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The paper shows the results of theoretical research concerning the modeling and characterization
of the dissipative structures generally, the dissipation being an essential property of the system
with self-organization which include the laser-type systems also. The most important results
presented are new formulae which relate the coupling parameters a;, from Lindblad equation with
environment operators I';; microscopic quantitative expressions for the dissipative coefficients of
the master equations; explicit expressions which describe the changes of the environment density
operator during the system evolution for fermion systems coupled with free electromagnetic field;
the generalized Bloch-Feynman equations for N-level systems with microscopic coefficients in
agreement with generally accepted physical interpretations. Based on Maxwell-Bloch equations
with consideration of the interactions between nearing atomic dipoles, for the dense optical media
we have shown that in the presence of the short optical pulses, the population inversion oscillates
between two extreme values, depending on the strength of the interaction and the optical pulse
energy.

1. Introduction

An essential problem of the quantum information systems is the controllability and observ-
ability of the quantum systems. In this context, Fermi systems are essential for several
important physical effects in quantum engineering as the dynamics of semiconductor na-
nostructures and high temperature superconductivity, nuclear resonances, fusion-fission
reactions, and analysis of optical quantum systems. These effects are essentially determined
by the dissipative coupling of the system.

Dissipation in quantum systems is a complex phenomenon which raises important
theoretical investigations. A dissipative system is a system of interest, coupled with another
system usually considered as being of much larger-environment. Fundamental and difficult



2 Mathematical Problems in Engineering

problem of dissipative quantum theory is to design the total system (system of interest +
environment) on the space system of interest. In this way obtain a quantum master equation
describing the evolution of the system using two terms: (1) a hamiltonian term for processes
with energy conservation and (2) a nonhamiltonian term with coefficients that depend on the
dissipative coupling. A master equation is based on approximations that consist in mediating
rapid oscillations of reduced density matrix describing the interaction.

Such an approximation is the assumption that the evolution operators of a dissipative
system forms a semigroup, not a group like for isolated systems. In this framework was
derived a quantum master equation with dissipative terms which is consistent with all
principles of quantum mechanics. Considering two operators, coordinate g and momentum
p, master equation was used to describe the harmonic oscillator. In this theoretical framework,
dissipation is described by the friction and diffusion coefficients that satisfy certain conditions
called basic restrictions and Heisenberg’s uncertainty relations are observed during the whole
evolution of the system.

A rigorous method for deducting the master equation with microscopic expressions of
the dissipative coefficients is developed in the literature.

For a weak dissipative coupling one obtains a master equation of Lindblad form [1],
but with the microscopic expressions of the dissipative coefficients.

In the development of quantum theory of dissipative systems an important step was
the connection between Lindblad’s generator and the previous phenomenological descrip-
tions, realized by Sdndulescu and Scutaru [2]. Besides, we must mention Isar et al.’s con-
tributions [3]. This school developed by the above-mentioned researchers in the field are
well recognized in the scientific world [4-8].

Firstly, in the paper general expressions which relate the coupling parameters a;, in
Lindblad equation with environment operators I'; have been established [9-11]. In this way,
became possible deeper causality understanding of processes of friction and diffusion and of
related quantum effects: broadening and shift of spectral lines, tunneling rates, bifurcations
and instability [12, 13].

Secondly, for a system of fermions, coupled with a dissipative environment quanti-
tative microscopic expressions for the coefficients of the dissipative master equation depend-
ing on the potential matrix elements, the densities of states of the environment and the occu-
pation probabilities of these states are presented [14-19].

The study continue with the systems of fermions coupled by electric dipole inter-
actions of free electromagnetic field for which has established general explicit expressions
which describe the changes of the environment density operator during the system evolution.
This description is not restricted to the Born approximation, taking into account the envi-
ronment time evolution as a function of the system evolution. The results of the dissipative
dynamics of the system of fermions in the presence of laser field are applicable to the dis-
sipative structures [14, 20-29].

Next, generalized Bloch-Feynman equations for N-level systems with microscopic
coefficients in agreement with generally accepted physical interpretations are presented.

In the last part, we study the dynamics of dense media under the action of ultrafast
optical pulses using Maxwell-Bloch formalism to include interaction between close atomic
dipoles [30-34]. It is shown that, in a system initially without inversion, in the presence
of optical pulses, the final population has two extreme values, results which contribute to
understanding the specific mechanisms of switching for applications, with specific examples
concerning the coherent radiation generation and amplification [35-43]. A computational
specific software, to verify the experimental and numerical existing models and in the same
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time to discover new important situations for operative systems design and implementation,
was developed [44-48].

