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We study a multiple crossdocks problem with supplier and customer time windows, where any
violation of time windows will incur a penalty cost and the flows through the crossdock are
constrained by fixed transportation schedules and crossdock capacities. We prove this problem
to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based
on the problem structure, we propose a hybrid genetic algorithm (HGA) integrating greedy
technique and variable neighborhood search method to solve the problem. Extensive experiments
under different scenarios were conducted, and results show that HGA outperforms CPLEX solver,
providing solutions in realistic timescales.

1. Introduction

As companies seek more profitable supply chains, there has been a desire to optimize
distribution networks to reduce logistics costs. This includes finding the best locations for
facilities, minimizing inventories, and minimizing transportation costs. A distinct recent
industry example is the successful implementation of crossdocking strategy at Wal-Mart,
whose crossdocks require coordinating 2000 dedicated trucks over a large network of
warehouses, crossdocks, and retail points [1]. While there is a rich literature on conventional
facility location problems, crossdocking strategies—which minimize inventory by processing
goods quickly for reshipment—have recently attracted the attention of researchers (see,
e.g., [2–4]). In conventional transshipment-inventory models, a common assumption is that
demand (usually stochastic) that cannot be met from one supply point can be fulfilled
through some other point. The objective is then to evaluate a control policy for replenishment.
Work on this subject has been extensive and can be found in, for example, Krishnan and
Rao [5], Karmarkar and Patel [6], Karmarkar [7], Tagaras [8], Robinson [9], Rudi et al. [10],
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Grahovac and Chakravarty [11], Herer and Tzur [12], Herer et al. [13], Axsäter [14], and
Axsäter [15]. For the general n location transshipment model, heuristics were proposed by
Robinson [9]who developed a large-scale LP by discretizing demand. Although these studies
considered inventory and transshipment costs, they did not address time constraints that
occur during the transshipment process, for example, constraints imposed by transportation
schedules. There has been relatively limited research on distribution and system design,
which includes crossdocks. Some recent attempts can be found in Donaldson et al. [16],
Ratcliff et al. [17], Gumus and Bookbinder [4], Li et al. [3], Miao et al. [18], and Boysen et
al. [19]. In particular, Gumus and Bookbinder [4] modeled location-distribution networks
that include crossdock facilities to determine the impact on the supply chain. Li et al. [3]
developed a heuristic algorithm to find JIT schedules within a single crossdock. Miao et al.
[18] and Boysen et al. [19] studied how to schedule the inbound and outbound trucks to
achieve high operational efficiency within a single crossdock.

Our work differs from the above research in that we study a kind of multiple
crossdocks problem where transportation is available at fixed schedules, and where both
shipping and delivery at supply and demand locations can be executed within specified
time windows with normal transportation cost, and any shipment that cannot be met will be
fulfilled through external channels, which causes penalty costs. Supplier timewindows allow,
for example, flexibility in planning for the best shipping times to fit production and operating
schedules. Time windows at demand points satisfy customer requirements, for example,
when service deadlines must be met. Moreover, in the real-world applications, sometimes
the time windows are allowed to be violated. There are two primary reasons for this: one is
exogenous, for example, it might not be practical to satisfy all the time windows constraints
when the demands are too high during a certain period; the other is endogenous, for example,
some shipments are emergent and have to be executed outside the normal time windows.
Clearly, such abnormal arrangements usually incur additional costs we call penalty in this
paper. Furthermore, we consider inventory cost at the crossdocks, which includes storing
cost and handling cost and are one of the cost sources in any transshipment strategy.

To the best of our knowledge, there are some papers closet to our work, including Lim
et al. [20], Chen et al. [21], andMa et al. [22]. Lim et al. [20] studied the complexity of different
types of multiple crossdocks problems where transportation schedules such as flexible
schedules and fixed schedules, and time constraints at manufacturers and customers are
included. Ourmodel extends one of the cases studied by them,which is called single shipping
and single delivery by fixed schedules. However, their problem requires all the demands
should be satisfied by the suppliers, which is very difficult to achieve even to find a feasible
solution. We relax this constraint and allow demands of some customers to be unfulfilled,
but penalty cost will be incurred. In addition, most importantly, in the earlier works, they did
not set up any mathematical formulation and provide any implementable algorithms that
were able to solve this practical problem. We model this problem as an integer programming
problem, prove it to beNP-hard in the strong sense, and then focus on developing efficient
heuristic algorithms. Chen et al. [21] extended another case studied by Lim et al. [20], which
is called single shipping and single delivery by flexible schedules, simplified the problem by
discretizing the time horizon, and designed metaheuristic algorithms to solve it. Despite the
constraint of single shipping and single delivery, Ma et al. [22] took into consideration setup
cost of each vehicle in their multiple crossdocks problem, which is also strongNP-hard and
solved by a two-stage heuristic algorithm developed by them.

While one of the main objectives in this paper is to develop an efficient heuristic
algorithm to solve the above multiple crossdocks problem, we find that numerous researches
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have been dedicated to design meta-heuristic algorithms to solve transportation problems.
For example, Hai and lim [23] used a Tabu-embedded simulated annealing algorithm that
restarted from the current best solution after several nonimproving iterations to solve the
pickup and delivery problem with time windows. Chen et al. [21] developed three kinds
of meta-heuristics, namely, simulated annealing, tabu search, and integrated simulated
annealing and tabu search with local search technique to solve multiple crossdocks problems
with inventory and time windows. In a dynamic vehicle dispatching problem with pickups
and deliveries, Michel et al. [24] proposed a tabu search with neighborhood search based
on ejection chains to explore the proposed problem. All these meta-heuristic algorithms
are focused on two aspects, one is how to generate initial feasible solutions efficiently
according to the specific structure of the problems, and the other is how to improve the
current best solution. Based on this, neighborhood search and integrated meta-heuristic
algorithm are then developed. In this paper, we adopt the basic idea of the genetic algorithm
and meanwhile take advantage of the problem structure to develop a hybrid genetic
algorithm (HGA) integrating greedy technique and variable neighborhood search to solve
the proposed problem. The unique feature of HGA is that it makes assignment of crossdocks
and routes to suppliers and customers in two stages and is further refined by the greedy
technique and variable neighborhood search. Since the problemwe consider is a fairly general
transshipment problem with complicated constraints, we believe that our method could be
useful to solve other transshipment problems of this sort. We conduct various computational
experiments with different problem scales, and the results show that the proposed HGA
can yield better solutions for various problem instances of different scales, especially for the
large-sized problems compared with the CPLEX solver, which gives solutions before getting
terminated within the stipulated time limit of execution.

