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The purpose of the present paper is to provide a performance analysis approach of networked
systems with fading communication channels. For a Ricean model of the fading communication
channel, it is shown that the resulting system has a hybrid structure including the continuous-time
dynamics of the networked systems and a discrete-time dynamics of the communication channels.
Moreover, this resulting hybrid system has both multiplicative and additive noise terms. The
performance analysis naturally leads to an H2/H∞-type norm evaluation for systems with finite
jumps and multiplicative noise. It is proved that this norm depends on the stabilizing solution
of a specific system of coupled Riccati’s equations with jumps. A state-feedback design problem
to accomplish a mixed H2/H∞ performance is also considered. A numerical iterative procedure
allowing to compute the stabilizing solution of the Riccati-type system with jumps is presented.
The theoretical results are illustrated by numerical results concerning the tracking performances
of a flight formation with fading communication channel. The paper ends with some concluding
remarks.

1. Introduction

The analysis and synthesis of networked control systems have received amajor attention over
the last decade due to their wide area of applications (see, e.g., [1–3] and their references).
These applications include aerial and terrestrial surveillance [3], formation atmospheric
flight [4], terrain mapping, and satellites formations for space science missions [5]. In all
these applications, the formation members are autonomous vehicles from which the human
pilots have been removed in order to avoid their participation at dangerous and repetitive
tasks. The specific feature of such networked systems is that the control loop is closed
through a communication channel shared by all autonomous vehicles. This communication
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network is required since the control law of each formation member usually depends on the
measurements from all other vehicles. Even in the distributed control architectures when each
vehicle uses only the information about its neighboring vehicles, a communication network
is very useful. Indeed, in [6] it is proved that in a predecessor following approach, the relative
positioning error between vehicles is amplified if the members of the formation have no
information about the leader position. This conclusion motivates the use of a predecessor and
leader followingmethod in which both information about the predecessor and about the leader
position are available for each formation member. In [6] it is also proved that in this case the
relative spacing errors can be attenuated. These interesting results emphasize the importance
of the communication in networked control systems. Most of the communication systems
are based on wireless networks which, in contrast with the wired systems, are much more
sensitive to information transmission errors.

The main goal of this paper is to analyze the interaction between the control and
the communication system with fading. To this end, a model of the fading communication
channel is required. There are many such models developed in the recent literature (see,
e.g., [7, 8]). Deterministic models of communication networks with time-varying delays are
considered in [9–11], in which the maximum admissible delays are determined using the
Lyapunov stability theory. In other deterministic models of fading communication channels,
the transmission errors are represented as uncertain parameters, and, the control system
is designed via specific robust synthesis procedures including linear quadratic Gaussian
(LQG) and μ-synthesis. Another class of representations of fading communication channels
is based on stochastic models either with Markovian jumps or with white noise [7, 12].
Many useful results concerning the stability, control, and disturbance attenuation of such
systems are available in the control literature (see, e.g., [13–15] and their references).
In [8], an H∞-type design is used to determine a controller for a system with fading
communication channel represented as a Markovian system. A Markovian representation
of the network status is also used to solve robust fault detection problems by H∞
techniques for communication systems which may be found in [16]. An extended version
for the case of random measurement delays and stochastic data-missing phenomenon is
treated in [17]. In the present paper, a discrete-time Ricean model of the communication
channel is considered. The stochastic Rice models are often used for models of wireless
links [7]. They include both additive and multiplicative white noise terms. The problem
analyzed in this paper is the influence of the fading communication channel over the
tracking performance of a flight formation. The control system of the flight formation is
the one derived in [4]. Since the exogenous inputs in the networked system are both
deterministic (the reference signals for the formation control) and stochastic (the white
noise terms in the fading communication channel model), a mixed H2/H∞-type approach
is appropriate for this analysis. Moreover, the networked system has a hybrid structure
due to its continuous-time component represented by the vehicles dynamics and a discrete-
time one corresponding to the communication channel. The above mentioned considerations
lead to a mixed H2/H∞ analysis problem for stochastic systems with finite jumps. The
systems with finite jumps are used to represent dynamic systems with continuous-time and
discrete-time components. Useful results and developments concerning these systems may
be found, for instance, in [18, 19]. The paper provides an analysis and an optimization
approach of the mixed H2/H∞ performance for a hybrid model of networked systems
with fading communication channels. This model is derived in Section 2 of the paper. In
Section 3, the expression of theH2/H∞ performance is determined in terms of the stabilizing
solution of a specific system of coupled Riccati equations with finite jumps. A state-feed-
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back design procedure to optimize the mixed performance is presented in Section 4.
Numerical aspects concerning the computation of the stabilizing solution are given in
Section 5. The theoretical results are illustrated by a numerical example concerning the
tracking performance of an aircraft formation. The paper ends with some final remarks and
future work.

