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This paper proposes a bilevel multiobjective optimization model with fuzzy coefficients to tackle
a stone resource assignment problem with the aim of decreasing dust and waste water emissions.
On the upper level, the local government wants to assign a reasonable exploitation amount to each
stone plant so as to minimize total emissions and maximize employment and economic profit.
On the lower level, stone plants must reasonably assign stone resources to produce different stone
products under the exploitation constraint. To deal with inherent uncertainties, the object functions
and constraints are defuzzified using a possibility measure. A fuzzy simulation-based improved
simulated annealing algorithm (FS-ISA) is designed to search for the Pareto optimal solutions.
Finally, a case study is presented to demonstrate the practicality and efficiency of the model.
Results and a comparison analysis are presented to highlight the performance of the optimization
method, which proves to be very efficient compared with other algorithms.

1. Introduction

The dust and the waste water from the stone industry can cause serious damage to the
regional ecological environment. The overexploitation and the stone processing have resulted
in the vegetation decrement, and the pollution of air and water in those areas with rich
stone resources. The annual amount of waste generated include 700,000 tons of slurry
waste as well as 1 million tons of solid waste. The consequent dumping of this waste
in open areas has created several environmental problems and has negatively impacted
agriculture, local inhabitants, and groundwater [1]. Therefore, it is urgent to normalize
the quarrying and processing of the stone resource. Some technologies are introduced to
save energy and reduce the emission in the stone industry by many scholars [2, 3]. Some
other scholars [4–6] considered the use of the marble powder to reduce the waste, but few
literatures discussed the quantitative relationship between the emission and the exploiting
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and processing amount. In fact, a reasonable assignment of stone resources could significantly
reduce the emissions. This paper considers the government as the upper level and the stone
plant as the lower level to develop a bi-level model. For the stone industry, the objectives
of the government authority are to minimize environmental pollution and maximize social
employment and economic revenue. This can be achieved by optimizing the amount of stone
extracted and exploited between the participating plants, which are assumed to cooperate
and act as a lower-level decision maker. Noting that industrial symbiosis implicitly requires
the cooperative behavior of the participants [7, 8], the government can influence the plants
by imposing disincentives by assigning different amounts to stone plants according to their
production scale and clean technology level. The plants operate independently of each other.
Each plant has its own goals, which are to maximize the profit from the sale of nano
calcium carbonate, marble products, granite slabs, and man-made slabs and to minimize the
emissions of stone dust and waste water.

To develop the bi-level optimization model for assigning the stone resources, some
emission coefficients have to be effectively estimated. It is usually difficult to collect the
exact data of emissions of stone dust and waste water when exploiting the stone mine and
processing stone products. The fuzzy number is an efficient tool to describe the variables
without crisp information. The membership function of fuzzy sets can be used to describe
the possibility that emission coefficients take the value according to the experience of those
people in the stone industry. Actually, there has been some studies describing the uncertainty
by fuzzy sets. For example, Petrovic et al. [9] used fuzzy sets to describe the customer
demand, supply deliveries along the SC and the external or market supply, and develop a
supply chain model with fuzzy coefficients. Lee and Yao [10] fuzzify the demand quantity
and the production quantity per day to solve the economic production quantity. These studies
inspire us to use the fuzzy sets to interpret the vague and imprecise about the emissions of
stone dust and waste water. For the fuzzy bi-level optimization problem, a satisfactory (near-
optimal or “satisficing”) solution can be reached by providing tolerances in the objective
functions and constraints and by defining corresponding degrees of satisfaction through
membership functions to indicate the preference of the decision makers which is typical of
decision making in a fuzzy environment [11]. The followers then communicate their results
to the leader, who modifies his goals and control variables if the original tolerances are not
met. The process continues iteratively until a solution which satisfies the goals of both leader
and follower is reached.

A bi-level multiobjective model with fuzzy coefficients is always an NP hard problem,
and it is especially difficult for nonlinear bi-level programming under a fuzzy environment
to find a numerical solution. Some existing methods mainly focus on metaheuristics which
include the genetic algorithm [12], the simulated annealing [13], and the hybrid tabu-ascent
algorithm [14]. However, as these need to be designed for single-objective problems with
crisp coefficients, it is difficult to find a usual or normal pattern for a bi-level model with
fuzzy coefficients. This paper proposes an improved simulated annealing based on a fuzzy
simulation to search for a Pareto optimal solution after a possibilistic check. The following
sections of this paper are organized as follows. In Section 2, the reason a bi-level multi-
objective model is used to optimize the stone industry is explained. The process of data
fuzzification is introduced in detail. A possibilistic bi-level multi-objective programming
model is developed. In Section 3, a fuzzy simulation-based improved simulated algorithm
is proposed to solve the bi-level multi-objective programming model with fuzzy coefficients.
In Section 4, a practical case is presented to show the significance of the proposed models and
algorithms. Finally, conclusions are given in Section 5.
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Figure 1: Stone industry decision making hierarchy.

2. Mathematical Modelling

In order to develop the mathematical model, some basic background and descriptions are
introduced.

2.1. Key Problems Description

For the stone industry, local government and stone plants play important roles to perform
the responsibilities, respectively. Government has the authority to decide the amount that
should be exploited and then needs to make a sustainable plan to avoid overexploitation
and pollution. On the other hand, stone plants need to make the production plan according
to the stone quota that government gives. As shown in Figure 1, the local government
has environmental protection and maximum employment as its most important goals and
then considers the revenue. On the lower level, the stone-material plants usually consider
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Figure 2: Process flow diagram for granite processing operations.

economic profit as their first goal. Due to a limitation on the amount that can be extracted and
the environmental protection requirements, they also have to consider minimizing emissions.
At the same time under a government policy and according to capacity, they also need to
think about employment. In addition, it is necessary to increase the investment to improve
emission reduction capacity to satisfy sustainable development requirements. Considering
the above, the problem should be regarded as a bi-level optimization model in which the
government authority is the upper-level decision maker and the stone plants are the lower-
level decision makers. It is assumed that there is a perfect exchange of information between
all the participants such that the objectives and constraints are known.

