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This paper proposes and analyzes a stabilized finite-volume method (FVM) for the three-
dimensional stationary Navier-Stokes equations approximated by the lowest order finite element
pairs. The method studies the new stabilized FVM with the relationship between the stabilized
FEM (FEM) and the stabilized FVM under the assumption of the uniqueness condition. The results
have three prominent features in this paper. Firstly, the error analysis shows that the stabilized
FVM provides an approximate solution with the optimal convergence rate of the same order
as the usual stabilized FEM solution solving the stationary Navier-Stokes equations. Secondly,
superconvergence results on the solutions of the stabilized FEM and stabilized FVM are derived on
theH1-norm and the L2-norm for the velocity and pressure. Thirdly, residual technique is applied
to obtain the L2-norm error for the velocity without additional regular assumption on the exact
solution.

1. Introduction

Recently, the development of stable mixed FEMs is a fundamental component in the search
for the efficient numerical methods for solving the Navier-Stokes equations governing the
flow of an incompressible fluid by using a primitive variable formulation. The object of this
work is to analyze the stabilized finite volume method for solving the three-dimensional
stationary Navier-Stokes equations.

The importance of ensuring the compatibility of the component approximations of
velocity and pressure by satisfying the so-called inf-sup condition is widely understood. The
numerous mixed finite elements satisfying the inf-sup condition have been proposed over the
years. However, elements not satisfying the inf-sup condition may also work well. So far, the
most convenient choice of the finite element space from an implementational point of view
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would be the elements of the low polynomial order in the velocity and the pressure with an
identical degree distribution for both the velocity and the pressure.

This paper focuses on the stabilized method called local polynomial pressure
projection for the three-dimensional Navier-Stokes equations [1–5]. The proposed method
is characterized by the following features. First, the method does not require approximation
of derivatives, specification of mesh-dependent parameters, edge-based data structures, and
a nonstandard assembly procedure. Second, this method is completely local at the element
level.

On the other hand, FVM has become an active area in numerical analysis. The most
attractive things are that FVM can keep local conservation and have the advantages of FVM
and finite difference methods. The FVM is also termed the control volume method, the
covolume method, or the first-order generalized difference method. Nowadays, it is difficult
in analyzing FVM to obtain L2-norm error estimates because trail functions and test functions
are derived from different spaces. Many papers were devoted to its error analysis for second-
order elliptic and parabolic partial differential problems [6–10]. Error estimates of optimal
order in theH1-norm are the same as those for the linear FEM [9, 11]. Error estimates of opti-
mal order in the L2-norm can be obtained as well [8, 9]. Moreover, the FVM for generalized
Stokes problems was studied by many people [11–13]. They analyzed this method by using
a relationship between it and the FEM and obtained its error estimates through those known
for the latter method. Also, it still requires H3 smoothness assumption of the exact solution
to obtain O(h2) error bound in most previous literatures. However, for the Stokes problems
only the finite elements that satisfy the discrete inf-sup condition have been studied.

The work of [14, 15] for the two-dimensional stationary Stokes equations is extended
in this paper for the three-dimensional stationary Navier-Stokes equations approximated
by lowest equal-order finite elements. Following the abstract framework of the relationship
between the stabilized FEM and stabilized FVM [14, 15], the stabilized FVM is studied,
and the optimal error estimate of the stabilized FVM is obtained for the three-dimensional
stationary Navier-Stokes equations relying on the uniqueness condition. As far as known,
there still requires much research on FVM results [16] about the velocity in L2-norm and
superconvergence result between FEM solution and FVM solution of the three-dimensional
Navier-Stokes equations.

The remainder of the paper is organized as follows. In Section 2, an abstract
functional setting of the three-dimensional Navier-Stokes problem is given with some basic
assumptions. In Section 3, the stability of the stabilized FVM is analyzed and provided by
Brouwer’s fixed-point theorem. In Section 4, the optimal error estimates of the stabilized
finite volume approximation for the three-dimensional stationary Navier-Stokes equations
are obtained.

2. FVM Formulation

Let Ω be a bounded domain in R3, assumed to have a Lipschitz-continuous boundary Γ and
to satisfy a further condition stated in (A1) below. The three-dimensional stationary Navier-
Stokes equations are considered as follows:

−νΔu +∇p + (u · ∇)u = f, inΩ, (2.1a)

divu = 0, inΩ, (2.1b)

u|∂Ω = 0, on ∂Ω, (2.1c)
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where ν > 0 is the viscosity, u = (u1(x), u2(x), u3(x)) represents the velocity vector, p = p(x)
the pressure, and f = (f1(x), f2(x), f3(x)) the prescribed body force.