The rest of this paper is organized as follows. In Section 2, we formulate the problem as
an integer programming problem and provide complexity analysis. In Section 3, we explore
the problem structure and develop HGA. Section 4 demonstrates HGA with computational
results for various problem instances of different scales. The paper is concluded in Section 5.

2. The Multiple Crossdocks Problem

In this section, we describe the multiple crossdocks problem and introduce basic notation in
Section 2.1. We then formally formulate the problem as an integer programming problem and
provide complexity analysis in Section 2.2.

2.1. Problem Description

The problem studied here extends the well-known transshipment problem to include
constraints imposed by time and inventory considerations, which arise in applications. The
following assumptions are made. First, a supplier (customer) is allowed to ship goods to
crossdocks (receive goods from crossdocks) within a specified time window with a normal
cost level; however, if the shipment cannot be met, a much higher cost called penalty here
is incurred. When the shipments take place outside the time windows, then it means that
the current transportation network is unable or too busy to fulfill this shipment requirement
and external channels have to be used to ship the cargos at a much higher cost, which may
include the higher transportation costs and the order earliness or lateness costs through the
external channels. Second, shipped goods can be delayed at crossdocks, which is helpful to
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satisfy time windows constraints and also helpful to potential consolidation. Third, shipping
schedules offered by transportation providers are fixed, that is, departure and arrival times
of any schedule are fixed. For example, the schedules in the railway network or in airline
operations are usually fixed. We assume that each schedule has a set of associated shipping
costs and route capacities. Fourth, the setup cost of each shipment sometimes is very high
in real world, so in order to reduce setup cost as much as possible, it requires each supplier
make only one batch shipment to some crossdock within its specified time window, and each
customer can receive goods only one time from some crossdock within its time window,
which is called single shipping and single delivery case [20], and for this case, consolidation
is quite important. Finally, the objective of our problem is to satisfy the demands of the
customers with minimum total costs including shipping cost, inventory cost and penalty
cost without violating the capacity constraints of crossdocks and routes through given fixed
schedules.

The underlying problem can be represented by a network. Let Σ := {1, . . . , n} be the set
of supply nodes (suppliers) where, for each i ∈ Σ, si units of goods are available, which can
be shipped (released) in the time window [bri , e

r
i ], Δ := {1, . . . , m} the set of demand nodes

(customers)where each k ∈ Δ requires dk units of goods, whichmust be delivered (accepted)
within the time window [bak, e

a
k], and X := {1, . . . , l} the set of crossdocks, where each j ∈ X

has inventory capacity cj and inventory cost hj per unit per time. Take S1 to denote all fixed
scheduled routes between points in Σ and points in X, that is, routes serviced by transport
providers, each with a scheduled departure (begin) and arrival (end) time, capacity and unit
transportation cost. Similarly, let S2 denote the set of fixed schedules between the crossdocks
X and customers Δ.

2.2. Mathematical Formulation

We now introduce more notation that is used in our formulation as follows

Si,j : set of fixed transportation schedules between supplier i and crossdock j, and
|Si,j | = γi,j , where | · | represents the cardinality of a set.

S′
j,k
: set of fixed transportation schedules between crossdock j and customer k, and

|S′
j,k
| = γ ′

j,k
.

(bri,j,q, e
r
i,j,q): qth fixed transportation schedule in Si,j , where bri,j,q and eri,j,q are the

beginning time point and ending time point of this fixed schedule, respectively.

(baj,k,q, e
a
j,k,q): qth fixed transportation schedule in S′j,k, where baj,k,q and eaj,k,q are the

beginning time point and ending time point of this fixed schedule, respectively.

ci,j,q: unit shipping cost from supplier i to crossdock j through qth fixed
transportation schedule in Si,j .

c′
j,k,q

: unit shipping cost from crossdock j to customer k through qth fixed
transportation schedule in S′

j,k
.

Pi: unit penalty cost for supplier i if its cargo cannot be shipped out.

P ′
k
: unit penalty cost for customer k if its demand cannot be met.

Tj : set of ending time points of all fixed transportation schedules in ∪ni=1Si,j , that is,
Tj = {eri,j,q : 1 ≤ i ≤ n, 1 ≤ q ≤ γi,j}.
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T ′j : set of beginning time points of all fixed transportation schedules in ∪mk=1S′j,k, that
is, T ′j = {baj,k,q : 1 ≤ k ≤ m, 1 ≤ q ≤ γ ′j,k}.

˜Tj : set of time points when the inventory level of crossdock j is likely to be changed,
that is, ˜Tj = Tj ∪ T ′j . Let |˜Tj | = τj and all the elements in ˜Tj are sorted in an increasing
order, and let tj,g (g = 1, 2, . . . , τj) correspond to these τj time points such that
tj,1 ≤ tj,2 ≤ · · · ≤ tj,τj . Using this notation, we can easily formulate the set of flow
conservation constraints later.