As shown in Figure 2, the granite is first exploited from the stone mine and cut into the
primary products such as granite slabs and man-made slabs; then, these are processed into
the floor or other products. Scrap materials are usually processed into fine powder calcium
carbonate and nano calcium carbonate to meet market demand. During the complete process,
a great deal of stone dust and waste water are produced. Since it is technically difficult to
collect the exact data of emissions, we usually make a rough estimation by the difference
of weight before and after exploiting and processing and then look for the possibility for
every weight by the professional advices in the stone industry. Therefore, the fuzzy number
is an efficient tool to describe this situation by its membership function. Actually, the fuzzy
environment has been successfully studied and applied in many areas, such as flow shop
scheduling problem [17], supply chain problem [18], and assignment problem [19]. These
studies show the necessity of considering fuzzy environment in practical problems. It is
also the motivation for considering fuzzy environment in the stone resources assignment
problems.

2.2. Assumptions and Notations

Before the data fuzzification and developing the optimization model, some assumptions
should be introduced.

(1) Emission of stone dust and waste water is proportional to the amount of stone
processed into products.

(2) Employment level is also proportional to the amount of stone processed into
products.
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(3) The constant cost of product j only exists when the stone-material plant produces
product j.

(4) Since the government endows different subsidies to plants, it is assumed that each
plant has its own tax rate Si and the tax is proportional to the turnover of all stone
products.

The notations are used to describe the subsidy model in the investigation are referred
to in the Abbreviations Section.

2.3. Data Fuzzification Based on Crossover Validation Test

Often there is little historical data to describe emission reduction due to the raw development
of the last decade. For example, some research considers the transport cost as uncertain
coefficients because of the changing weather and the unpredictable road condition [20, 21].
In this paper, the emission coefficients cannot be estimated using the statistical methods and
then have to fuzzificated according to those insufficient data.

The essence of fuzzification is to find an approximate membership function to describe
the fuzzy number [22]. Many scholars have described some methods of determining the
membership functions that are essentially based on direct methods of inquiry made on
human beings and corrected using indirect methods [23, 24]. Some other scholars propose
the automatic methods to determine the membership functions when no expert is available
or in the case when there are so many data [25]. In the present paper, we will propose the
fuzzification methods by combining the 5-parameter membership function and crossover
validation test. Taking the stone dust emission coefficients ˜Ed as an example, the process
for fuzzificating can be summarized as follows.

Step 1. Split the data set S of stone dust emission coefficients ˜Ed into a training set Str and a
validation set Sv.

Step 2. Find the smallest, middle, and largest data in S; denote them Eds, Edm, and Edl,
respectively.

Step 3. Compute the left and right slops for the data in Str by the following equations;
respectively,

Edα(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Eds + Edm − 2x
Eds + Edm

, if Eds ≤ x ≤ Eds + Edm

2
,

2x − (Eds + Edm)
2Edm

, if
Eds + Edm

2
≤ x ≤ Edm,

(2.1)

Edβ(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Edl + Edm − 2x
Edl + Edm

, if Eds ≤ x ≤ Edl + Edm

2
,

2x − (Edl + Edm)
2Edm

, if
Edl + Edm

2
≤ x ≤ Edm.

(2.2)

Then we get the set of left slops EdL = {α | Edα(x), x ∈ Str, x ≤ Edm} and the set of left slops
EdR = {β | Edβ(x), x ∈ Str, x ≥ Edm}.



6 Mathematical Problems in Engineering

Step 4. Define the membership function as follows:

μ
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(
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(
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(2.3)

where α ∈ EdL and β ∈ EdR.

Step 5. Take all the data in Sv in the above equation and compute the membership μ
˜Ed(x;α, β),

where x ∈ Sv, α ∈ EdL and β ∈ EdR.

Step 6. Carry out the crossover validation test proposed by Kohavi [26]. Compute the
memberships of xi ∈ Sv for any combination (α, β) ∈ (EdL, EdR). Then compute the
percentage of correct results by the following equation:

PCCv = 100 × 1
NV

∑

(xi,μ˜Ed(xi;α,β))∈Sv

δ
(

xi, μ˜Ed
(

xi;α, β
))

, (2.4)

where PCCv denotes the percentage of correct results over the validation set Sv, NV
is the number of data points in validation set Sv, and δ(μ

˜Ed(xi;α1, β1), μ˜Ed(xi;α2, β2)) =
1 if μ

˜Ed(xi;α1, β1) = μ
˜Ed(xi;α2, β2), while δ(μ

˜Ed(xi;α1, β1), μ˜Ed(xi;α2, β2)) = 0 if
μ
˜Ed(xi;α1, β1)/=μ

˜Ed(xi;α2, β2).

Step 7. Find the combination (α, β) by which the largest percentage of correct results can be
obtained when carrying out the crossover validation test with each other. Then we get the
membership function.

2.4. Model Formulation

The bi-level multiobjective optimization model under a fuzzy environment for assigning
stone resources can be mathematically formulated as follows.
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2.4.1. Government Model (Upper Level)

As the upper level, the government has the obligation to protect the local environment,
solve employment issues, and promote economic revenue. Generally, the following goals are
usually considered by the government.

To achieve minimum emissions, including the stone dust (
∑m

i=1
˜EdiYi) when all

plants exploit the stone mine, the stone dust (
∑m

i=1
∑n

j=1
˜edijXij) when plants produce stone

products, and total waste water (
∑m

i=1
∑n

j=1 ẽwijXij) when all the plants exploit the stone mine

and produce those stone products is the first objective. Since ˜Edi, ˜edij , and ẽwij are all fuzzy
numbers which are obtained by fuzzification due to insufficient historical data, it is usually
difficult to derive precise minimum emissions, and decision makers only require a minimum
objective (F1) under some possibilistic level (δU

1 ) [27]. Hence the following possibilistic
objective function and constraint are derived:

min F1 (2.5)

subject to (s.t.)