In order to introduce a variational formulation, we set [17]

X =
[
H1

0(Ω)
]3
, Y =

[
L2(Ω)

]3
, M = L2

0(Ω) =
{
q ∈ L2(Ω) :

∫

Ω
qdx = 0

}
,

D(A) =
[
H2(Ω)

]3 ∩X.

(2.2)

As mentioned above, a further assumption on Ω is presented.
(A1)Assume thatΩ is regular so that the unique solution (v, q) ∈ (X,M) of the steady

Stokes problem

−Δv +∇q = g, divv = 0 inΩ, v|∂Ω = 0, (2.3)

for a prescribed g ∈ Y exists and satisfies

‖v‖2 +
∥∥q∥∥1 ≤ c

∥∥g∥∥0, (2.4)

where c > 0 is a general constant depending on Ω. Here and after, ‖ · ‖i and | · |i denote the
usual norm and seminorm of the Sobolev space Hi(Ω) or Hi(Ω)3 for i = 0, 1, 2.

We denote by (·, ·) the inner product on L2(Ω) or Y . The space H1
0(Ω) and X are

equipped with their equivalent scalar product and norm [17]

((u, v)) = (∇u,∇v), ‖∇u‖0 = ((u, u))1/2. (2.5)

It is well known [18] that for each v ∈ X there hold the following inequalities:

‖v‖L4 ≤ 21/2‖v‖1/40 ‖∇v‖3/40 , ‖v‖0 ≤ γ‖v‖1, (2.6)

where γ is a positive constant depending only on Ω.
The continuous bilinear form a(·, ·) on X × X and d(·, ·) on X × M, respectively, are

defined by

a(u, v) = ((u, v)), ∀u, v ∈ X, d
(
v, q
)
= −(v,∇q

)
=
(
q,divv

)
, ∀v ∈ X, q ∈ M. (2.7)

Also, the trilinear term is defined by

b(u, v,w) = ((u · ∇)v,w) +
1
2
((divu)v,w)

=
1
2
((u · ∇)v,w) − 1

2
((u · ∇)w,v), ∀u, v,w ∈ X

(2.8)
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and satisfies

b(u, v,w) ≤ c0‖∇u‖0‖∇v‖0‖∇w‖0. (2.9)

Then the mixed variational form of (2.1a)–(2.1c) is to seek (u, p) ∈ (X,M) such that

a(u, v) − d
(
v, p
)
+ d
(
u, q
)
+ b(u, u, v) =

(
f, v
)
, ∀(v, q) ∈ X ×M. (2.10)

The existence and uniqueness results are classical and can be found in [18–20].
We introduce the finite-dimensional subspace (Xh,Mh) ⊂ (X,M), which is

characterized by τh with mesh scale h, a partitioning of Ω into tetrahedron or hexahedron,
assumed to be regular in the usual sense(see [20–22]).

Here, the space (Xh,Mh) satisfies the following approximation properties. For each
v ∈ D(A), p ∈ H1(Ω), there exist approximations Ihv ∈ Xh and Jhq ∈ Mh such that

‖u − Ihu‖0 + h
(‖∇(u − Ihu)‖0 +

∥∥p − Jhp
∥∥
0

) ≤ ch2(‖u‖2 +
∥∥p∥∥1

)
, (2.11)

together with the inverse inequality

‖∇vh‖0 ≤ c1h
−1‖vh‖0, ‖uh‖L∞ ≤ c2h

−1/2‖∇uh‖0. (2.12)

The stable and accurate finite element approximational solution of (2.10) requires that
(Xh,Mh) satisfies the discrete inf-sup condition

sup
vh∈Xh

d
(
vh, qh

)

‖∇vh‖0
≥ β
∥∥qh
∥∥
0, (2.13)

where β is positive constant independent of h.
The main purpose of this paper is to study a stabilized FVM for the stationary 3D

Navier-Stokes equations. We follow [23, 24] to obtain the dual partition K̃h. We first choose
an arbitrary point Q in the interior of each tetrahedron K̃ and then connect Q with the
barycentersQijk of its 2D facesΔPiPjPk by straight lines (see Figure 1). On each faceΔPiPjPk,
we connect by straight linesQijk with the middle points of the segments PiPj , PjPk, and PkPi,
respectively. Then the contribution of K̃ to the control volume K̃ of a vertex P of K̃ is the
volume surrounding P by these straight lines, for example, the contribution from one simplex
to the control volume K̃ with the interfaces γ12 and γ13.