CAPi,j,q: shipping capacity of qth fixed transportation schedule in Si,j .

CAP′j,k,q: shipping capacity of qth fixed transportation schedule in S′j,k.

θi,j,q: a binary parameter, which is 0 if the beginning time point of qth fixed
transportation schedule in Si,j is within the time window of supplier i, that is,
bri,j,q ∈ [bri , e

r
i ], and 1 otherwise.

θ′
j,k,q

: a binary parameter, which is 0 if the ending time point of qth fixed
transportation schedule in S′

j,k
is within the time window of customer k, that is,

ea
j,k,q
∈ [ba

k
, ea

k
], and 1 otherwise.

The following are decision variables.

xi,j,q: binary, which is 1 if to deliver cargos from supplier i is bound for crossdock j
through qth fixed transportation schedule in Si,j , and 0 otherwise.

x′j,k,q: binary, which is 1 if to receive cargos from crossdock j to customer k is through
qth fixed transportation schedule in S′j,k, and 0 otherwise.

yj,tj,g : integer, which is inventory level in crossdock j at time tj,g , where tj,g ∈ ˜Tj .

We are now ready to formulate the transshipment problem, which hereafter is called
problem (P):

minCOSTTransportation + COSTPenalty + COSTInventory, (P)

where

COSTTransportation =
n
∑

i=1

l
∑

j=1

γi,j
∑

q=1

ci,j,qsixi,j,q +
m
∑

k=1

l
∑

j=1

γ ′
j,k
∑

q=1

c′j,k,qdkx
′
j,k,q,

COSTPenalty =
n
∑

i=1

Pisi

⎛

⎝1 −
l

∑

j=1

γi,j
∑

q=1

xi,j,q

⎞

⎠ +
m
∑

k=1

P ′kdk

⎛

⎝1 −
l

∑

j=1

γ ′
j,k
∑

q=1

x′j,k,q

⎞

⎠,

COSTInventory =
l

∑

j=1

τj
∑

g=1

hj
(

tj,g − tj,g−1
)

yj,tj,g−1 ,

(2.1)
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s.t.

xi,j,q ≤ 1 − θi,j,q
(

1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ q ≤ γi,j
)

, (2.2)

x′
j,k,q
≤ 1 − θ′

j,k,q

(

1 ≤ j ≤ l, 1 ≤ k ≤ m, 1 ≤ q ≤ γ ′
j,k

)

, (2.3)

l
∑

j=1

γi,j
∑

q=1

xi,j,q ≤ 1 (1 ≤ i ≤ n), (2.4)

l
∑

j=1

γ ′
j,k
∑

q=1

x′j,k,q ≤ 1 (1 ≤ k ≤ m) (2.5)

sixi,j,q ≤ CAPi,j,q
(

1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ q ≤ γi,j
)

,

dkx
′
j,k,q ≤ CAP′j,k,q

(

1 ≤ k ≤ m, 1 ≤ j ≤ l, 1 ≤ q ≤ γ ′j,k
)

,
(2.6)

yj,tj,g ≤ cj
(

1 ≤ j ≤ l, 1 ≤ g ≤ τj
)

,

yj,tj,0 = 0
(

1 ≤ j ≤ l, tj,0 = 0
)

,
(2.7)

yj,tj,g = yj,tj,g−1 +
n
∑

i=1

∑

{q:eri,j,q=tj,g}
sixi,j,q −

m
∑

k=1

∑

{

q:ba
j,k,q

=tj,g
}

dkx
′
j,k,q

(

1 ≤ j ≤ l, 1 ≤ g ≤ τj
)

, (2.8)

xi,j,q ∈ {0, 1}
(

1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ q ≤ γi,j
)

,

x′j,k,q ∈ {0, 1}
(

1 ≤ j ≤ l, 1 ≤ k ≤ m, 1 ≤ q ≤ γ ′j,k
)

,

yj,tj,g ∈ N
(

1 ≤ j ≤ l, 1 ≤ g ≤ τj
)

.

(2.9)

In the above formulation, the objective is to minimize total cost, including transporta-
tion cost, penalty cost, and inventory cost. Note that we impose the penalty cost on both
supplier and customer sides here because unfulfilled demands have different impact on each
side in general. Constraint (2.2) ensures that each available fixed transportation schedule is
within the time window of suppliers. Similarly, the available fixed transportation schedule of
customers is given by (2.3). Constraint (2.4) ensures that each delivery is fulfilled within each
supplier specified time window at most once and (2.5) forces each customer to receive cargos
within its time window for no more than one time, which is required by single shipping
and single delivery constraint. The capacity constraints of fixed schedules are given by (2.6).
The capacity constraint of every crossdock is restricted by (2.7) and we also set a zero initial
inventory for each crossdock. The changes of inventory level of each crossdock are recorded
in (2.8), which ensures cargo flow conservation.

We have the following proposition whose proof is given in the appendix.

Proposition 2.1. The multiple crossdocks problem (P) isNP-hard in the strong sense, even if supply
and demand time windows and crossdock and route capacities are relaxed.

From the above proposition, we know that to find minimum cost of this problem is
NP-hard in the strong sense. Hence, it is unlikely to find a polynomial or pseudopolynomial
time algorithm to solve the problem unlessP=NP. As a result, we focus on efficient heuristics
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to solve problem (P). In the next section, we describe a heuristic that exploits the problem
structure and solves the problem efficiently.