Pos

⎧

⎨

⎩

m
∑

i=1

˜EdiYi+̃
m
∑

i=1

n
∑

j=1

(

˜edijXij +̃ẽwijXij

)

≤ F1

⎫

⎬

⎭

≥ δU
1 , (2.6)

where Pos is the possibility measure proposed by Dubois and Prade [28] and δU is the
possibilistic level representing the possibility that decision makers achieve the minimum
objective. All fuzzy arithmetic in (2.6) and the following equations come from the operation
proposed by Kaufmann and Gupta [29].

To achieve maximum employment F2 which consisted of constant workers (Pi) and
variable workers (pijXij), the following objective function is obtained:

maxF2 =
m
∑

i=1

⎛

⎝

n
∑

j=1

pijXij + Pi

⎞

⎠. (2.7)

To achieve the maximum economic output which can be obtained by multiplying unit
amount (cj), conversion rate (θij), and amount of stone (Xij), the following objective function
is obtained:

maxF3 =
m
∑

i=1

Si

⎛

⎝

n
∑

j=1

cjθijXij

⎞

⎠. (2.8)

Generally, some mandatory conditions must be satisfied when the government makes
a decision. These are listed as follows.
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The total exploration quantity (
∑m

i=1 Yi) cannot exceed the upper limitation (RU) of the
total stone resources in the region:

m
∑

i=1

Yi ≤ RU. (2.9)

The stone dust from exploiting (
∑m

i=1
˜EdiYi) and producing (

∑m
i=1
∑n

j=1
˜edijXij) and

the waste water (
∑m

i=1
∑n

j=1 ẽwijXij) should be less than the predetermined levels (EDU and
EWU) in order to guarantee air and water quality. Two constraints are derived under the
possibilistic levels (δU

2 and δU
3 ):

Pos

⎧

⎨

⎩

m
∑

i=1

˜EdiYi+̃
m
∑

i=1

n
∑

j=1

˜edijXij ≤ EDU

⎫

⎬

⎭

≥ δU
2 , (2.10)

Pos

⎧

⎨

⎩

m
∑

i=1

n
∑

j=1

ẽwijXij ≤ EWU

⎫

⎬

⎭

≥ δU
3 . (2.11)

The output of some products (
∑m

i=1 θijXij) should meet the market demand (DL
j ). For

example, the nano calcium carbonate is very popular in many areas, so the stone plants
should provide enough output to meet the demand:

m
∑

i=1

θijXij ≥ DL
j ∀j. (2.12)

2.4.2. Plant Model (Lower Level)

On the lower level, the stone plants usually pursue maximum profit and then try to reduce
the emissions. Thus, the following two objectives are introduced.

Each plant wishes to achieve maximum profit which consisted of total sales
(
∑n

j=1 cjθijXij) minus the production cost (f(Xij)) and the inventory cost (hi(Yi −
∑n

j=1 Xij));
then the following objective function is determined:

maxH1
i =

n
∑

j=1

cjθijXij −
n
∑

j=1

f
(

Xij

) − hi

⎛

⎝Yi −
n
∑

j=1

Xij

⎞

⎠, (2.13)

where f(Xij) is the production-cost function as follows [27]:

f
(

Xij

)

=

{

tijXij + Cij , if Xij > 0,
0, if Xij = 0.

(2.14)

Every plant also wishes to achieve minimum emissions. However, since the emissions
˜edij and ẽwij are fuzzy numbers, it is usually difficult to determine the precise minimum
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emissions, and decision makers only require a minimum objective (H
2
i ) under some

possibilistic level (σL
i ). Hence, the possibilistic constraint is as follows:

min H
2
i

(2.15)

subject to

Pos

⎧

⎨

⎩

m
∑

i=1

n
∑

j=1

(

˜edijXij +̃ẽwijXij

)

≤ H
2
i

⎫

⎬

⎭

≥ σL
i , (2.16)

where σL
i is the possibilistic level under which decision makers require the minimum

objective.
Since production in all the plants is influenced by government policy and market

demand, there are some conditions that need to be satisfied.
The amount used for production (

∑n
j=1 Xij) should not exceed the total limitation (Yi):

n
∑

j=1

Xij ≤ Yi. (2.17)

The inventory amount (Yi −
∑n

j=1 Xij) should not exceed the maximum limitation
(IVU

i ):

Yi −
n
∑

j=1

Xij ≤ IVU
i . (2.18)

The production cost which consisted of two parts including product cost (
∑n

j=1 f(Xij))
and total inventory cost (

∑n
j=1 hi(Yi −

∑n
j=1 Xij)) should not exceed the predetermined level

(PCU
i ):

n
∑

j=1

f
(

Xij

)

+ hi

⎛

⎝Yi −
n
∑

j=1

Xij

⎞

⎠ ≤ PCU
i . (2.19)

Some products (θijXij) should not be less than the lowest production level (PL
ij ) in

plant i:

θijXij ≥ PL
ij . (2.20)

2.4.3. Bilevel Model

In such a complicated system, both the leader and the followers should simultaneously
consider the objectives and constraints and then make the decision. Therefore, from
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(2.5)∼(2.20), the complete bi-level multiobjective optimization model under a fuzzy
environment is as follows:
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(2.21)

3. Solution Approach

Generally, bi-level programming is an NP-hard problem, and it is difficult to determine
an optimal solution [30–32]. In the proposed model, decision makers on the upper and
lower levels have to face more than two conflicting objectives and then make a decision
under a fuzzy environment. This significantly increases the difficulty of finding an optimal
strategy for both the upper and lower levels. Therefore, the fuzzy simulation-based improved
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simulated annealing (FS-ISA) is designed to solve the bi-level optimization model with fuzzy
coefficients.