Then, the dual finite element space can be constructed for the FVM as follows:

X̃h =
{
ṽ ∈
[
L2(Ω)

]3
: ṽ|K̃ ∈ P0

(
K̃
)
∀K̃ ∈ K̃h; ṽ|∂K̃ = 0

}
. (2.14)
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Figure 1: Control volumes in three-dimensional case.

Obviously, the dimensions of Xh and X̃h are the same. Furthermore, there exists an invertible
linear mapping Γh : Xh → X̃h such that for

vh(x) =
N∑
j=1

vh

(
Pj

)
φj(x), x ∈ Ω, vh ∈ Xh, (2.15)

with

Γhvh(x) =
N∑
j=1

vh

(
Pj

)
χj(x), (2.16)

where {φj} indicates the basis for the finite element space Xh, and {χj} denotes the basis
for the finite volume space X̃h that are the characteristic functions associated with the dual
partition K̃h:

χj(x) =

⎧
⎨
⎩
1 ifx ∈ K̃j ∈ K̃h,

0 otherwise.
(2.17)

The above idea of connecting the trial and test spaces in the Petrov-Galerkin method
through the mapping Γh was first introduced in [25, 26] in the context of elliptic problems.
Furthermore, the mapping Γh satisfies the following properties [26].
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Lemma 2.1. Let K ∈ Kh. If vh ∈ Xh and 1 ≤ r ≤ ∞, then

∫

K

(vh − Γhvh)dx = 0, (2.18)

‖Γhvh‖0 ≤ c3‖vh‖0, ‖vh − Γhvh‖Lr(K) ≤ c4hK‖∇vh‖Lr(K),
(2.19)

where hK is the diameter of the element K.

Multiplying (2.1a) by Γhvh ∈ X̃h and integrating over the dual elements K̃ ∈ K̃h, (2.1b)
by qh ∈ Mh and over the primal elements K ∈ Kh, and applying Green’s formula, we define
the following bilinear forms for the FVM:

A(uh,Γhvh) = −
N∑
j=1

vh

(
Pj

) ·
∫

∂K̃j

∂uh

∂n
ds, uh, vh ∈ Xh,

D
(
Γhvh, ph

)
=

N∑
j=1

vh

(
Pj

) ·
∫

∂K̃j

phn ds, ph ∈ Mh,

b(uh, vh,Γhwh) = ((uh · ∇)vh,Γhwh) +
1
2
(divuhvh,Γhwh),

(
f,Γhvh

)
=

N∑
j=1

vh

(
Pj

) ·
∫

K̃j

f dx, vh ∈ Xh,

(2.20)

where n is the unit normal outward to ∂K̃j and these terms are well posed.
As noted above, this paper forces on a class of unstable velocity-pressure pairs

consisting of the lowest equal-order finite elements

Xh =
{
v ∈ X : v|K ∈ [R1(K)]3, ∀K ∈ τh

}
,

Mh =
{
q ∈ M : q|K ∈ Ri(K), i = 0, 1, ∀K ∈ τh

}
,

(2.21)

where Ri(K), i = 0, 1 represent piecewise constant range and continuous range on set K, Ri,
i = 0,1 are spaces of polynomials, the maximum degree of which is bounded uniformly with
respect to K ∈ τh and h. The corresponding stabilized FEM is formulated as follows [3]:

a(uh, vh) − d
(
vh, ph

)
+ d
(
uh, qh

)
+G
(
ph, qh

)
+ b(uh, uh, vh) =

(
f, vh

)
, ∀(vh, qh

) ∈ (Xh,Mh).
(2.22)

Also, the corresponding stabilized FVM is defined for the solution (uh, ph) ∈ (Xh,Mh) as
follows:

Ch

((
uh, ph

)
;
(
vh, qh

))
+ b(uh, uh,Γhvh) =

(
f,Γhvh

) ∀(vh, qh
) ∈ (Xh,Mh), (2.23)
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where