3. Hybrid Genetic Algorithm

Genetic algorithm (GA) has become a well-known and powerful metaheuristic approach
for hard combinatorial optimization problems. Genetic algorithm is based on the ideas of
natural selection and has been applied to numerous combinatorial optimization problems
successfully. However, basic genetic algorithms have limitations to attain the optimal
solution. We propose a hybrid genetic algorithm (HGA) integrating greedy technique and
variable neighborhood search to solve problem (P) as described in the previous section.
The proposed HGA simulates the natural selection process; in addition, it incorporates the
special structure of problem (P). In particular, in problem (P), we expect to assign crossdocks
and routes to both the suppliers and customers in the most cost-effective manner. Clearly, the
assignments of crossdocks and routes for suppliers will affect the assignments for customers
due to capacity and time windows constraints and vice versa. As a result, simultaneously
assigning crossdocks and routes for suppliers and customers is not effective. Observing this
fact, we propose a two-stage assigning approach as follows. In the first stage, we assign
crossdocks and routes for suppliers; in the second stage, by taking advantage of the former
assignments for suppliers, we then assign crossdocks and routes for customers. This principle
is used throughout the process of HGA including the initial solution generation and the
solution updates. We describe the overall procedure of HGA briefly as follows, the formal
procedure will be presented in Section 3.2 after all the components of HGA are discussed in
Section 3.1.

Step 1. Generate initial solutions (chromosomes) by greedy technique. As described above,
there are two stages to generate initial solutions. In the first stage, we apply cost saving priority
to the assignments of crossdocks and routes to suppliers. In the second stage, for customers,
the procedure is also based on cost saving priority, and then adjust the solution by time match
criterion.

Step 2. Evaluate the fitness of each individual with respect to the objective function.

Step 3. Select a group of best individuals as the population pool, which guarantees that the
best genes can be preserved in offsprings.

Step 4. Apply two-opt strategy as the crossover operator to generate offsprings.

Step 5. Apply mutation to diversify the pool by changing some genes in specified
chromosomes.

Step 6. Apply variable neighborhood search to each new generated offspring, and go to Step 2
until one of the termination conditions is satisfied.

Note that both crossover and mutation operators are only applied when assigning for
suppliers and any change in assignments for suppliers will trigger changes in assignments
for customers. Furthermore, in HGA, variable neighborhood search is applied to improve
the solution. This evaluation-selection-reproduction-local search cycle is repeated until one
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ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

ν1

ν2

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

Figure 1: Two-vector chromosome for n = m = 4.

of the termination conditions is satisfied, namely, either the maximum number of iterations
is reached or the best solution cannot be improved within a certain number of iterations.

3.1. Components of HGA

3.1.1. Solution Representation

The chromosome is an important component in GA, which has a great influence on the
algorithm output. In the basic GA, a chromosome is usually encoded as one sequence to
represent a solution. However, since our problem involves assigning both the crossdocks
and routes, we construct the chromosome by two vectors. The first vector represents the
assignments of crossdocks to suppliers and customers, and the second vector represents the
assignments of routes to suppliers and customers. Formally, the two vectors are as follows.

(1) crossdocks assignment vector (hereafter called ν1),

(2) routes assignment vector (hereafter called ν2).

For 1, crossdocks assignment vector is represented as ν1 = (χ1, χ2, . . . , χn+m), where n and m
are the number of suppliers and that of customers, respectively; each χi ∈ {1, 2, . . . , l} (recall
that there are l crossdocks) represents an assignment of crossdock χi to suppler i (i = 1, . . . , n)
or customer i − n (i = n + 1, . . . , n + m). That is, supplier i ships cargos to crossdock χi (i =
1, . . . , n), or customer i−n receives cargos from crossdock χi (i = n+1, . . . , n+m). For 2, routes
representation vector ν2 is designed in the way similar to ν1, ν2 = (ψ1, ψ2, . . . , ψn+m), where ψi
means supplier i (i = 1, 2, . . . , n) or customer i − n (i = n + 1, n + 2, . . . , n +m) chooses route
ψi to release or receive cargos. Note that ψi represents an available fixed schedule between
any two points. In particular, when 1 ≤ i ≤ n, ψi means supplier i chooses ψth

i route among
all the available routes {1, 2, . . . , γi,χi} to ship cargos to crossdock χi (which has been assigned
in vector ν1 already); similarly, when n + 1 ≤ i ≤ n + m, ψi means customer i − n chooses
ψth
i route among all the available routes {1, 2, . . . , γ ′χi,i} to ship cargos to crossdock χi (which

again has been assigned in vector ν1). The whole chromosome for a problem instance with
four suppliers and four customers is illustrated in Figure 1.

The initial sequences are generated randomly. However, given such a chromosome
sequence, we cannot guarantee the feasibility of the solution because the time windows of
suppliers and customers may conflict with each other when proper transportation schedules
do not exit or the capacity constraints of crossdocks or routes are violated in the cargo
transferring process. In order to overcome these difficulties and find a feasible solution
efficiently, a greedy technique is applied to identify a relatively better solution. More details
about generation of initial solution will be given next.
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3.1.2. Generation of Initial Solution

Common integer programming methods usually fail for large-scale problems. In view of the
complexity of the crossdock problems, in order to obtain amuch better solution, our approach
is to attain initial solutions using greedy method. At first, we can combine the transportation
cost and the penalty cost together in the objective function by some algebra as follows

n
∑

i=1

l
∑

j=1

γi,j
∑

q=1

(

ci,j,q − Pi
)

sixi,j,q +
m
∑

k=1

l
∑

j=1

γ ′
j,k
∑

q=1

(

c′j,k,q − P ′k
)

dkx
′
j,k,q + C, (3.1)

where constant C =
∑n

i=1 Pisi +
∑m

k=1 P
′
k
dk and each coefficient is negative because we assume

that the unit penalty cost is higher than unit transportation cost. Let Ci,j,q represent the cost
supplier i can save if he ships cargos to crossdock j by (bri,j,q, e

r
i,j,q) and C′j,k,q represent the

cost customer k can save if he receives cargos from crossdock j by (ba
j,k,q

, ea
j,k,q

), where Ci,j,q =
Pi − ci,j,q and C′j,k,q = P ′k − c′j,k,q, respectively.

