1
+ Si

t

)−1
,

x̂i
t+1 = xi

t +Mi
t

(
gi
t − Si

tx
i
t

)
+ ε

Mi
t

1 +
∥∥Mi

t

∥∥
∑
r∈Ji

(
xr
t − xi

t

)
.

(2.3)

Prediction:

Pi
t+1 ←− AtM

i
tA

T
t +Q,

xi
t+1 ←− Atx̂

i
t+1,

(2.4)

where ε is the discretization step size and ‖ · ‖ denotes the matrix norm.
KCF is easy to implement compared to other data fusion algorithms and scalable for

large-scale networks [3]. However, it is assumed that the communication channel links are
operating in normal which is often not the case in practical situations. When the topology has
been changed, channel links are disconnected, or corrupted with outlier measurements, the
performance of the consensus algorithm is not reliable anymore.

In this technical note, we propose the robust multisensor consensus estimator to avoid
uncertainties in channel of the sensor network. We require three strategies to solve this
problem: (1) channel status estimation, that is, mode estimation, (2) outlier rejection, and (3)
data fusion. In the following section, we propose the robust Kalman-Consensus Filter based
on the channel mode estimation, sparse optimization using L1-norm.
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3. Main Results

3.1. Robust Kalman Filtering Using L1-Norm Optimization

Kalman filter is known as an optimal estimator in linear Gaussian system. However, when
the linear Gaussian assumption is violated in practice, additional modification is necessary.
Because the outlier measurement is not able to be modeled as Gaussian, we model the outlier
measurement as zit which is sparse. To alleviate the additional sparse noise, we adopt the
robust Kalman filtering via sparse optimization using L1-norm in [9].

The standard Kalman filtering without the sparse noise is given as follows.
Prediction:

x̂i
t|t−1 = Ax̂i

t−1|t−1. (3.1)

Update:

x̂i
t|t = x̂i

t|t−1 + Φi
t|t
(
Ci
)T

(
CiΦi

t|t
(
Ci
)T

+ Ri

)−1(
yi
t − Cix̂i

t|t−1
)
, (3.2)

whereΦi
t|t is the state error covariance. Here, we assume that the channel mode is completely

known, that is, C(γit ) � Ci
t. In the least square problem, Kalman filter is to minimize the cost

function defined as

(
υi
t

)T(
Ri
)−1

υi
t +

(
xt − x̂i

t|t−1
)T(

Φi
t|t
)−1(

xt − x̂i
t|t−1

)
(3.3)

subject to yi
t = Ci

txt + vi
t. The cost function of (3.1) is modified by adding regularization term

considering the sparse noise zit as

(
υi
t

)T(
Ri
)−1

υi
t +

(
xt − x̂i

t|t−1
)T(

Φi
t|t
)−1(

xt − x̂i
t|t−1

)
+ λ

∥∥∥zit
∥∥∥
1

(3.4)

subject to yi
t = Ci

txt + υi
t + zit. The minimization problem is solved using convex optimization.

λ is the regularization parameter.
The cost function of (3.4) is rewritten using residual eit = yi

t − Ci
tx̂

i
t|t−1 as

J =
(
eit − zit

)T
W

(
eit − zit

)
+ λ

∥∥∥zit
∥∥∥
1

(3.5)

where W = (I − CiKi
t)
T (Ri)−1(I − CiKi

t) + (Ki
t)
T (Φi

t|t)
−1
Ki

t, I is the identity matrix of

appropriate dimension, and Ki
t = Φi

t|t(C
i
t)
T (Ci

tΦ
i
t|t(C

i
t)
T + Ri)

−1
is the Kalman gain. We solve

the minimization of the cost function defined in (3.5) for the sparse noise as follows:

ẑit = argmin J.
zit

(3.6)
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Then the Kalman filter estimate is represented by

x̂i
t|t = x̂i

t|t−1 +Ki
t

(
eit − ẑit

)
. (3.7)

Unlike the implementation in [9], our goal is to estimate the sparse noises and reject them
from the measurements for the channel mode estimation in the next stage.

3.2. Channel Mode Estimation

Motivated by the work [10, 11], we try to estimate the channel mode γt using moving horizon
strategy. We denote the channel mode for the sensor node i as γit which is the discrete random
variable. Assume that the evolution of the channel mode has the first-order Markov chain,
its transition probability π1,1 is the probability that the packet will arrive between time steps,
and conversely π0,1 represents the probability that the channel is switched off between time
steps. Then, Bayesian update of the channel mode probability, that is, Pr(γis | yi

s−1) in the
moving horizon [t −Δ, t] is provided as follows.