Ch

((
uh, ph

)
;
(
vh, qh

))
= A(uh,Γhvh) +D

(
Γhvh, ph

)
+ d
(
uh, qh

)
+G
(
ph, qh

)
. (2.24)

Obviously, the bilinear form G(·, ·) can be defined by the following symmetry form: [1]

G
(
p, q
)
=
(
p −Πhp, q −Πhq

)
. (2.25)

Note that

Πh =

⎧
⎨
⎩
L2(Ω) −→ R0 if i = 1,

L2(Ω) −→ R1 if i = 0.
(2.26)

Here, the operator Πh satisfies the following properties: [1, 4]

(
p, qh

)
=
(
Πhp, qh

) ∀p ∈ M, qh ∈ Ri, (2.27)
∥∥Πhp

∥∥
0 ≤ c5

∥∥p∥∥0 ∀p ∈ M, (2.28)
∥∥p −Πhp

∥∥
Lp ≤ c6h

∥∥p∥∥H1,p ∀p ∈ H1(Ω) ∩M. (2.29)

In particular, the L2-projection operator Πh can be extended to the vector case.
This section concentrates on the study of a relationship between the FEM and FVM for

the Stokes equations.

Lemma 2.2. It holds that [11–13]

A(uh,Γhvh) = a(uh, vh) ∀uh, vh ∈ Xh, (2.30)

with the following properties:

A(uh,Γhvh) = A(vh,Γhuh),

|A(uh,Γhvh)| ≤ c7‖∇uh‖0‖∇vh‖0,

|A(vh,Γhvh)| ≥ ν‖∇vh‖20.

(2.31)

Moreover, the bilinear form D(·, ·) satisfies [14]

D
(
Γhvh, qh

)
= −d(vh, qh

) ∀(vh, qh
) ∈ (Xh,Mh). (2.32)

Based on detailed results on existence, uniqueness, and regularity of the solution for
the FVM (2.23), the following result establishes its continuity and weak coercivity.
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Theorem 2.3. It holds that [14]

∣∣Ch

((
uh, ph

)
,
(
vh, qh

))∣∣ ≤ c
(‖uh‖1 +

∥∥ph
∥∥
0

)(‖vh‖1 +
∥∥qh
∥∥
0

)

∀(uh, ph
)
,
(
vh, qh

) ∈ (Xh,Mh).
(2.33)

Moreover,

sup
(vh,qh)∈(Xh,Mh)

∣∣Ch

((
uh, ph

)
,
(
vh, qh

))∣∣
‖vh‖1 +

∥∥qh
∥∥
0

≥ β
(‖uh‖1 +

∥∥ph
∥∥
0

) ∀(uh, ph
) ∈ (Xh,Mh),

(2.34)

where β is independent of h.

3. Stability

In this section, we analyze the results of FVM for the three-dimensional stationary Navier-
Stokes equations. Firstly, we are now in a position to show the well-posedness of system
(2.23)

h0 =
4c2c3c4γh1/2

∥∥f∥∥0
ν2

. (3.1)

Theorem 3.1 (stability). For each h > 0 such that

0 < h0 ≤ 1
2
, (3.2)

system (2.23) admits a solution (uh, ph) ∈ (Xh,Mh). Moreover, if the viscosity ν > 0, the body force
f ∈ Y , and the mesh size h > 0 satisfy

0 < h0 ≤ 1
4
, 1 − 2c0c5γν−2

∥∥f∥∥0 > 0, (3.3)

then the solution (uh, ph) ∈ (Xh,Mh) is unique. Furthermore, it satisfies

‖∇uh‖0 ≤
2c3γ
ν

∥∥f∥∥0,
∥∥ph
∥∥
0 ≤ β−1c3γ

∥∥f∥∥0
(
4c3c8ν−2γ

∥∥f∥∥0 + 1
)
. (3.4)

Proof. For fixed f ∈ Y , we introduce the set

BM =
{(

vh, qh
) ∈ (Xh,Mh) : ‖∇uh‖0≤

2c3γ
ν

∥∥f∥∥0,
∥∥ph
∥∥
0≤β−1c3γ

∥∥f∥∥0
(
4c3c8ν−2γ

∥∥f∥∥0+1
)}

.