3.1. Fuzzy Simulation for Possibilistic Constraints

Fuzzy simulation is usually proposed to approximate the possibility measure according to
the membership function of a fuzzy number [27]. Taking the constraint (2.5) as an example,
we will introduce the key principle of the fuzzy simulation and find the minimum F1 such
that the constraint holds.

Let Y ∗
i and X∗

ij be predetermined feasible solutions for i = 1, 2, . . . , m, j = 1, 2, . . . , n,

which will be regarded as input variables. Firstly, set F1 = M, where M is a sufficiently
large number. Secondly, randomly generate λi, ηij , and κij from the δU

1 -level set of the
fuzzy numbers ˜Edi, ˜edij , and ẽwij , respectively. Thirdly, compute the value f =

∑m
i=1 λiYi +

∑m
i=1
∑n

j=1(ηij + κij)Xij . If F1 > f , replace it with f . Finally, repeat this process for N times.

The value F1 is regarded as the estimation. Then the simulation process can be summarized
in Procedure 1.

Sometimes, we need to check whether a solution satisfies the possibilistic constraint.
This means that we need to compute the possibility and compare it with the predetermined
possibilistic level. Then another simulation is applied to check the constraint. Taking the
constraint (2.10) as an example, we will introduce how to simulate the possibility L =
Pos{∑m

i=1
∑n

j=1 ẽwijXij ≤ EWU}.
Let X∗

ij be predetermined solution for i = 1, 2, . . . , m, j = 1, 2, . . . , n, which will be
regarded as input variables. Give a lower estimation of the possibility L, denoted by δ. Then
we randomly generate κij from the δ-level set of the fuzzy numbers ẽwij . If the δ-level set is
not easy for a computer to describe, we can give a larger region, for example, a hypercube
containing the δ-level set. Certainly, the smaller the region, the more effective the fuzzy
simulation. Now we set

μ = max
{

μẽwij , i = 1, 2, . . . , m, j = 1, 2, . . . , n
}

. (3.1)

If
∑m

i=1
∑n

j=1 κijXij ≤ EWU and L < μ, then we set L = μ. Repeat this process N times. The
value L is regarded as an estimation of the possibility. Then the process for constrain check
can be summarized in Procedure 2.

3.2. Fuzzy Simulation-Based Improved Simulated Annealing Algorithm

Simulated annealing algorithm (SA) is proposed for the problem of finding, numerically,
a point of the global optimization of a function defined on a subset of a n-dimensional
Euclidean space [33–35]. Many fruitful results are obtained in the past decades. Steel
[36, 37] calls simulated annealing the most exciting algorithmic development of the
decade. For the multiobjective optimization problems, some scholars have introduced many
progressive simulated annealing algorithms to solve them. Especially, Suppapitnarm et al.
[38] designed a simulated annealing algorithm along with archiving the Pareto optimal
solutions coupled with return to base strategy (SMOSA) to explore the trade-off between
multiple objectives in optimization problems. Suman and Kumar [39, 40] introduced four
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Input: Decision variables Yi and Xij

Output: The minimum F1

Step 1. Set F1 = M, where M is sufficiently large number;
Step 2. Randomly generate λi, ηij and κij from the δU

1 -level set of the fuzzy numbers ˜Edi,
˜edij and ẽwij respectively;
Step 3. Compute f =

∑m
i=1 λiYi +

∑m
i=1
∑n

j=1(ηij + κij)Xij and replace F1 with f provided
that F1 > f ;
Step 4. Repeat the second and third steps N times;
Step 5. Return F1.

PROCEDURE 1: Fuzzy simulation for possibilistic constraints.

Input: Decision variables Xij

Output: The possibility
Step 1. Set L = α as a lower estimation
Step 2. Randomly generate κij from the δ-level set of the fuzzy numbers ẽwij

Step 3. Set μ = max{μẽwij , i = 1, 2, . . . , m, j = 1, 2, . . . , n}
Step 4. If

∑m
i=1
∑n

j=1 κijXij ≤ EWU and L < μ, set L = μ

Step 5. Repeat the second and third steps N times
Step 6. Return L.

PROCEDURE 2: Possibilistic constraint check.

simulated annealing algorithms including SMOSA, UMOSA, PSA, and WMOSA to solve
multiobjective optimization of constrained problems with varying degree of complexity and
then proposed a new algorithm PDMOSA. Sanghamitra et al. [41] proposed a simulated
annealing-based multiobjective optimization algorithm (AMOSA) that incorporates the
concept of archive in order to provide a set of trade-off solutions for the problem under
consideration.

In the following part, we will incorporate the fuzzy simulation into the SMOSA
algorithm proposed by Suppapitnarm and Parks [16] and use the interactive method
to search the Pareto optimal solution for the bi-level multiobjective optimization with
fuzzy possibilistic constraints. Take the problem (A.10) as an example and denote Xi =
(Xi1, Xi2, . . . , Xin) and Y = (Y1, Y2, . . . , Ym), the process of FS-ISA can be summarized in
Procedure 3.

Above all, the whole procedure of FS-ISA for bi-level multiobjective optimization
problems with fuzzy coefficients is described in Figure 3.