From (3.1), we can see that, for a supplier, the most important point is saving costCi,j,q,
which is the primary factor that determines which crossdock to ship to and which route to
be chosen between these two locations. This decision subsequently affects the holding cost in
the corresponding crossdock it ships to. To reflect this fact, we set probabilities for supplier-
crossdock assignments so that a higher cost saving of an assignment would result in a higher
probability for that assignment to be chosen. Formally, the probability that supplier i ships
cargos to crossdock j by schedule (bri,j,q, e

r
i,j,q) is calculated as follows:

Probi,j,q=
Ci,j,q

maxj ′,q′
{

Ci,j ′,q′
}

(

1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ q ≤ γi,j
)

. (3.2)

For customers, we knowwhich crossdocks have cargo after the first stage, and then we
assign one of these crossdocks to each customer and choose a route to deliver. The assignment
strategy of crossdocks and schedules for customer is similar to that of the suppliers, and we
also can calculate the probability similar to (3.2). Only one difference is that the customers
just can be assigned to those crossdocks that have been already assigned to suppliers, instead
of all the crossdocks. After that, we need adjust the solution according to time match criterion
to guarantee feasibility. During adjustment, we needs to eliminate those infeasible issues such
as time conflicts, overflow of capacity, and nonconservation of cargo flows. By adjustment,
infeasible solutions will scarcely be generated. However, for some infeasible solutions that
are too difficult to repair, we just need to unfulfill those customers who incur infeasibility to
get a feasible solution.

3.1.3. Crossover

In order to preserve efficient genes in a chromosome, the two-point crossover operator is
applied to generate offspring, which is widely adopted in GA (see, e.g., [3, 18]). The crossover
operator is illustrated by Figure 2. First, two individuals, we call parent 1 and parent 2, are
selected randomly from the population pool, and then two points are randomly selected
between genes representing assignment for suppliers, and because crossover operators
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Figure 2: Crossover operator.

applied among customerswill generate lots of infeasible solutions, assignments for customers
are determined by assignments for suppliers. The symbols outside the two crossover points
are directly inherited from parent 1 to offspring 1, and the other genes of offsprings 1
are transferred from the symbols of parent 2 in corresponding positions. After crossover,
crossdocks and schedules are reassigned for customers using the aforementioned greedy
technique. After changing the roles of parents, the same procedure is applied to generate
offspring 2.

3.1.4. Mutation

It is obvious that the initial population generated by two-stage greedy method has poor
ability to carry the genetic diversity because the cost saving priority and time match priority
in the greedy technique reduce the chance for crossdocks and schedules with relatively
low cost saving to be chosen. As a result, the greedy technique causes population pool
homogeneity. In order to overcome this limitation, we use the mutation operator with a
given individual mutation probability Pim to mutate every individual and apply the greedy
technique to mutation of some gene representing the assignment of crossdock to some
supplier with gene mutation probability Pgm calculated by (3.2) in the selected individual.
After that, we also need to adjust the new solution to be feasible by the strategy which
is similar to that of initial solutions. Different from prior crossover operator slightly, the
mutation operator may deteriorate the current solution in terms of fitness. However, its goal
is not only to preserve the best genes but also to attain inferior genes with some probability
to diversify the pool.

3.1.5. Variable Neighborhood Search

GA is a global search technique but is poor in local search. Therefore, we use variable
neighborhood search technique to improve local search ability. A basic component of any
local search is neighborhood search. A solution is said to be a neighbor of another solution
s if it can be obtained from s through a neighborhood move. We develop several such
moves suitable for this problem to find neighborhood solutions. These moves are key to
the successful implementation of these heuristics. Next are the key moves and strategies for
neighborhood search.
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Vary Crossdock for Supplier

In our algorithm, the crossdock assignment and route choosing problem has a special feature
that a sequence may not cover all the crossdocks, which is different from other order-based
problems. So single-point change strategy is applied here rather than two-opt strategy. First,
we randomly select a gene in supplier segment in one chromosome and change its assigned
crossdock to another that is different from the current one with probability calculated by
(3.2) and repeat this procedure until a better solution is obtained. It should be emphasized
that, in each search process, we use the greedy technique mentioned in Section 3.1.2 to assign
crossdocks and schedules to customers after the reassignment for each supplier. This is an
efficient strategy to guarantee the feasibility of the new solution.

Change Route for Supplier

Routes selection is themost difficult decision in our problem, especially for suppliers. There is
no goodmethod available that can efficiently select routes, which can guarantee the feasibility
besides the saving cost, not only in generating initial solution but also in generation of new
population. However, routes selection has a great influence on total cost. In addition, it
affects the inventory level of each possible time point in crossdocks, which determines the
customers crossdock assignment and route selection in our algorithm. In order to obtain a
better route, our strategy is to not only change the routes for suppliers, but also keep the
crossdock assignment unchanged. In this move, we change the assigned route of a randomly
selected supplier to a new one, and repeat this procedure until a better solution is obtained.
It must be of concern that, for any change in suppliers route, we must conduct reassignment
of crossdocks and schedules for customers to ensure the feasibility.

Swap Crossdocks for Customers

In the assignment process, we assign crossdocks and routes for customers one by one, which
would reduce the probability for latter customers to choose a particular crossdock. For
example, suppose that the inventory at certain time of a crossdock j could meet the demand
of customer 1 or customer 2 individually if there exist available routes for both of them and the
probabilities for them to choose the crossdock are close to each other. If customer 1 chooses
crossdock j first, then customer 2would have small possibility to also choose crossdock j because
the remaining inventory of crossdock j may not meet its demand. This move is designed to
overcome this difficulty. That is, we give priority to customer 2 if that helps reduce the total
cost. Our strategy for this move is to select two customers randomly whose crossdocks are
different from each other, swap their crossdocks, and then repeat this procedure until a better
solution is obtained.