2. A Model of Networked Systems over Fading
Communication Channel

In this section a control problem of a formation of unmanned air vehicles (UAVs) will be
briefly presented. Such problems have been intensively analyzed over the last fifteen years
(see, e.g., [3]) both for their wide area of applications and for the challenges addressed to the
control engineer. In [4], a dynamic inversion-type approach is used to linearize the nonlinear
dynamic and kinematic equations of the UAV motion. A simplified linearized model of a
flight formation member has the form:

δ̇ = Yξ,

ξ̇ = −Kdδ −Kxξ − ẋ,
(2.1)

where δ ∈ R
3 denotes the deviation of the aircraft with respect to its desired position and

ξ ∈ R
3 stands for the deviation of its state x = [V ψ γ]T (V representing the airspeed, ψ

the heading angle, and γ the flight path angle) with respect to some specified value x. The
input vector ẋ includes the desired derivatives of x and plays the role of a reference signal
in the model (2.1). The constant matrix Y has the diagonal form Y = diag(1, V0, V0), and the
state-feedback control gainsKd andKx are diagonal, too. In the present paper, the case when
the reference signal ẋ is transmitted from the ground station or from the formation leader
using a fading communication channel is considered. The aim is to analyze how the tracking
performances of the flight formation are altered due to the communication system. To this
end, a model of the fading communication channel is required. In this paper, the Lth-order
Rice model was adopted. This model is frequently used in wireless mobile links, and it is
given by the discrete-time equation:

r(i) =
L∑

k=0

ak(i)v(i − k) + n(i), (2.2)

where i denotes the moment of time, v(·) denotes the transmitted information, r(·) is the
received information, n is a Gaussian white noise with zero mean and unit variance, and
ak(i), k = 0, . . . , L are independent random variables with known mean ak and variance σ2

k
.

In the case of the application considered in this paper, v(·) is just the transmitted reference
signal ẋ. A state-space representation of (2.2) is

p(i + 1) =Mp(i) +Nv(i),

r(i) =
L∑

k=1

ak(i)Pkp(i) + a0(i)v(i) + n(i), i = 0, 1, . . . ,
(2.3)
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where, by definition,

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

I 0 · · · 0

...
. . .

0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, N =

⎡
⎢⎢⎢⎢⎢⎢⎣

I

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, Pk =

[
0 · · · 0 I 0 · · · 0

]
, (2.4)

and p(i) ∈ R
L·nv×1 stands for the state vector of the communication channel, nv denoting

the dimension of the transmitted information vector v(·). In (2.4), the identity and the zero
matrices have the size nv × nv, and the identity matrix in Pk is on the kth position. The
configuration of the communication system (2.3) coupled with the system (2.1) is illustrated
in Figure 1. The resulting system from Figure 1 is in fact a hybrid system since the dynamics
of (2.1) is a continuous-time one, and (2.3) is a discrete-time system. A state-space realization
of such hybrid system can be given using systems with finite jumps of the general form:

ẋ(t) = Ax(t) + Bw(t), t /= ih,

x(ih+) = Adx(ih) + Bdwd(i), i = 0, 1, . . . ,
(2.5)

in which h > 0 denotes the sampling period, the state x(t) is left continuous and right
discontinuous at the sampling moments t = ih, i = 0, 1, . . ., and w(t), t /= ih, and wd(i),
i = 0, 1, . . ., are the continuous-time and the discrete-time inputs, respectively, of the system
(see, e.g., [19, 20]). Since the received information r is constant between the sampling
moments, it can be represented as