For each measurement mode, l = 1 → γit = 1, and l = 0 → γit = 0.
Prediction:

Pr
(
γis | yi

s−1
)
= π1,1Pr

(
γis−1 | yi

s−1
)
+ π0,1

(
1 − Pr

(
γis−1 | yi

s−1
))

(3.8)

Update:

Pr
(
γis | yi

s

)
=

Λi
sPr

(
γis | yi

s−1
)

1 − (1 −Λi
s

)
Pr
(
γis | yi

s−1
) , s = t −Δ, . . . , t, (3.9)

where themeasurement likelihood of sensor node i at time s is defined asΛi
s � yi

s−C(γis)x̂i
s|s−1

and x̂i
s|s−1 is the predicted state of local Kalman filter given in (3.1). Note that the recursion

given in (3.8)-(3.9) is iterated in moving horizon [t−Δ, t] to obtain the channel mode estimate
as γ̂ it = 1, if Pr(γit |yi

t) > Threshold1, or γ̂ it = 0, if Pr(γit |yi
t) < Threshold0. In the channel mode

probability calculation, we assume that the channel modes is not switched to other mode
again at least within α steps. It is similar to the mode observability assumption given in [10].
Compared to the given assumption in [10], our assumption is not strict because we are not
trying to distinguish the sequence of the mode in the horizon but to obtain the stable estimate
of the current mode.

3.3. Overall Algorithm

In previous subsections we have discussed about robust Kalman filtering via L1-norm
optimization and the channel mode estimation based on the channel mode probability. In this
subsection, we combine twomethods and suggest a robust data fusion algorithm to construct
the overall implementation of our algorithm.

The overall flow of the proposed algorithm is displayed in Figure 1. The dynamic state
process is observed from multisensors. To efficiently reject the sparse measurement outliers,
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Figure 1: Overall flow of the proposed algorithm.

L1-norm optimization is subsequently utilized. After trimming multiple measurements by
rejection of outliers, we estimate the channel mode of each sensor node and finally fuse
the set of estimate and measurement based on the consensus protocol which is explained
in (2.2)–(2.4). According to the overall flow of the proposed algorithm described in Figure 1,
we summarize the robust distributed fusion consensus filter in Algorithm 1.

Remark 3.1. Consider that error convergence of the algorithm L1-norm optimization and
measurement mode estimation are main concerns. When we modified Kalman filtering
update step with L1-norm optimization then, it is not Gaussian estimate anymore. So, it is
not straightforward to readily analyze the error convergence in modified Kalman filtering.
Therefore, it is remained as a future work for ours.

Remark 3.2. Considering the measurement mode observability, we follow the idea similar to
[10] that there is a minimum dwell time of the measurement mode switching. Thus, we set
the horizon window sizeΔ as the minimum dwell time of the measurement mode switching.
In practice, this value is the design parameter for the network. However, the value of the
delta is not that sensitive to the minimum dwell time of the channel, that is, tuning of the
delta is not that sensitive. In addition, in cases where frequent switching happens, we regard
it as outlier measurement and it will be handled via robust Kalman filtering step in L1-norm
optimization.

Remark 3.3. In the experiment, we set the horizon size as 5 when the switching probability is
π1,0 = π0,1 = 0.05. In our experiment, if the mode is switched within τ step which is less than
the predefined horizon size Δ, then the performance of the channel mode estimator is not
reliable. Thus, as already explained in Remark 3.1, frequent switching would be considered
as permanent channel link break down. However, rather fast but not abnormally frequent
switching can be handled via switching Kalman filters (e.g. interacting multiple model filter
(IMM filter)).

4. Illustrative Example

In this section, we test the efficacy of the proposed algorithm with the state estimation
problem using a large-scale sensor network.

Given the target dynamics of a circular movement [3]

xt+1 = Axt + Bwt, (4.1)
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Given
∑i

t|t−1, error covariance, x̂
i
t|t−1, previous estimate, consensus

update parameter ε, and the window size Δ.
1. Obtain measurement yi

t = C(γit )xt + υi
t + zit, i = 1, . . . ,N.

2. For each measurement solve L1-norm optimization problem,
reject outliers as given in (3.5) and then obtain the trimmed
measurements: ŷi

t = yi
t − ẑit.

3. Calculate the mode probability Pr(γit | ŷi
t−Δ : t).

Given Pr(γit−Δ | ŷi
t−Δ),

For s = t −Δ : t
Evaluate measurement likelihood for ŷi

s.
Evaluate the Bayesian recursion (3.8)-(3.9).

End
Decide the channel mode γ̂ it using threshold testing.

4. Compute contribution term of information state and matrix
such that

ui
t = (Ci

t(γ̂
i
t ))

T (Ri)−1ŷi
t,

Ui
t = (Ci

t(γ̂
i
t ))

T (Ri)−1Ci
t(γ̂

i
t ).

5. Broadcast messagemi
t = (ui

t,U
i
t, x̂

i
t|t−1) to neighbors in Li.

6. Collect messages mr
t = (ur

t ,U
r
t , x̂

r
t|t−1) from neighbors.

7. Aggregate the information states and matrices of neighbors
including node i: Ji = Li ∪ {i}:

gi
t =

∑
r∈Ji

ur
t , Si

t =
∑
r∈Ji

Ur
t .