Change Route for Customer

The goal for this move is the same as the third strategy, that is, eliminating the ordering effect
for assigning crossdocks and routes for customers by the greedy method. The difference is
that this move focuses on two customers whose crossdocks are the same. It is obvious that,
if two customers choose the same crossdock but are assigned to receive cargos in order, for
example, supposed customer 1 and customer 2 select the same crossdock, customer 1 has an
advantage to ship out cargos in time; however, the total cost may be much lower if customer
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Generate initial solutions by two-stage greedy method.
for iter ← 1 to #maximum iter do

for off ← 1 to #crossover do
Randomly select Parent 1 and Parent 2.
Crossover Parent 1 and Parent 2 to produce a new Offspring.

end for
for each offspring do

Mutate offspringwith individual mutation probability Pim and gene mutation probability
Pgm
Apply neighborhood search to each newly-produced Offspring.

end for
Select the best #pop individuals from all the Individuals including all current parents and
newly produced offsprings.
Update current best solution.
if the best solution could not improve within #terminate iterthen

Consider the solution as the goal optimal solution.
break

end if
end for
output the best solution and escaped time

Algorithm 1: HGA to solve problem (P).

2 can ship out cargos earlier than customer 1 when the penalty cost of customer 2 is relatively
high. So the strategy aims to give a priority to customer 2.

3.2. Framework of HGA

With these components, we now outline HGA framework in Algorithm 1. In this algorithm,
#pop denotes the number of populations, #crossover denotes the number of crossovers we
will do, #terminate iter denotes the maximum number of iterations the current best solution
cannot be improved, #maximum iter denotes the maximum number of iterations, and Pim
and Pgm are defined in Section 3.1.4.

4. Computational Experiments

We generate a great variety of problem instances and apply HGA to solve them. For
comparison purposes, we also use ILOG CPLEX 11.0 solver to solve the instances, which
is widely adopted by many papers (see, e.g., [3, 21, 22]). Both HGA and the CPLEX solver
were run on a personal computer with an Intel 2.4GHz Pentium 4 CPU and 1G memory.
The test data generation, parameter settings of HGA, and detailed computational results are
reported in the following content.

4.1. Test Data Generation and Experimental Parameter Setting

Because crossdocking problems are relatively new, there are no benchmarks test sets
available. As a result, we generated our own data. The data sets are generated randomly
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in such a way that they can represent realistic situations and can cover different scenarios,
which is suggested by Chen et al. [21], Li et al. [3], and Ma et al. [22], and the parameters
in HGA are based on numerous computational experiments, and they are effective to attain
desirable results.

The test data generation procedure requires three basic parameters: the number of
suppliers n, the number of customersm, and the number of crossdocks l. The time horizon is
fixed at 48 hours (2 days) in the test sets; note that this is usually the longest-time shipments
by railways between two cities. The n start points of supplier i time window bri (1 ≤ i ≤
n) were then randomly generated from a uniform distribution U[0, 12]. The end points
of supplier i time window eri were also randomly generated from a uniform distribution
U[12, 36]. For customers, their time windows are generated as [bak, e

a
k], where bak ∼ U[12, 24]

and ea
k
∼ U[24, 48]. The number of fixed transportation schedules between two points is

randomly generated in the interval [6, 8]. Meanwhile, the beginning time of the first fixed
transportation schedule from supplier to crossdock is generated according to penalty cost and
transportation cost, so the fixed schedule is as [begin, end], where begin ∼ U[(bri × Pi)/(Pi −
ci,j,1), 12] and end ∼ U[13, 24], which means that a higher penalty cost provides a supplier
with a higher motivation to ship out cargos. Other schedules are generated as [begin, end],
where begin ∼ U[thefirst schedule begin time, 12] and end ∼ U[13, 24]. Similarly, the
arrival time of the last delivery schedule for customers is generated according to penalty cost
and delivery cost, so the time window of the last delivery schedule is as (begin, end), where
begin ∼ U[12, 35] and end ∼ U[36, (eak × (c′j,k,γ ′

j,k

+ P ′k))/P
′
k]. For others, the time window is as

[begin, end], where begin ∼ U[12, 35] and end: U[36, the last schedule arrival time]. Next,
because pickups usually follow deliveries within short times, we take the inventory cost at
crossdocks to be small relative to transportation costs. This reflects the fact that handling
costs are usually smaller than transportation costs. Based on this, the transportation cost
per unit cargo of each fixed scheduled route is uniformly generated in the interval [10, 30]
and inventory handling cost per unit per hour is uniformly generated in the interval [1, 3],
which on average is 1/10 of transportation cost. The penalty cost is set to be relatively higher
compared to the transportation cost, which can enforce suppliers and customers to deliver
cargoes on time, so the penalty cost per unit cargo is uniformly generated in the interval
[30, 90]. Lastly, the amount of supplied cargo si (demanded cargo dk) is uniformly generated
in the interval [100, 500]. The capacity of each crossdock is set to αΣ1≤i≤nsi, where α is
randomly generated from a uniform distributionU[0.5, 0.8]. Also the capacity of each route is
set to βΣ1≤i≤n(si/n), where β is randomly generated from a uniform distribution U[2, 5]. The
following values of parameters are used: #max iter = 104, #terminate iter = 100, #pop = 200,
and #crossover = 80. The mutation probability Pim is taken to be 0.02, which is proved to be
effective in experiments.