4. A Case Study

In the following, a practical example in China is introduced to demonstrate the complete
modelling and algorithm process.
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Input: The initial temperature t0
Output: Pareto-solution Y ∗

i and X∗
ij for all i and j

Step 1. Randomly generate a feasible solution Y according to the fuzzy simulation for possibilistic
constraints and take it as the initial parameter for the lower level;
Step 2. Solve all the multiobjective optimization problems on the lower level by SMOSA based on
the fuzzy simulation and we obtain the Pareto optimal solution Xi for all i. Put G = (XT

1 , X
T
2 , . . .,

XT
m, Y

T ) into a Pareto set of solutions and compute all objective values of the upper and lower
levels;
Step 3. Generate a new solution G1 = (X1T

1 , X1T
2 , . . . , X1T

m , Y 1T ) in the neighborhood of G by the
random perturbation;
Step 4. Check the feasibility by fuzzy simulation according to all the constraints on both levels.
If not, return to Step 3;
Step 5. Compute the objective values on both level, respectively. Compare the generated solution
with all solutions in the Pareto set and update the Pareto set if necessary;
Step 6. Replace the current solution G with the generated solution G1 if G1 is archived and go to
Step 7;
Step 7. Accept the generated solution Y 1 as the input solution for the lower level if it is not
archived with the probability: probability (p) = min(1, exp {−Δsi/ti}), where
Δsi = F∗

1(G) − F∗
1(G

1) + F2(G1) − F2(G) + F3(G1) − F3(G). If the generated solution is accepted,
take it into the lower level and solve them. Then we get a new solution
G1∗ = (X1T∗

1 , X1T∗
2 , . . . , X1T∗

m , Y 1T ) and put it into the Pareto set. If not, go to Step 9;
Step 8. Compare G1∗ and G1 according to the evaluation function based on the compromise
approach proposed by Xu and Li [15]. If G1∗ is more optimal than G1, let G = G1∗. If not G = G1

Step 9. Periodically, restart with a randomly selected solution from the Pareto set.
While periodically restarting with the archived solutions, Suppapitnarm et al. [16]
have recommended biasing towards the extreme ends of the trade-off surface;
Step 10. Periodically reduce the temperature by using a problem-dependent annealing schedule
Step 11. Repeat steps 2–10, until a predefined number of iterations is carried out.

PROCEDURE 3: FS-ISA algorithm for bi-level multi-objective programming.

4.1. Data and Computation

Yingjing County is a famous county in China for its rich mineral products. The granite in this
area has stable physical and chemical properties so that it can be processed into many useful
stone products, mainly including granite slabs, man-made composite slabs, granite sands,
and nano calcium carbonates (see Figure 4). Figure 5 shows the actual stone industry process
from exploitation to production. Due to the vegetation deterioration, air and water pollution,
and an aggravation of the ecological environment caused by the disordered exploitation and
production manner, it is urgent for both the Yingjing government and the stone plants to
optimize the assignment strategy.

Up to now, around 1 billion m3 of granite available is being exploited in Yingjing
County according to the investigation. At present, only 7 stone plants have been built in this
county, but the government plans to extend this to 10 stone plants in 2013, with all ten plants
sharing the granite resource. From the historical data, stone dust and waste water emission
coefficients are fuzzificated and crossover validation tested. The test demonstrates that
when the membership function is triangular, the percentage of correct results is the largest
92.32%. Therefore, the emission coefficients are regarded as fuzzy numbers in Tables 1 and 3.
According to the environmental sector in this county, stone dust emissions should not exceed
2500 tonnes and waste water emission should not exceed 2500 tonnes. Although it is difficult
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G1 , and if not,

G = G1∗

Figure 3: Flow chart for FS-ISA.

to satisfy the constrained index in a short time due to uncertainty, the possibility of holding
the two constraints should not be less than 0.9 which indicates that the possibilistic levels δU

2
and δU

3 for the government should also be 0.9. For total emissions, the environmental sector
requires the minimum objective to be under the possibilistic level δU

1 = 0.85. As the demand
and the price of the four stone products sharply increase, the government requires that their
output from all the plants should at least satisfy the basic market demand DL

j (j = 1, . . . , 4) as
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Figure 4: Products from the granite.

Granite mine

Granite slab Nano calcium carbonate

Man-made composite slabs

Stone processing

Figure 5: Basic flow chart of stone industry.

in Table 2. Each stone products’ unit price is in Table 2. For the 10 stone plants, the inventory
and the production upper limitations for each plant are listed in Table 1. The possibilistic
level δL

i that plant i needs to obtain for minimum emissions is in Table 1. Since every plant
has a different capacity for controlling emissions, the fixed and unit variable cost, emission
coefficients, and constant costs are different as outlined in Table 3. The transformation rate θij
and the lower limitation of product j in plant i are also listed in Table 3.
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Table 1: Parameters for every stone plant.

Stone plants Parameters
˜Edi (kg/m3) Pi (Person) Si hi (Yuan/m3) IVU

i (M m3) PCU
i (M Yuan)

Kai Quan (24.5, 25.7, 27.8) 65 0.3655 0.32 4.5 1350
Feng Huang (21.2, 26.8, 29.3) 60 0.3705 0.35 6.2 1670
Li Du (19.2, 23.8, 25.7) 65 0.3735 0.33 4.3 1410
Hong Yuan (22.6, 27.9, 28.3) 62 0.3615 0.28 7.8 1630
Xiang Zong (21.0, 23.5, 27.1) 60 0.3675 0.38 2.3 1000
Ji Cheng (20.6, 23.3, 27.9) 55 0.3485 0.42 2.6 1100
Hui Huang (18.3, 21.2, 25.2) 60 0.3525 0.35 5.4 1650
Hong Yun (19.2, 24.8, 29.1) 60 0.3725 0.36 4.6 1320
De Sheng (25.4, 28.1, 30.3) 70 0.3615 0.33 5.6 1230
Guo Jian (27.2, 29.3, 32.8) 80 0.3435 0.41 6.2 1670

Table 2: Parameters of each product.