(3.5)
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Then we define the mapping Th : (Xh,Mh) → (Xh,Mh) by [19]

A(Phwh,Γhvh) +D
(
Γhvh, ph

)
+ d
(
Thwh, qh

)
+G
(
ph, qh

)
+ b(wh, Thwh,Γhvh) =

(
f,Γhvh

)

∀(vh, qh
) ∈ (Xh,Mh),

(3.6)

where Th(wh, ph) :≡ (T1wh, T2ph) = (uh, ph). We will prove that Th maps BM into BM.
First, taking (vh, qh) = (uh, ph) ∈ (Xh,Mh) in (3.6), and using (2.12) and (2.19), we see

that for for all (vh, qh) ∈ (Xh,Mh)

ν‖∇uh‖20 ≤ A(uh,Γhuh) +G
(
ph, ph

)

≤ ∥∥f∥∥0‖Γhuh‖0 + 2c2c4h1/2‖∇wh‖20‖∇uh‖20

≤ c3γ
∥∥f∥∥0‖∇uh‖0 +

4c2c4c3γh1/2
∥∥f∥∥0

ν
‖∇uh‖20

(3.7)

since

b(wh, uh,Γhuh) = b(wh, uh,Γhuh − uh)

≤
(
‖wh‖L∞‖∇uh‖0 +

√
3
2

‖uh‖L∞‖∇wh‖0
)
‖Γhuh − uh‖0

≤ 2c2c4h1/2‖∇wh‖0‖∇uh‖20.

(3.8)

Thus, we have

ν

(
1 − 4c2c3c4γh1/2

∥∥f∥∥0
ν2

)
≤ c3γ

∥∥f∥∥0‖∇uh‖0, (3.9)

which implies

‖∇uh‖0 ≤
2c3γ
ν

∥∥f∥∥0. (3.10)

Then, using the definition of b(·; ·, ·) and Ch(·, ·), (2.19), setting c8 = 2max{2c2c4h1/2, c0}, and
the same approach as above gives that

Ch

((
uh, ph

)
,
(
vh, qh

))

‖∇vh‖0 +
∥∥qh
∥∥
0

≥ β
∥∥ph
∥∥
0,

|b(wh;uh,Γhvh)| = |b(wh;uh,Γhvh − vh) + b(wh;uh, vh)|
≤ c8‖∇wh‖0‖∇uh‖0‖∇vh‖0,

∣∣(f,Γhvh

)∣∣ ≤ ∥∥f∥∥0‖Γhvh‖0
≤ c3γ

∥∥f∥∥0‖∇vh‖0,

(3.11)
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which, together with (3.10), gives

∥∥ph
∥∥
0 ≤ β−1c3γ

∥∥f∥∥0
(
4c3c8ν−2γ

∥∥f∥∥0 + 1
)
. (3.12)

Since the mapping Th is well defined, it follows from Brouwer’s fixed-point theorem that
there exists a solution to system (2.23).

To prove uniqueness, assume that (u1, p1) and (u2, p2) are two solutions to (2.23). Then
we see that

Ch

((
u1 − u2, p1 − p2

)
,
(
vh, qh

))
+ b(u1 − u2;u1,Γhvh) + b(u2;u1 − u2,Γhvh) = 0. (3.13)

Letting (vh, qh) = (u1 − u2, p1 − p2) = (e, η), we obtain

Ch

((
e, η
)
,
(
e, η
)) ≥ ν‖∇e‖20,

|b(e;u1,Γhe) + b(u2; e,Γhe)| = |b(e;u1,Γhe − e) + b(e;u1, e) + b(u2; e,Γhe − e)|

≤ 2c2c4h1/2(‖∇u1‖0 + ‖∇u2‖0)‖∇e‖20 + c0‖∇u1‖0‖∇e‖20

≤ 2
(
νh0 + c0c5γν

−1∥∥f∥∥0
)
‖∇e‖20,

(3.14)

which together with (3.3) and (3.13), gives

0 ≤ ν
(
1 − 2c0c5γν−2

∥∥f∥∥0
)‖∇e‖20 ≤ 0, (3.15)

which shows that e = 0 by (3.15); that is, u1 = u2. Next, applying (3.3) to (3.13) and (2.34)
yields that p1 = p2. Therefore, it follows that (2.23) has a unique solution.