4.2. The Results and Analysis

Based on the number of suppliers, crossdocks, and customers, we designed three categories
of problem instances to test HGA: small, medium, and large scale. The results are presented
in Tables 1, 2 and 3. Each category has 40 test instances, sorted into 8 groups where each
group has 5 instances. The first row of each table specifies the instance size. n × l ×m denotes
that there are n suppliers, l crossdocks, and m customers for this instance group. The rest
of each table provides the computational result of CPLEX and HGA. For each instance, the
following key values were reported: the average objective value, the average computational
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Table 1: Result of CPLEX and HGA on random instances with small scale.

Problem size 10×4×10 12×4×12 14×4×14 16×4×16 18×4×18 10×6×10 12×6×12 14×6×14

CPLEX

LBs 104818 105058 139556 167451 144959 114548 104734 145931
Objective 111094 107805 142217 174498 152658 123788 108595 155670
Time(s) >3600 >3600 3301.1 >3600 >3600 >3600 >3600 >3600
Gap 5.52% 2.21% 1.85% 4.14% 4.02% 6.24% 3.36% 5.71%

HGA
Objective 110834 107808 142124 173815 150214 122921 108113 154486
Time(s) 472.93 781.9 530.79 922.69 562.30 726.26 608.8 1084.69
Gap 5.30% 2.21% 1.80% 3.79% 2.81% 5.59% 2.97% 5.14%

Table 2: Result of CPLEX and HGA on random instances with medium scale.

Problem size 20×4×20 22×4×22 16×6×16 18×6×18 20×6×20 16×8×16 18×8×18 16 × 10 ×
16

CPLEX

LBs 153165 197595 143037 161171 185072 131554 149797 132087
Objective 158295 202441 154712 169924 195823 142704 161564 150179
Time(s) >5000 >5000 >5000 >5000 >5000 >5000 >5000 >5000
Gap 2.64% 2.37% 7.48% 4.95% 5.17% 7.74% 6.90% 12.06%

HGA
Objective 157928 202398 153922 167337 194017 138126 159152 147352
Time(s) 1080.17 1741.77 1139.11 677.49 1326.22 675.84 1224.98 609.23
Gap 2.48% 2.34% 6.97% 3.69% 4.40% 4.40% 5.71% 10.22%

time, the gaps between value attained by both CPLEX and HGA, and the low bound attained
by CPLEX when terminated.

(1) Small-size instances: the results are shown in Table 1. In this category, eight small
scale instance groups are generated with the size n and m ranging from 10 to 14,
and l ranging from 4 to 6. We use these instances to compare the performance of
the CPLEX solver and HGA.We find that, only in one group, CPLEX solver reaches
the LB within time limit set as 3600 s; for other cases, CPLEX fails to get the better
solutions within 3600 s comparing HGA, which gets better solutions more quickly,
and of which the average gaps are apparently smaller than CPLEX solver.

(2) Medium-size instances: the results are reported in Table 2. In this category, eight
instance groups with the size n andm ranging from 16 to 22 and l ranging from 4 to
10 are tested. Time limit is set to more than 5000 s. Also CPLEX fails to get the better
solutions within the time limit for all the instance groups, while HGA performs
well in no more than 1200 s.

(3) Large-size instances: the results can be found in Table 3. In this category, large-scale
instance groups are generated and categorized into 8 groups with the size n andm
ranging from 20 to 24 and l ranging from 8 to 12. The CPLEX solver is unable to
obtain the better solutions within the time limit, which is set to 7200 s; only in one
group CPLEX gets a better solution than HGA. However, HGA can attain much
better solutions in no more than 1800 s in the other seven cases.

All the three categories of 24 instance groups show that HGA performs fairly well and
is preferable over the commercial CPLEX solver.

The main feature of our proposed HGA is to integrate variable neighborhood search
(VNS) into a general GA framework so that it has the ability to get better solutions, especially
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Table 3: Result of CPLEX and HGA on random instances with large scale.

Problem size 20×8×20 22×8×22 24×8×24 18 × 10 ×
18

20 × 10 ×
20

22 × 10 ×
22

22 × 12 ×
22

24 × 12 ×
24

CPLEX

LBs 179309 189188 196688 1495661 162114 170686 208110 192499
Objective 195510 207942 217234 160386 186614 194127 232170 227976
Time(s) >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200
Gap 7.68% 8.64% 9.20% 6.38% 13.12% 11.80% 10.36% 14.95%

HGA
Objective 194431 204953 216949 160445 183441 189251 227295 221557
Time(s) 1159.11 1718.59 1696.08 1314.28 1298.37 1316.45 1419.08 1545.45
Gap 7.30% 7.34% 9.07% 6.43% 11.71% 9.77% 8.44% 12.96%

Table 4: Gap between HGA and GA.

Problem size 30×10×30 34×10×34 36×10×36 40×10×40 36×15×36 40×15×40

HGA Objective 261081 299320 296109 347677 306791 334069
Time(s) 1365.87 1626.23 1801.35 1661.80 1738.46 1823.73

GA Objective 280881 309925 314313 355154 334459 357053
Time(s) 1338.44 1303.33 1405.94 1691.24 1332.00 1386.86

Gap 7.58% 3.54% 6.15% 2.15% 9.02% 6.88%

for large-scale problem instances. Hence, by comparing the results of HGA and GA without
VNS, we can identify how much the solutions can be improved for large-size problem
instances. The numerical results are reported in Table 4, where each problem size has 5
instances, and Gap is defined by

Objective GA −Objective HGA
Objective HGA

∗ 100%. (4.1)

The results show that our proposed HGA provides better solutions without sacrificing
much computational efforts compared with the GA. Specifically, the results show that HGA
outperforms GA for all the cases in terms of solution quality. Although the speed of HGA
is slower than GA, it is reasonable because HGA requires more time to search for a better
solution by applying VNS. This gives us a clearer idea of the performance of the proposed
HGA for the large-sized problems. That is, in general, HGA can provide high-quality
solutions in realistic timescales for large-size problems.