Parameters Stone products
Nano calcium carbonates Granite slabs Granite sand Man-made composite slabs

cj 1325 (Yuan/ton) 65 (Yuan/m2) 25 (Yuan/ton) 30 (Yuan/m2)
Dj 8.5 × 107 (ton) 3.06 × 108 (m2) 5.13 × 106(ton) 1.56 × 108 m2

Taking all the numerical values into (2.21) and setting the initial temperature T0 = 500,
the last temperature is 0 and the cooling method is 1 decrement once. The neighbourhood
can be developed as Y 1

i = Y 0
i + rh and X1

ij = X0
ij + rh, where r is a random number in

(−1,1) and h is the step length (here h = 2.0). After a simulation of many cycles, the Pareto
optimal solution and theobjective value are determined as shown in Tables 4 and 5. The
results illustrate that although some plants have the highest productive efficiency, their high
emission coefficient will result in the low exploiting quotas such as Kai Quan, Guo Jian, and
De Sheng. On the other hand, stone plants will tend to produce the high value-added but low
emission products due to the environmental pressure and the limitation of exploiting quotas,
such as nano calcium carbonates and man-made composite slabs. However, stone plants will
abundantly produce the traditional products such as granite slabs because of the huge cost of
those new products.

4.2. Sensitivity Analysis

In fact, the decision maker is able to adjust the parameter to obtain different level solutions.
From theoretical deduction, it is known that the possibilistic level is a key factor impacting the
results. If the accuracy of δU

i and δL
i decreases, the feasible set is expanded and then a better

Pareto optimal solution and a better Pareto optimal point are determined. From Table 5, it can
be seen that the emissions increase and the economic profit and the employment decrease as
the possibilistic level δU

i (i = 1, 2, 3) decreases indicating that the government requirements
are less strict which results in the stone plants pursuing the economic profit and neglecting
the emissions and the employment objectives. Finally, the total emissions increase and the
government tax revenue decreases. On the other hand, if the possibilistic level δU

i (i = 1, 2, 3)
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Table 3: Parameters for product j produced by plant i.

Stone plants Stone products Parameters
Pij tij Cij θij PL

ij
˜edij ẽwij

Kai Quan

NPCC 0.03 650 286 1.03 7.0 (2.21, 3.42, 5.23) (3.15, 3.42, 4.21)
GSl 0.01 38 367 3.62 262.2 (21.2, 22.3, 25.6) (23.1, 25.2, 27.9)
GSa 0.01 10 80 0.95 0 (26.4, 28.5, 32.7) (0.47, 1.32, 1.44)

MmCS 0.02 22 440 8.34 35.5 (1.57, 2.68, 4.39) (2.32, 3.18, 3.69)

Feng Huang

NPCC 0.03 580 254 1.12 7.2 (2.68, 3.67, 4.59) (2.86, 3.39, 6.14)
GSl 0.01 44 380 3.14 232.3 (24.7, 26.3, 27.6) (24.5, 25.9, 27.0)
GSa 0.01 16 68 0.90 2.4 (27.6, 29.0, 33.9) (0.58, 1.96, 2.40)

MmCS 0.02 24 448 8.11 43.1 (2.03, 3.56, 4.57) (1.84, 2.68, 3.57)

Li Du

NPCC 0.03 620 272 0.85 9.9 (1.86, 2.31, 4.03) (2.85, 3.57, 4.37)
GSl 0.01 40 392 2.67 279.0 (17.4, 19.3, 20.2) (25.8, 26.3, 27.1)
GSa 0.01 13 88 0.93 1.9 (23.5, 26.5, 28.7) (0.78, 1.56, 2.23)

MmCS 0.02 26 380 8.35 67.4 (1.45, 2.23, 4.05) (3.10, 3.50, 3.87)

Hong Yuan

NPCC 0.03 685 310 0.78 0 (3.05, 4.21, 5.67) (2.86, 3.33, 4.45)
GSl 0.01 42 370 3.78 298.8 (20.8, 23.3, 23.9) (22.8, 24.8, 25.1)
GSa 0.01 13 86 0.92 2.1 (26.5, 28.3, 30.4) (0.68, 1.45, 1.67)

MmCS 0.02 23 380 8.26 22.0 (1.57, 2.68, 4.39) (2.30, 3.32, 4.22)

Xiang Zong

NPCC 0.03 632 267 1.26 10.2 (2.17, 3.33, 4.78) (3.04, 3.57, 4.32)
GSl 0.01 44 380 3.82 307.2 (20.3, 23.5, 26.7) (24.5, 26.3, 27.4)
GSa 0.01 12 82 0.91 1.9 (26.4, 27.3, 29.3) (0.47, 1.23, 1.78)

MmCS 0.02 20 350 8.27 39.4 (1.46, 2.79, 3.45) (2.11, 3.26, 4.45)

Ji Cheng

NPCC 0.03 630 264 1.26 11.1 (2.14, 3.39, 5.46) (2.80, 3.24, 3.70)
GSl 0.01 42 354 3.46 344.5 (22.5, 23.8, 24.7) (22.9, 25.1, 26.3)
GSa 0.01 12 85 0.92 2.2 (25.8, 27.9, 28.9) (0.54, 1.26, 1.87)

MmCS 0.02 23 350 8.26 0 (1.76, 2.77, 4.25) (2.78, 3.32, 4.45)

Hui Huang

NPCC 0.03 635 260 1.12 12.7 (2.15, 3.56, 5.00) (3.04, 3.37, 3.89)
GSl 0.01 35 340 3.87 451.7 (20.7, 23.2, 24.7) (24.3, 26.3, 26.9)
GSa 0.01 15 85 0.90 0 (28.6, 29.9, 33.4) (0.58, 1.40, 1.72)

MmCS 0.02 20 350 8.26 43.6 (1.68, 2.70, 4.25) (2.68, 3.27, 3.54)

Hong Yun

NPCC 0.03 660 290 1.00 10.0 (2.54, 3.68, 5.42) (3.35, 3.56, 4.04)
GSl 0.01 40 380 3.54 331.3 (22.3, 23.5, 24.2) (21.5, 24.6, 26.2)
GSa 0.01 12 85 0.90 2.4 (25.3, 26.7, 30.3) (0.85, 1.56, 1.78)