4. Optimal Error Estimates

Theorem 4.1 (optimal error and superconvergent results). Assume that h > 0 satisfies (3.2) and
f ∈ Y and ν > 0 satisfy (3.2). Let (u, p) ∈ (X,M) and (uh, ph) ∈ (Xh,Mh) be the solution of (2.10)
and (2.23), respectively. Then it holds

‖u − uh‖1 +
∥∥p − ph

∥∥
0 ≤ κh

(‖u‖2 +
∥∥p∥∥1 +

∥∥f∥∥0
)
. (4.1)

Also, if f ∈ [H1(Ω)]3, there holds for the solution (uh, ph) of (2.22) that

‖uh − uh‖1 +
∥∥ph − ph

∥∥
0 ≤ κh3/2(‖u‖2 +

∥∥p∥∥1 +
∥∥f∥∥1

)
. (4.2)

Proof. Subtracting (2.10) from (2.23) gives that

Ch

((
e, η
)
;
(
vh, qh

))
+ b(e, uh,Γhvh) + b(uh, e, vh) + b(uh, uh, vh − Γhvh) = 0, (4.3)
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with (e, η) = (uh − uh, ph − ph). By (vh, qh) = (e, η), it follows that

ν‖∇e‖20 +G
(
η, η
)
+ b(e, uh, e) + b(uh, uh,Γhe − e) =

(
f, vh − Γhvh

)
. (4.4)

Using Theorem 3.1, (2.12), (2.23), and (2.25) gives

b(e, uh, e) ≤ c0‖∇u‖0‖∇e‖20
≤ 2c2c4h1/2‖∇uh‖0‖∇e‖20

≤ 4c2c4c5γh1/2
∥∥f∥∥0

ν2
‖∇e‖20

= νh0‖∇e‖20,

b(uh, uh,Γhe − e) ≤
∣∣∣∣
(
((uh −Πhuh) · ∇)uh +

1
2
divuh(uh −Πhuh), e − Γhe

)∣∣∣∣

≤ ‖∇uh‖∞‖uh −Πhuh‖0‖e − Γhe‖0
≤ ch3/2‖∇uh‖0‖∇e‖20.

(4.5)

Similarly, by Lemma 2.1 and (2.25), we have

∣∣(f, e − Γhe
)∣∣ = ∣∣(f −Πhf, e − Γhe

)∣∣

≤ Chi
∥∥f∥∥i‖e − Γhe‖0

≤ ch2(i+1)∥∥f∥∥2i +
ν0
4
‖e‖21, i = 0, 1.

(4.6)

Combining the above inequalities with (4.3) gives

‖e‖1 ≤ c
(
h3/2 + hi+1

)∥∥f∥∥i, i = 0, 1. (4.7)

In the same argument, it follows from (2.34) that

∥∥η∥∥0 ≤ c
(
h3/2 + hi+1

)∥∥f∥∥i, i = 0, 1. (4.8)

Noting that [3]

‖u − uh‖1 +
∥∥p − ph

∥∥
0 ≤ ch

(‖u‖2 +
∥∥p∥∥1 +

∥∥f∥∥0
)
, (4.9)

(4.6)–(4.8), and using a triangle inequality completes the proof of Theorem 4.1.
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As noted above, it is still difficult to achieve an optimal error estimate for the velocity
in the L2-norm for the three-dimensional stationary Navier-Stokes equations. Here, the
following dual problem is proposed and analyzed:

a(v,Φ) + d(v,Ψ) − d
(
Φ, q
)
+ b(u;v,Φ) + b(v;u,Φ) = (u − uh, v). (4.10)

Because of convexity of the domain Ω, this problem has a unique solution that satisfies the
regularity property [18]

‖Φ‖2 + ‖Ψ‖1 ≤ C‖u − uh‖0. (4.11)

Below set (Φh,Ψh) = (IhΦ, JhΨ) ∈ (Xh,Mh), which satisfies, by (3.2),

‖Φ −Φh‖0 + h(‖Φ −Φh‖1 + ‖Ψ −Ψh‖0) ≤ Ch2(‖Φ‖2 + ‖Ψ‖1). (4.12)

Theorem 4.2 (optimal L2-error for the velocity). Let (u, p) be the solution of (2.1a)–(2.1c) and
let (uh, ph)be the solution of (4.3). Then, under the assumptions of Theorem 4.1, it holds

‖u − uh‖0 ≤ Ch2(‖u‖2 +
∥∥p∥∥1 +

∥∥f∥∥1
)
. (4.13)