8. Compute the Kalman-Consensus estimate:

(Mi
t)
−1 = (Φi

t|t−1)
−1 + Si

t,

x̂i
t|t = x̂i

t|t−1 +Mi
t(g

i
t − Si

tx̂
i
t|t−1) + ε

Mi
t

1 + ‖Mi
t‖

∑
r∈Ji

(x̂r
t|t−1 − x̂i

t|t−1).

Prediction stage

Φi
t+1|t ←− AMi

tA
T +Q,

x̂i
t+1|t ←− Ax̂i

t|t.

Algorithm 1: Robust distributed fusion algorithm for node i.

where A0 = 2
[
0 −1
1 0

]
, B0 = 52I2, A = I2 + εA0 + (ε2/2)A2

0 + (ε2/6)A3
0, and B = εB0. In addition,

I2 is a 2 × 2 identity matrix which is a discretized model with a step size ε = 0.015, and the
initial position and uncertainty are x0 = (15,−10)T and P0 = 10I2, respectively. A moving
target having a circular motion can then be observed via the large-scale sensor network of
100 sensor nodes as displayed in Figure 2. Here, the sensor nodes measure the target position
with uncertain communication channel links between nodes as

yi
t = C

(
γit

)
xt + υi

t, t = 0, 1, . . . , i = 1, . . . , 100, (4.2)

where either

C
(
γit

)
=

⎧
⎪⎨
⎪⎩

[
1 0

]
, if γit = 1,

[
0 0

]
, if γit = 0,

or C
(
γit

)
=

⎧
⎪⎨
⎪⎩

[
0 1

]
, if γit = 1,

[
0 0

]
, if γit = 0.

(4.3)
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Figure 2: A large-scale sensor network with 100 nodes.

In the observation model, individual sensor measures either x-position or y-position. For
each sensor node we model the channel mode latent variable γit that describes the channel
condition. To simulate the true observation mode for each node, the mode switch in the
communication channel link is modeled as Pr(γit = 0) ≡ Pr(u(0, 1) < 0.01), where u(0, 1)
is a uniform random distribution. We also model the evolution of channel mode variable as
the first-order Markov chain. In this case, the transition probability between modes is given
a priori. The observation noise for each sensor is white Gaussian noise with υi

t ∼N(0, 302
√
i).

In addition, sparse noises are generated with the probability 0.05, whose magnitude is 10
times larger than that of the measurement noise.

4.1. Comparison with KCF

In the experiment we compare our proposed algorithm with standard KCF. Figure 3 simply
and clearly demonstrates that our algorithm is robust when there are practical challenges in
the network.

To show more clearly the robustness against the outliers, we select one sensor node
experiment. That is because in KCF framework, certain amount of uncertainty can be
aggregated via consensus update. The comparison of estimated trajectory with the ground
truth is given in Figure 4. Measurements are also displayed with outliers to show that the
proposed estimation in sensor node considerably improved mean square error (MSE) as
illustrated in Figure 5.

4.2. Comparison with Switching Kalman Filter

As mentioned in Remark 3.3, rather fast switching of the channel mode can be handled
more accurately via the IMM filter that is known as switching Kalman filter [12]. From our
experiments, the proposed method (i.e., observation mode estimation via moving horizon
strategy) is more accurate when the actual switching of the channel occurs in more than
Δ steps. It means that the moving horizon strategy guarantees us the stable estimate of
the observation mode when the minimum dwell time assumption is held as described in
Section 3.2. On the other hand, the IMM filter shows us slightly increased errors in this case
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Figure 3: Comparison of estimated trajectories ((a) ground truth with KCF, (b) truth with robust KCF).
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Figure 4: Comparison of estimated trajectories with measurements for single node (KF: micro KF; L1:
proposed, obs: measurements).

because the IMM does not determine the exact mode as 1 or 0. Instead, the mode probability
is calculated and utilized for weighted averaging. However, the IMM filter is more robust in
cases where mode switching frequently occurs. That is because there is no minimum dwell
time assumption in the IMM filter.

In terms of computational complexity, the IMM filter is implemented using two
parallel Kalman filters for each observation mode, that is, the complexity is approximately
O(2n2|E| + n2N), where n is the dimension of the state, N is the number of nodes, and |E| is
the number of edge (e.g., links) in the network, as alreadymentioned in Section 2. In contrast,
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Figure 5: Comparison of MSE.

the proposed algorithm requires a recursion for mode estimation within a horizon window;
thus, the complexity is approximated as O(nΔ|E| + n2N). Therefore, the proposed algorithm
is less complex than the IMM algorithm. Note that the complexity of the Kalman filter is
O(n2).

5. Conclusion

In this paper we propose a novel distributed data fusion algorithm that is robust against
outlier measurements and channel uncertainty. Outliers are rejected from the L1-norm
optimization algorithm and the channel uncertainty is reduced using the measurement mode
estimation algorithm. For the implementation in a large-scale sensor network, we adopt the
KCF framework and test the framework with an object state estimation problem. Results
successfully demonstrate that the proposed framework is able to handle practical challenges.
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