ṙ(t) = 0, t /= ih,

r(ih+) =
L∑

k=1

ak(i)Pkp(ih) + a0(i)v(i) + n(i), i = 0, 1, . . . ,
(2.6)

where the state p of the communication system is given by

ṗ(t) = 0, t /= ih,

p(ih+) =Mp(ih) +Nv(i), i = 0, 1, . . . .
(2.7)

A similar model can be adopted for the continuous-time control system (2.1) which can be
represented as

q̇(t) = Aq(t) + Br(t), t ≥ 0, (2.8)
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Figure 1: Control configuration of networked systems with fading communication channel.

where

q(t) :=
[
δT (t)ξT (t)

]T
,

A :=

[
0 Y

−Kd −Kx

]
, B :=

[
0

−I

]
.

(2.9)

In (2.8) the state q(t) is continuous-time, and therefore,

q(ih+) = q(ih), (2.10)

and r(t) is the received perturbed reference signal described by (2.6). From (2.6)–(2.10),
it follows that the hybrid networked system with fading communication channels can be
represented using a model with finite jumps of the form (2.5) where x = [qT rT pT ]T .
Moreover, since in (2.6) the coefficients ak(i), k = 0, . . . , L and i = 0, 1, . . ., are random
variables, one may consider the following stochastic version of (2.5) which includes both
multiplicative noise components and additive white noise terms:

dx(t) = (A0x(t) + B0w(t))dt + (A1x(t) + B1w(t))dν(t) +Gdη(t), t /= ih,

x(ih+) = A0dx(ih) + B0dwd(i) + (A1dx(ih) + B1dwd(i))νd(i) +Gdηd(i), i = 0, 1, . . . ,

y(t) = Cx(t), t /= ih,

yd(i) = Cdx(ih), i = 0, 1, . . . ,
(2.11)

where the random variables η(t) ∈ R, t ≥ 0, and ν(t) ∈ R
r , t ≥ 0, are such that

the pair (η(t), ν(t)) is an r + 1-dimensional standard Wiener process, and νd(i) ∈ R and
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ηd(i) ∈ R
rd , i = 0, 1, . . . are sequences of independent random variables on a probability

space (Ω,P,F). It is assumed that ν(t), η(t), t ≥ 0, νd(i), ηd(i), i = 0, 1, . . ., are independent
stochastic processes with zero mean and unitary secondmoments. The outputs y(t) and yd(i)
denote the continuous-time and the discrete-time outputs, respectively. By virtue of standard
results from the theory of stochastic differential equations (see, e.g., [21]), the system (2.11)
has a unique Ft-adapted solution for any initial condition x(0), Ft denoting the σ-algebra
generated by the random vectors ν(s), η(s), νd(i), and ηd(i), 0 ≤ s ≤ t, 0 ≤ ih ≤ t. This
solution is almost surely left continuous.

AmixedH2/H∞ problem for this class of stochastic systemswith jumpswill be treated
in the next section.

3. Mixed H2/H∞-Type Norm for Systems with Jumps Corrupted with
Multiplicative Noise

Before defining and computing the mixedH2/H∞ norm for systems of the form (2.11), some
useful definitions and preliminary results will be briefly presented.

3.1. Notations, Definitions, and Some Useful Results

Consider the stochastic system with jumps (2.11) in whichw andwd denote continuous-time
and discrete-time energy bounded inputs, respectively. It means that w ∈ L2[0,∞), where
L2[0,∞) denotes the space of the functions f(t), t ≥ 0 for which ‖f‖2

L2 :=
∫∞
0 |f(t)|2dt < ∞,

and wd ∈ 	2 where 	2 is the space of the discrete-time vectors g(i), i = 0, 1, . . . with the
property ‖g‖2

	2
:=

∑∞
i=0|g(i)|2 <∞, where | · | stands for the Euclidian norm.

Definition 3.1. The stochastic system with jumps and with multiplicative noise

dx(t) = A0x(t)dt +A1x(t)dν(t), t /= ih,

x(ih+) = A0dx(ih) +A1dx(ih)νd(i) i = 0, 1, . . .
(3.1)

is exponentially stable in mean square (ESMS) if there exist α > 0 and β ≥ 1 such that E[|x(t)|2] ≤
βe−αt|x(0)|2 for any initial condition x(0) and for all t ≥ 0, E[·] denoting the mean of the
random variable and x(t) representing the solution of (3.1) with the initial condition x(0).