Proof. Multiplying (2.1a) and (2.1b) by ΓhΦh ∈ X̃h andΨh ∈ Mh and integrating over the dual
elements K̃ and the primary elements K, respectively, and adding the resulting equations to
(2.23)with (vh, qh) = (Φh,Ψh), we see that

A(e,ΓhΦh) +D
(
ΓhΦh, η

)
+ d(e,Ψh) +G

(
η,Ψh

)

+ b(e;u,ΓhΦh) + b(u; e,ΓhΦh) − b(e; e,ΓhΦh) = G
(
p,Ψh

)
,

(4.14)

where (e, η) = (u − uh, p − ph). Subtracting (4.14) from (4.10)with (v, q) = (e, η) to obtain

‖e‖20 = a(e,Φ −Φh) + d(e,Ψ −Ψh) − d
(
Φ −Φh, η

) −G
(
η,Ψh

)
+G
(
p,Ψh

)
+ a(e,Φh)

−A(e,ΓhΦh) − d
(
Φh, η

) −D
(
ΓhΦh, η

)
+ b(u; e,Φ − ΓhΦh) + b(e;u,Φ − ΓhΦh)

+ b(e; e,ΓhΦh)

= a(e,Φ −Φh) + d(e,Ψ −Ψh) − d
(
Φ −Φh, η

) −G
(
η,Ψh

)
+G
(
p,Ψh

)
+ b(e; e,ΓhΦh)

+ b(u; e,Φ − ΓhΦh) + b(e;u,Φ − ΓhΦh) +
(
f − (u · ∇)u,Φh − ΓhΦh

)
.

(4.15)



Mathematical Problems in Engineering 13

Obviously, we deduce from Theorem 3.1, (2.27)–(2.29), (4.11), the inverse inequality (2.12),
and the Cauchy inequality that
∣∣a(e,Φ −Φh) + d(e,Ψ −Ψh) − d

(
Φ −Φh, η

)∣∣ ≤ c
(‖e‖1 +

∥∥η∥∥0
)
(‖Φ −Φh‖1 + ‖Ψ −Ψh‖0)

≤ ch2(‖u‖2 +
∥∥p∥∥1

)
(‖Φ‖2 + ‖Ψ‖1)

≤ ch2(‖u‖2 +
∥∥p∥∥1

)‖e‖0,
∣∣G(η,Ψh

) −G
(
p,Ψh

)∣∣ ≤ ch
(∥∥p −Πp

∥∥
0 +
∥∥η∥∥0

)‖Ψ‖1
≤ ch2(‖u‖2 +

∥∥p∥∥1
)‖e‖0,

∣∣(f − (u · ∇)u,Φh − ΓhΦh

)∣∣ = ∣∣([f −Πhf
]

−[(u · ∇)u −Πh(u · ∇)u],Φh − ΓhΦh)
∣∣

≤ ch2(∥∥f∥∥1 + ‖∇[(u · ∇)u]‖0
)‖Φh‖1

≤ ch2
(∥∥f∥∥1 + ‖u‖1/20 ‖u‖3/22 + ‖u‖21,4

)
‖e‖0.

|b(u; e,Φ − ΓhΦh) + b(e;u,Φ − ΓhΦh)| ≤ c‖u‖2‖e‖1(‖Φh − ΓhΦh‖0 + ‖Φ −Φh‖0)

≤ ch2(‖u‖2 +
∥∥p∥∥1

)‖Φ‖1
≤ ch2(‖u‖2 +

∥∥p∥∥1
)‖e‖0,

|b(e; e,ΓhΦh)| = |b(e; e,ΓhΦh −Φh) + b(e; e,Φh)|

≤ c
(
‖e‖0,4‖e‖1‖ΓhΦh −Φh‖0,4 + ‖e‖21‖Φh‖1

)

≤ ch‖e‖1/40 ‖e‖7/41 ‖∇Φh‖0,4 + c‖e‖21‖Φh‖1
≤ ch2(‖u‖2 +

∥∥p∥∥1
)‖e‖0.

(4.16)

Combining all these inequalities with (4.15) yields (4.13).

In this paper, we have obtained optimal and convergent results of the stabilized mixed
finite volume method for the stationary Navier-Stokes equations approximated by the low
order finite elements. Furthermore, we could apply the same technique presented to develop
and obtain the corresponding results of other (stabilized) mixed finite volume methods in
two or three dimensions.
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