MmCS 0.02 24 385 8.42 0 (1.33, 2.55, 4.72) (2.24, 3.76, 3.87)

De Sheng

NPCC 0.03 630 276 1.12 8.0 (2.35, 3.67, 4.68) (3.27, 4.18, 4.92)
GSl 0.01 42 383 3.11 203.5 (20.5, 21.4, 23.8) (22.7, 24.7, 26.8)
GSa 0.01 13 85 0.92 0 (23.6, 25.2, 28.6) (0.87, 1.63, 1.72)

MmCS 0.02 25 378 8.02 48.0 (1.67, 2.78, 4.23) (2.45, 3.95, 4.51)

Guo Jian

NPCC 0.03 780 320 1.88 12.5 (3.14, 4.37, 7.86) (4.22, 4.78, 5.39)
GSl 0.01 40 380 3.62 210.4 (21.2, 22.3, 25.6) (23.1, 25.2, 27.9)
GSa 0.01 13 86 0.91 0 (27.3, 29.4, 33.8) (0.68, 1.46, 1.57)

MmCS 0.02 22 367 8.13 51.1 (1.32, 2.59, 4.21) (2.36, 3.67, 4.82)
NPCC: Nano calcium carbonates; GSl: granite slabs; GSa: granite sand; MmCS: man-made composite slabs.
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Table 4: Assignment results for different products.

Stone plants Stone products
Total Nano calcium carbonates Graniteslabs Granitesand Man-made composite slabs

Kai Quan 85.2 6.82 72.40 1.70 4.30
Feng Huang 88.6 6.47 74.16 2.66 5.32
Li Du 126.2 11.61 104.49 2.02 8.08
Hong Yuan 91.7 7.70 79.05 2.29 2.66
Xiang Zong 95.4 8.11 80.42 2.10 4.77
Ji Cheng 112.9 8.81 99.58 2.37 2.15
Hui Huang 135.4 11.37 116.71 2.03 5.28
Hong Yun 112.5 10.01 93.60 2.70 6.19
De Sheng 79.8 7.18 65.44 1.20 5.99
Guo Jian 72.3 6.65 58.13 1.23 6.29

Table 5: Objectives for both the upper and lower levels.

Notation F∗
1 F2 F3 H1

1 H1
2 H1

3 H1
4 H1

5 H1
6 H1

7 H1
8 H1

9

δU
i = 0.95 66289 12841 61240 5443 5281 9722 5648 6304 7403 10387 7930 5419

δU
i = 0.90 68362 13216 62530 5587 5362 9910 5753 6421 7489 11253 8016 5578

δU
i = 0.85 69137 13781 63110 5612 5374 9983 5842 6511 7570 11891 8117 5632

Notation H1
10 H2∗

1 H2∗
2 H2∗

3 H2∗
4 H2∗

5 H2∗
6 H2∗

7 H2∗
8 H2∗

9 H2∗
10 —

δU
i = 0.95 3990 3524 3994 4894 3887 4085 4953 5867 4624 3112 2866 —

δU
i = 0.90 4114 3678 4953 4930 3922 4137 4953 5952 4731 3220 2917 —

δU
i = 0.85 3990 3524 3994 4894 3887 4236 5078 6013 4827 3315 3013 —

increases, the government requirements are more strict and hence the total emissions decrease
and the government tax revenue increases.

Similarly, for the following level, if the possibilistic levels δL
i (i = 1, 2, . . . , 10) decrease,

the plants pay less attention to the stone dust and waste water emissions resulting in an
increase in profit and consequently more emission.

4.3. Comparison Analysis

For the proposed case, all the emission coefficients including ˜Edi, ˜edij , and ẽwij are
fuzzificated as triangular fuzzy numbers according to the real-life situation. Because all
the equations in the model are linear, it actually can be easily converted into a crisp
model without uncertain coefficients by the possibility measure. Lemma A.1 is given to
show the process in the Appendix section, and we can get the crisp model according
to (A.10). Taking all the numerical values into (A.10) and setting the same parameters
for ISA, we can easily get the optimal solutions. The error analysis and computation
time are listed in Table 6 and Table 7, respectively. It is obvious that the results from
solving the crisp equivalent model are close to the results from simulating the model.
It shows that the the fuzzy simulation technique is reasonable and efficient to solve the
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Table 6: Errors analysis by solving crisp equivalent model.

Stone plants
Stone products

Total Nano calcium
carbonates

Granite
slabs

Granite
sand

Man-made
composite slabs

Kai Quan 1.32% 0.25% −0.56% 0.32% 0.08%
Feng Huang 0.83% −0.27% −0.12% 1.12% 0.43%
Li Du −1.49% 1.04% −1.65% 0.57% −0.13%
Hong Yuan 0.17% 0.12% −0.31% 0.09% 0.12%
Xiang Zong −0.28% 0.15% 0.36% 0.35% 1.25%
Ji Cheng 0.36% 0.22% 0.18% −0.24% 0.35%
Hui Huang −0.21% 0.13% 0.27% 0.28% −0.12%
Hong Yun 0.22% 0.33% −0.08% 0.12% 0.24%
De Sheng −0.34% −0.11% 0.16% 0.27% 0.34%
Guo Jian 0.62% 1.04% 0.20% 0.03% 0.38%

Table 7: Computing time and memory by ISA and GA.

No. Size of tested problem T0 Gen ISA FS-ISA FS-GA
Resources Plants Decision variables ACT Memory ACT Memory ACT Memory

1 1 5 20 500 — 65 100 120 100 — —
1 10 60 — 500 — — — — 245 100

2 1 10 60 500 — 245 600 425 600 — —
1 10 60 — 500 — — — — 620 600

3 4 10 60 500 — 455 2400 1560 2400 — —
4 10 60 — 500 — — — — 1020 2400

ACT: average computing time (second); Memory: required memory space to represent a solution.

model for bi-level multiobjective optimization problems with fuzzy coefficients. At the
same time, it is found from Table 7 that the average computational time by ISA is less
than the time by FS-ISA. It is also reasonable because the process of fuzzy simulation for
possibilistic constraint will spend much time to get the approximate value. However, not
all possibilistic constraints can be directly converted into crisp ones. Lemma A.1 is efficient
only for the special membership functions such as the triangular and trapezoidal fuzzy
numbers.