The following result gives necessary and sufficient conditions in which the system
with finite jumps (3.1) is ESMS, and its proof may be found in [13].

Proposition 3.2. The system (3.1) is ESMS if and only if the system of coupled Lyapunov equations

−Ẋ(t) = AT
0X(t) +X(t)A0 +AT

1X(t)A1, t /= ih,

X
(
ih−

)
= AT

0dX(ih)A0d +AT
1dX(ih)A1d, i = 0, 1, . . .

(3.2)

has a unique symmetric solution X(t) ≥ 0, t ≥ 0, right continuous and h-periodic.

Another useful result is the differentiation rule of functions of solutions to stochastic
differential equations, well known in the literature as Itô’s formula [21].



Mathematical Problems in Engineering 7

Proposition 3.3. Let v(t, x) be a continuous function with respect to (t, x) ∈ [0, T] ×R
n. If x(t) is a

solution of the stochastic differential equation

dx(t) = a(t)dt + b(t)dβ(t), (3.3)

then

dv(t, x(t)) =

[
∂v

∂t
(t, x(t)) +

(
∂v

∂x
(t, x(t))

)T

a(t) +
1
2
Tr bT (t)

∂2v(t)
∂x2 (t, x(t))b(t)

]
dt

+
(
∂v

∂x
(t, x(t))

)T

b(t)dβ(t),

(3.4)

where Tr(·) denotes the trace of the matrix (·).

The next result will be used in the following sections, and its proof may be found in
[13, page 162].

Proposition 3.4. Consider the stochastic system with multiplicative noise

dx(t) = (A0x(t) + B0u(t))dt + (A1x(t) + B1u(t))dν(t) (3.5)

and the cost function

J(t0, τ, u) = E

[∫ τ

t0

[
xT (t) uT (t)

]
[
M L

LT R

][
x(t)

u(t)

]
dt

]
, (3.6)

then

J(t0, τ, u) = xT0X(t0)x0 − E
[
xT (τ)X(τ)x(τ)

]

+ E

[∫ τ

t0

(
u(t) − F̃(t)(x(t))

)T(
R + BT1X(t)B1

)(
u(t) − F̃(t)x(t)

)
dt

]
,

(3.7)

where X(t) verifies the equation

−Ẋ(t) = AT
0X(t) +X(t)A0 +AT

1X(t)A1 −
(
X(t)B0 +AT

1X(t)B1

)

×
(
R + BT1X(t)B1

)−1(
BT0X(t) + BT1X(t)A1

)
+M

(3.8)

and where F̃(t) = −(R + BT1X(t)B1)
−1(BT0X(t) + BT1X(t)A1 + LT ).
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3.2. The Mixed H2/H∞ Norm of the System (2.11)

Assume that the system (2.11) which will be denoted below by G is ESMS and that x(0) = 0.
As in the deterministic case,H2 andH∞ norms can be defined as follows.

(i) For w(t) ≡ 0 and wd(i) ≡ 0, the impulse-to-energy gain induced from (η, ηd) to
(y, yd) stands for theH2-type norm of the system (2.11). TheH2-type norm of (2.11) denoted
by ‖G‖2 can be determined as

‖G‖22 = Tr
(
GT
dQ(ih)Gd

)
+
1
h

∫h

0
Tr
(
GTQ(t)G

)
dt, (3.9)

where Q(t), t ≥ 0 is the solution of the Lyapunov-type system

−Q̇(t) = AT
0Q(t) +Q(t)A0 +AT

1Q(t)A1 + CTC, t /= ih,

Q
(
ih−

)
= AT

0dQ(ih)A0d +AT
1dQ(ih)A1d + CT

dCd, i = 0, 1, . . . ,
(3.10)

(see also [18]).
(ii) For η(t) ≡ 0 and ηd(i) ≡ 0, the energy-to-energy gain induced from (w,wd) to (y, yd)

stands for theH∞-type norm of the system (2.11), denoted by ‖G‖∞. It represents the smallest
γ > 0 for which the following system of coupled Riccati equations

−Ẋ(t) = AT
0X(t) +X(t)A0 +AT

1X(t)A1 + CTC +
(
X(t)B0 +AT

1X(t)B1

)

×
(
γ2I − BT1X(t)B1

)−1(
BT0X(t) + BT1X(t)A1

)
, t /= ih,

X
(
ih−

)
= AT

0dX(ih)A0d +AT
1dX(ih)A1d + CT

dCd +
(
AT

0dX(ih)B0d +AT
1dX(ih)B1d

)

×
(
γ2I − BT1dX(ih)B1d

)−1(
BT0dX(ih)A0d + BT1dX(ih)A1d

)
, i = 0, 1, . . . .