Note that our problem has many characteristics (e.g., fixed transportation schedules,
inventory capacity, etc.) different from the vehicle routing problem (VRP), although the VRP
also considers how to find an optimal transportation scheme to satisfy customer demands.
The heuristic algorithms that can be very effective for the VRP cannot be applied to our
problem because these two types of problems have different structures and constraints.

5. Conclusions

In this paper, we consider multiple crossdocks problem through fixed transportation
schedules with time windows, capacity, and penalty. The objective is to minimize the total
costs including shipment costs, penalty cost, and inventory cost. Since we prove that the
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problem is NP-hard in the strong sense, we focus on developing an efficient heuristic
algorithm. Based on the problem structure, we propose an HGA to solve the problem
efficiently. In HGA, we employ two vectors (two sequences) to represent a solution including
crossdock assignment and route assignment, and we use a greedy method to generate initial
solutions that can help the solutions achieve feasibility. We apply variable neighborhood
search to eliminate the limitations caused by greedy method and accelerate convergence rate
of HGA. Experiments are conducted by using awide range of test data sets that reflect various
realistic scenarios with different problem sizes. Computational results demonstrate that HGA
is preferable over the commercial CPLEX Solver.

Our main contribution is threefold. First, the problemwe consider represents a class of
transshipment problems that arise from real-world applications, which may help industrial
practitioners to improve the transshipment decisions within multiple crossdock networks.
Second, we set up an integer programming model for this special problem and show that
its complexity is stronglyNP-hard, which implies that it is unlikely to find a polynomial or
pseudopolynomial time algorithm to solve the problem unless P = NP. Third, we propose
a hybrid genetic algorithm integrating greedy technique and variable neighborhood search
method that exploits the problem structure and is able to solve the problem effectively
and efficiently. The proposed heuristic sheds light on solving many other related complex
multiple crossdocks problems.

There are a few directions for further research. Firstly, it may beworthwhile to consider
different cost structures, for example, discounted transportation costs based on the shipping
amount. Secondly, lateral transportation between crossdocks may be considered. Finally,
the current problem can be extended to the multicommodity consolidation problem with
repacking consideration, in which various types of goods or freight are considered in a given
supply chain transshipment network, as well as the packing problem.

Appendix

Proof of Proposition 2.1

We provide a reduction of the strongly NP-complete 3-partition problem: given positive
integers, w, D, and Γ = {1, 2, . . . , 3w} with positive integer values γ(i) where, for each
i ∈ Γ,

∑

i∈Γ γ(i) = wD andD/4 < γ(i) < D/2 for i ∈ Γ, can Γ be partitioned intow disjoint sets
Γ1, Γ2, . . . ,Γw such that |Γk| = 3 and

∑

i∈Γk γ(i) = D for k = 1, . . . ,w? From an arbitrary instance
of 3-partition, we consider a polynomial reduction to an instance of our multiple crossdocks
problem and ask if there exists a feasible solution whose objective value is no greater than
2wD. For w suppliers given in Σ (let Σ = {1, 2, . . . , w}) and 3w customers in Δ (let Δ = Γ),
let si be the supply and si = D for i ∈ Σ with unit penalty cost 3, while for each k ∈ Δ, let
dk = γ(k) be the demand also with unit penalty cost 3. Exactly one crossdock, χ, say, with
inventory holding cost 1 per unit product per time, exists linking suppliers with customers.
For each supplier i (i ∈ Σ), there is only one fixed transportation schedule (i, i + 1) with
unit transportation cost 1. On the other hand, for each customer k (k ∈ Δ), there is w fixed
transportation schedule {(q + 1, q + 2) : q = 1, . . . , w} connected with crossdock χ also with
unit shipping cost 1.

We now show that a feasible schedule exists whose objective value is no greater than
2wD if and only if the 3-partition has a feasible solution. On the one hand, if 3-partition has a
feasible solution Γ1,. . . ,Γw, note that we needs pay attention to the single shipping and single
delivery condition, and hence we should ship all goods provided by supplier i (i ∈ Σ) to χ



Mathematical Problems in Engineering 17

through fixed schedule (i, i + 1), respectively, and transship all of them to customer j (j ∈ Γi)
through (i + 1, i + 2), which satisfies the demand γ(j) for customer j (j ∈ Γi) exactly. It is
easy to verify that such a schedule is feasible and total cost is 2wD. On the other hand, if
a feasible schedule exists with objective no greater than 2wD, then it is optimal since it is
easy to prove that 2wD is the lower bound of our instance, whose reason is because the total
transportation cost is 2wD at least, and if any cargo is delayed in crossdock or any demand
is unfulfilled, then the total cost is definitely greater than 2wD. Hence, this optimal solution
must satisfy the following two conditions: (1) there is no inventory in crossdock at any time;
(2) no penalty cost is incurred. We can then construct a partition by settingΔi to be the subset
of k ∈ Δ whose demand is satisfied by supplier i for 1 ≤ i ≤ w. Because of conditions (1)
and (2), the demand of customer k (k ∈ Δ) is γ(k) which should be satisfied immediately
by fixed schedule (i + 1, i + 2). Moreover, because of the single shipping and single delivery
condition, we have

∑

k∈Δi
dk = D. Since D/4 < dk < D/2 for k ∈ Δ, we have |Δi| = 3. Hence,

Δ1, . . . ,Δw is a feasible partition for the instance of 3-partition and this completes the proof.
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