To illustrate that FS-ISA is suitable for this kind of fuzzy bi-level model, the results are
compared with a genetic algorithm (GA). GA is one of the most popular algorithms. Many
scholars also made the comparison between SA and GA in solving bi-level optimization
problems [12, 42, 43]. They regard that different data scales will result in huge differences
on the computational efficiency. To ensure the fairness, we also design the GA based on the
fuzzy simulation for the bi-level multiobjective optimization with fuzzy coefficients. We set
the chromosome number 20, the crossover rate 0.6, the mutation rate 0.8, and the iterative
number 500. The average computing time and memory are listed in Table 7. Experiments
show that the similar optimal results can be obtained by both FS-ISA and FS-GA, but the
computational efficiency is different when the number of stone resources and stone plants
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changes. It is found that when the number of stone resources and stone plants is small, FS-
ISA is more efficient than GA in solving the bi-level multiobjective optimization and much
more computational effort is needed for FS-GA to achieve the same optimal solution as
FS-ISA. However, when the data scale is large, FS-GA can reach a more optimal solution
at the expense of more computation time. The result is in accordance with the findings by Xu
et al. [43]. Of course, if the fuzzy bi-level multi-objective optimization model can be easily
converted into the crisp model, we can obtain a more accurate solution and spend less time
by ISA than that by FS-ISA.

5. Conclusions

In this paper, we have developed a bi-level multi-objective optimization model with
possibilistic constraints under the fuzzy environment. In the model, the government is
considered as the leader level for minimizing the emissions of the stone dust and the waste
water and maximizing the employment and economic growth, and then stone plants are
considered as the follower level for maximizing the profit and minimizing the emissions.
Then we propose an algorithm FS-ISA to solve the model. Finally, a practical case proves that
the proposed model and algorithm are efficient.

Although the model proposed in this paper should be helpful for solving some real-
world problems, it only dealt with by the possibilistic constraints. If DM has different
purposes such as maximizing the possibility that the predetermined goals are achieved, we
can apply dependent-chance constraint to deal with it. In further research to be undertaken,
a detailed analysis will be given.

Appendix

Lemma A.1. Assume that ˜Edi, ˜edij , and ẽwij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) are L-R fuzzy
numbers with the following membership functions:
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where αEd
i , βEdi are positive numbers expressing the left and right spreads of ˜Ed, αed

ij , β
ed
ij are positive

numbers expressing the left and right spreads of ˜ed, and αew
ij , βewij are positive numbers expressing the

left and right spreads of ẽw, i = 1, 2, . . . , m, j = 1, 2, . . . , n. Reference functions L,R : [0, 1] → [0, 1]
with L(1) = R(1) = 0 and L(0) = R(0) = 1 are nonincreasing, continuous functions. Then one has
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j=1(˜edijXij +̃ẽwijXij) ≤ F1} ≥ δU
1 if and only if

F1 ≥
m
∑

i=1

EdiYi +
m
∑

i=1

n
∑

j=1

(

edij + ewij

)

Xij − L−1
(

δU
1

)

⎛

⎝

m
∑

i=1

αEd
i Yi +

m
∑

i=1

n
∑

j=1

(

αed
ij + αew

ij

)

Xij

⎞

⎠.

(A.4)

Proof. Let ω ∈ [0, 1] be any positive real number and L((Edi − x)/αEd
i ) =L((edij − y)/αed

ij )
=L((ewij − z)/αew

ij ) =ω, then from (A.3) we have
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(A.5)

For any Yj, Xij ≥ 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n), it easily follows that

t =
m
∑

i=1

xYi +
m
∑

i=1

n
∑

j=1

(

yXij + zXij

)

=

⎡

⎣

m
∑

i=1

EdiYi +
m
∑

i=1

n
∑

j=1

(

edij + ewij

)

Xij

⎤

⎦ −
⎛

⎝

m
∑

i=1

αEd
i Yi +

m
∑

i=1

n
∑

j=1

(

αed
ij + αew

ij

)

Xij

⎞

⎠L−1(ω).

(A.6)



22 Mathematical Problems in Engineering

Therefore, we have
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It is also proved by similar technique that
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Hence, it is easily found that
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This completes the proof.
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From Lemma A.1, the model (2.21) is equivalent to the following bi-level multi-
objective programming problem:
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Abbreviations

Indices

i : Index of stone-material plants, i = 1, 2, . . . , m
j : Index of stone products, j = 1, 2, . . . , n.

Parameters

˜Edi : Stone dust emissions coefficient when plant i exploits
˜edij : Stone dust emissions coefficient when plant i produces product j
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ẽwij : Waste water emissions coefficient when that plant i produces product j
pij : Employment coefficient that plant i produces product j
Pi : Basic employment that plant i needs
Si : Unit tax rate that plant i pays to the government
cj : Unit price of product j

tij : Unit variable cost when plant i produces
product j

hi : Unit cost when plant i holds remnant
stone materials

θij : Transformation rate when plant i
produces product j

Cij : Constant cost if plant i produces product
j

RU : Total stone resources upper limitation in
the region

DL
j : Lower limitation of product j demand

EDU : Stone dust total emissions upper
limitation in the region

EWU : Waste water total emissions upper
limitation in the region

IVU
i : Inventory upper limitation for plant i

PCU
i : Production cost upper limitation for

plant i
PL
ij : Lower limitation for product j in plant i.

Decision variables

Yi : Amount that the government allows plant i to exploit
Xij : Amount that plant i uses to produce the product j.
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