(3.11)

has a stabilizing solution X(t) ≥ 0, t ≥ 0. Recall that a symmetric right continuous, h-periodic
function X(t) verifying (3.11) is called a stabilizing solution of (3.11) if

γ2I − BT1X(t)B1 > 0, t /= ih,

γ2I − BT1dX(ih)B1d > 0, i = 0, 1 . . . ,
(3.12)

and the system with jumps

dx(t) = (A0 + B0F(t))x(t)dt + (A1 + B1F(t))x(t)dν(t), t /= ih,

x(ih+) = (A0dx(ih) + B0dF(ih))x(ih) + (A1d + B1dF(ih))x(ih)νd(i), i = 0, 1, . . .
(3.13)
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is ESMS, where, by definition,

F(t) =
(
γ2I − BT1X(t)B1

)−1(
BT0X(t) + BT1X(t)A1

)
, t /= ih,

F(ih) =
(
γ2I − BT1dX(ih)B1d

)−1(
BT0dX(ih)A0d + BT1dX(ih)A1d

)
, i = 0, 1, . . . .

(3.14)

Similarly with the deterministic case (see, e.g., [22, 23]), a mixedH2/H∞-type norm of (2.11)
can be defined solving the optimization problem:

J0 = sup
(w,wd,η,ηd)

E
[∥∥y

∥∥2
L2 +

∥∥yd
∥∥2
	2 − γ2

(
‖w‖2L2 + ‖wd‖2	2

)]
, (3.15)

where (w,wd) ∈ L2[0,∞)×	2, the white-noise-type random inputs η and ηd are as in previous
subsection and γ > ‖G‖∞ with ‖G‖∞. Notice that, if w and wd are null in (3.15), then J0 gives
the square of the H2-type norm induced by the random inputs η and ηd. The main result of
this subsection is the following theorem.

Theorem 3.5. The optimum J0 defined in (3.15) is given by

J0 = Tr
(
GT
dX(h)Gd

)
+
1
h

∫h

0
Tr
(
GTX(t)G

)
dt, (3.16)

where X(t) is the stabilizing solution of the system of coupled Riccati equations (3.11).

Proof. The proof follows applying Itô’s formula (Proposition 3.3) for the function v(t, x) =
xT (t)X(t)x(t) with x(t) being the solution of (2.11) and with X(t) the stabilizing solution to
the system (3.11). Thus, by direct computations, one obtains

d
(
x(t)TX(t)x(t)

)
=
[
−Pc(t) − yT (t)y(t) + γ2wT (t)w(t) + Tr

(
GTX(t)G

)]
dt

+ 2xT (t)X(t)Gdη(t) + 2xT (t)X(t)(A1x(t) + B1w(t))dν(t),
(3.17)

where, by definition,

Pc(t) : =
[
xT (t)

(
X(t)B0 +AT

1X(t)B1

)
−wT (t)

(
γ2I − BT1X(t)B1

)]

×
(
γ2I − BT1X(t)B1

)−1[(
BT0X(t) + BT1X(t)A1

)
x(t) −

(
γ2I − BT1X(t)B1

)
w(t)

]
≥ 0.

(3.18)
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On the other hand using the second equations of (2.11) and of (3.11), it follows that

E

[∫ (i+1)h

ih+
d
(
xTXx

)]
= E

[
xT ((i + 1)h)X((i + 1)h)x((i + 1)h) − xT (ih+)X(ih+)x(ih+)

]

= E
[
xT ((i + 1)h)X((i + 1)h)x((i + 1)h) − xT (ih)X(

ih−
)
x(ih) + yTd (i)yd(i)

−γ2wT
d(i)wd(i) + Pd(i)

]
− Tr

(
GT
dX(ih)Gd

)
,

(3.19)

where

Pd(i) :

=
[
xT (ih)

(
AT

0dX(ih)B0d+AT
1dX(ih)B1d

)
−wT (i)

(
γ2I−BT1dX(ih)B1d

)](
γ2I−BT1dX(ih)B1d

)−1

×
[
xT (ih)

(
AT

0dX(ih)B0d +AT
1dX(ih)B1d

)
−wT (i)

(
γ2I − BT1dX(ih)B1d

)]T ≥ 0.

(3.20)

Integrating (3.17) from t = 0 to ∞ and equalizing it with (3.19) summed up from i = 0 to
∞, based on the fact that Pc(t) ≥ 0 and Pd(i) ≥ 0 and that X(t) is h-periodic, one obtains
(3.16).

4. State-Feedback Mixed H2/H∞ Control Design

Consider the following linear stochastic system with multiplicative noise and finite jumps:

dx(t) = (A0x(t) + B0w(t) + B2u(t))dt + (A1x(t) + B1w(t))dν(t) +Gdη(t), t /= ih,

x(ih+) = A0dx(ih) + B0dwd(i) + (A1dx(ih) + B1dwd(i))νd(i) +Gdηd(i), i = 0, 1, . . . ,

y1(t) = Cx(t) +Du(t), t /= ih,

y2(t) = x(t), t /= ih,

yd(i) = Cdx(ih), i = 0, 1, . . . ,

(4.1)

where w(t) ∈ L2[0,∞) is an exogenous input, u(t) denotes the control variable, y1(t)
stands for the regulated output, and y2(t) is the measured output. For the simplicity of the
computations, the following orthogonality assumption is made:

DT[C D
]
=
[
0 I

]
. (4.2)

As seen from the above system, the state vector x(t) is assumed measurable. It is not the
purpose of the present paper to analyze the case when the state variables must be estimated.
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For some results concerning the discrete-time filtering methods associated to networked
systems, see, for instance, [24–26].

The second equation of the system (4.1) does not include a discrete-time control
input since, in the application presented in the previous section, the control law has only
a continuous-time component.

The problem analyzed in this section consists in finding a state-feedback gain
F(t), t /= ih, such that the resulting system obtained with u(t) = F(t)x(t), t /= ih, satisfies the
following conditions.

(i) It is ESMS.

(ii) The H∞-type norm of the stochastic system with jumps obtained by ignoring the
noises η(t) and ηd(i) is less than a given γ > 0.

(iii) The performance index (3.16) is minimized, where X(t) in (3.16) denotes the
stabilizing solution of the norm-type Riccati system (3.11) corresponding to the
resulting system obtained with u(t) = F(t)x(t), t /= ih, namely, replacing A0 by
A0 + B2F(t).

The solution of this problem is given by the following result.

Theorem 4.1. The solution of the state-feedback mixed H2/H∞ control problem considered above is
given by

F(t) = −BT2X(t), t /= ih, (4.3)

where X(t) denotes the h-periodic stabilizing solution of the game-theoretic Riccati type system with
jumps

−Ẋ(t) = AT
0X(t) +X(t)A0 +AT

1X(t)A1 + CTC +
(
X(t)B0 +AT

1X(t)B1

)

×
(
γ2I − BT1X(t)B1

)−1(
BT0X(t) + BT1X(t)A1

)
−X(t)B2B

T
2X(t), t /= ih,

X
(
ih−

)
= AT

0dX(ih)A0d +AT
1dX(ih)A1d + CT

dCd +
(
AT

0dX(ih)B0d +AT
1dX(ih)B1d

)

×
(
γ2I − BT1dX(ih)B1d

)−1(
BT0dX(ih)A0d + BT1dX(ih)A1d

)
, i = 0, 1 . . . .

(4.4)

Proof. Consider the cost function

J(x0, τ,w, u) = E
[∫ τ

0

(∣∣y1(t)
∣∣2 − γ2|w(t)|2

)
dt

]
(4.5)

associated with the system

dx(t) = (A0x(t) + B0w(t) + B2u(t))dt + (A1x(t) + B1w(t))dν(t), t /= ih,

x(ih+) = A0dx(ih) + B0dwd(i) + (A1dx(ih) + B1dwd(i)), i = 0, 1, . . . ,

y1(t) = Cx(t) +Du(t), t /= ih,

(4.6)
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with the initial condition x(0) = x0. Applying Proposition 3.4 for u1 = w and u2 = u, one
obtains that

J(x0, τ,w, u) = xT0X(0)x0 − E
[
xT (τ)X(τ)x(τ)

]

+ E
∫ τ

0

[(
u(t) + BT2X(t)x(t)

)T(
u(t) + BT2X(t)x(t)

)
− P̃(w(t), x(t), X(t))

]
dt,

(4.7)

where the following notation has been introduced

P̃(w(t), x(t), X(t)) : =
[
w(t) −

(
γ2I − BT1X(t)B1

)−1(
BT0X(t) + B1X(t)A1

)
x(t)

]T

×
(
γ2I − BT1X(t)B1

)

×
[
w(t) −

(
γ2I − BT1X(t)B1

)−1(
BT0X(t) + B1X(t)A1

)
x(t)

]
,

(4.8)

X(t), t /= ih, denoting the stabilizing solution of the Riccati-type system (4.4).
Equation (4.7) shows that the minimum of J with respect to the control input u is

obtained for u(t) = −BT2X(t)x(t).
Further, consider a stabilizing state-feedback control û(t) = F̂(t)x̂(t), t /= ih, for which

the H∞ norm of the resulting system without additive white noise (see the requirement (ii)
above)

dx̂(t) =
[(
A0 + B2F̂(t)

)
x̂(t) + B0w(t)

]
dt + (A1x̂(t) + B1w(t))dν(t),

y(t) = (C +DF(t))x̂(t)
(4.9)

is less than γ .
Using again Proposition 3.4 for the system (4.9), direct computations give

J(x0, τ,w, û) = xT0 X̂(0)x0 − E
[
x̂T (τ)X̂(τ)x̂(τ)

]
− E

[∫ τ

0
P̃
(
w(t), x̂(t), X̂(t)

)
dt

]
, (4.10)

where P̃(·, ·, ·) is defined by (4.8) and X̂(t) is the stabilizing solution of the Riccati system of
form (3.11) corresponding to (4.9). Then, defining ũ(t) := F(t)x(t) and

w̃(t) :=
(
γ2I − BT1X(t)B1

)−1(
BT0X(t) + BT1X(t)A1

)
x(t), (4.11)
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one obtains that J(x0, τ, w̃, ũ) ≤ J(x0, τ, w̃, û); namely,

xT0X(0)x0 − E
[
xT (τ)X(τ)x(τ)

]
≤ xT0 X̂(0)x0 − E

[
x̂T (τ)X̂(τ)x̂(τ)

]
,

−E
[∫ τ

0
P̃
(
ŵ(t), x̂(t), X̂(t)

)
dt

]
≤ xT0 X̂(0)x0 − E

[
x̂T (τ)X̂(τ)x̂(τ)

]
.

(4.12)

Since X(t) and X̂(t) are stabilizing solutions of the Riccati systems, it follows that
limτ→∞x(τ) = limτ→∞x̂(τ) = 0. Therefore, making τ → ∞ in (4.12), one obtains that
X(0) ≤ X̂(0).

Further, using a similar reasoning for the cost function

Jt(x0, τ,w, u) = E
[∫ τ

t

(∣∣y1(t)
∣∣2 − γ2|w(t)|2

)
dt

]
(4.13)

with t ∈ (0, h), one obtains that X(t) ≤ X̂(t), and; thus, one concludes that the minimum of
(3.16) is obtained for the stabilizing solution X(t) of the Riccati-type system (4.4).

5. A Numerical Procedure to Compute the Stabilizing Solution
of the Riccati System with Jumps

In order to determine J0 with the expression given in the statement of Theorem 3.5, the
stabilizing solution X(t), t ≥ 0, of the Riccati-type system (3.11) must be determined.
Since the two Riccati equations of this system are coupled, an iterative procedure will be
used. The proposed iterative method is similar with the iterative numerical methods used
to solve Riccati equations of norm in the deterministic continuous-time and discrete-time
cases (see, for instance, [27, 28]). These Newton-type iterative procedures are adapted to
the particularities of the Riccati systems with jumps derived in the previous sections, and
a detailed proof of the convergence towards the stabilizing solution is not the purpose of
the present paper. Roughly speaking, the proof based follows showing that the solutions
obtained at each iteration determine a monotonic and bounded sequence. An important
particular feature of the Riccati systems with jumps, already mentioned above, is that their
solution X(t) is h-periodic and right continuous. The proposed iterative procedure is the
following:

Ẋk+1(t) + (A0 + B0Fk(t))TXk+1(t) +Xk+1(t)(A0 + B0Fk(t)) +Mk(t) = 0, t /= ih,

Xk+1
(
ih−

)
= (A0d + B0dFd,k(i))

TXk+1(ih)(A0d + B0dFd,k(i)) +Nk(i), i = 0, 1, . . . ,
(5.1)

where

Fk(t) =
(
γ2I − BT1Xk(t)B1

)−1(
BT0Xk(t) + BT1Xk(t)A1

)
,

Mk(t) = AT
1Xk(t)B1

(
γ2I − BT1Xk(t)B1

)−1
BT1Xk(t)A1

−Xk(t)B0

(
γ2I − BT1Xk(t)B1

)−1
BToXk(t) +AT

1Xk(t)A1 + CTC,
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Figure 2: Variation of J0 with respect to the sampling period h.

Fd,k(i) =
(
γ2I − BT1dXk(ih)B1d

)−1(
BT0dXk(ih)A0d + BT1dXk(ih)A1d

)
,

Nk(i) = −FTd,kBT0dXk(ih)(A0d + B0dFk,d(i)) −AT
0dXk(ih)B0dFk,d(i)

+ (A1d + B1dFk,d(i))TXk(ih)(A1d + B1dFk,d(i)) + CT
dCd.

(5.2)

For the initial step of the above iterative procedure, one takes X(0) = 0, t ∈ (0, h), and
F0(t) and F0,d(i) stabilizing (5.1). In order to solve (5.1) at each iteration, one solves the first
equation (5.1) obtaining

Xk+1(ih) = e(A0+B0Fk)
ThXk+1

(
ih−

)
e(A0+B0Fk)h +

∫h

0
e(A0+B0Fk)

T τMk(τ)e(A0+B0Fk)τdτ, (5.3)

which is substituted then in the second equation (5.1) obtaining, thus, a Lyapunov-type
equationwith the unknown variableXk+1(ih−). Then, by backward integration on the interval
[(i − 1)h, ih−) with the initial condition Xk+1(ih−), one obtains Xk+1(t) for t ∈ [(i − 1)h, ih−).

In the final part of this section, some of the above theoretical results will be
used to analyze the mixed performance of the UAVs formation networked with fading
communication channel considered in Section 2. The values of the gains considered in this
example are Kd = diag(0.7, 0.05, 0.05) and Kx = diag(7, 5, 5), for V0 = 150m/s (see
Section 2). One determined the performance index H2/H∞ performance computing the
value of the index J0 defined by (3.15). The results are illustrated in Figure 2. One can see
the the tracking performances of the flight formation are severely deteriorated when the
sampling period of the transmission in the communication channel increases. In Figure 3, the
variation of γmin with respect to the sampling period and the variance of the multiplicative
noise, in the absence of the additive white noise, are shown in Figure 3. It can be seen that
γmin is not very much influenced by the multiplicative noise at small sampling periods, but it
becomes very sensitive with respect to this noise when the sampling period increases.
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6. Conclusions

The purpose of the paper was to provide an appropriate methodology to evaluate the
performance of networked systems interconnected via fading communication channels. The
main difficulty arises from the hybrid structure of the resulting system which includes a
continuous-time component specific to the network individual members and a discrete-time
component given by the communication system. It is shown that such a hybrid configuration
can be analyzed from the point of view of stability and disturbance attenuation performances
using dynamic models with finite jumps. In the actual stage of the research, a method
to compute a mixed H2/H∞-type performance has been developed, and a state-feedback
control law to optimize it has been designed. Further research will be focused on the state
estimation problems arising in the implementation of such control laws.
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