2. Relationship between Coupling Coefficients in Lindblad Master
Equation and Environment Observables

Research on dissipative processes has led to evidence for the first time concerning the
relationship between coupling coefficients a;, in the Lindblad equation:

j 1
p=-3[Hp+ 5 > [Xop, Xa] + [Xo X1} (2.1)

depending on the system Hamiltonian H and the operators of opening X,,:

X, = Z ainSi, (2.2)
i

where s; are system operators, a;, are complex coupling coefficients or amplitudes and I’;
operators of environment defined using the interaction Hamiltonian as

H% =h Y sl (2.3)
i

These relationships have been established under the form [10]

D aina}, = 21(TiT}), (2.4)

and allow an understanding of the physical causes of quantum processes of friction and
diffusion, with their known effects: broadening and shift of spectral lines [11], increased rates
of tunneling, nonlinear characteristics, leading to bifurcation, instability, and chaos.

3. Microscopic Quantitative Expressions of
the Dissipative Coefficients in Master Equations

A general quantum master equation for a many-level many-particle system, with microscopic
coefficients, that preserves the quantum-mechanical properties of the density matrix was
obtained [12]:

%p(t) - —% [Hp®)] + X di{ [creipt), cfei] + [cier ptre; il } (3.1)
2

with dissipative coefficients:
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including a component )LE- for a dissipative environment of fermions and a component )tg. for
a dissipative environment of bosons.

Equation (3.1) is of Lindblad’s form, with dissipative operators depending on the
transition/population operators c; c;. For a system with N levels, the total number of these
operators is N? — 1 the number of the independent operators defined.

If we denote by VF and V® the interaction dissipative potentials of the environment
containing Y* fermions and Y® bosons, respectively, it is possible to write the expressions
of the coefficients )LiF]. si )Lg. for the resonant transition |j) — [i) of the system coupled with

|B) — |a) environmental transition, with fermionic state having densitiesaly g7, gﬂF and
populations f£ (g,), f;; (¢4), and bosonic states with densities g7, gg and population 2 (g,) si
f 5 (€p)- The probability that the final state |a) of the environment to be free is 1 - f(&,) while
the probability the initial state of the environment to be occupied is f(gg).

General expressions of the dissipative coefficients are written for this type of
interaction in the form:

2
\E = % J‘ |(ai|VF|ﬂj>| [1 _fj(ea)]f[f(ep)gf(sa)g,f(sﬁ)de;s, Eq — Ep = Ej — Ei, 53

A = 25 TN@lVEIB) P [+ £E @] 7 (o) 2 ea)gf () e, ea—e5=¢; - e

4. The Environment Dynamics Correlated with that of
a Fermion Systems Coupled with Free Electromagnetic Field

We consider a system of Z charged fermions with the coordinates 7, and momenta p, (n =
1,2,...,Z) in a single-particle potential UM (7,), while U® (¥,,7,) represents the two-
particle residual potential. This system is coupled to the modes v of the free electromagnetic
field. In order to describe the dynamics of this system, for simplicity, we neglect the particle
spin and its dimensions with respect to the electromagnetic field wavelength (the electric
dipole approximation). In this case, the total hamiltonian is of the form [14]

_ —=B\?
HT:§M+§U(D(7)+1 i LI(Z)(F T )+HB (41)
n=1 2m n=1 " 2 n,m=1 v ' .

Z _ 3B
> p,A (4.2)

is the system-field interaction potential, while

=2

Z Z V4
1
HS =3 22+ 3 UV F) + 5 3, U o 7o) (4.3)
n=1

n=1 n,m=1

N
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is the fermion system hamiltonian, and

HP =3 HY (4.4)

is the field hamiltonian, where
H) = tp )
= hw, | aja, + 5 (4.5)

is the field mode v hamiltonian.
Let us take the density operator y(t) of the total system with hamitonian (4.1) and the
reduced density matrix

p(t) = Tra{x(t)) (4.6)

over the environment states.
The total density operator y(t) satisfies the equation of motion:

bt 8 -% [5\7R(t) +eV (D), g(t)], (4.7)

where the sign above y designs operators within the framework of interaction picture of the
system and environment

F(t) = e(i/h)(HB+H§)tX(t)e—(i/h)(H05+HB)t’ (4.8)

while ¢ is an intensity parameter used to show the orders of the series expansion of this
density. Considering the radiation field of the black body in the initial state R, the total density
operator of the system can be taken under the form:

X)) =Rep(t)+efV () + XD () +---, (4.9)

where Y (t), ¥? (t) represent modifications of the field during the system evolution. The first
term of this expression corresponds to the Born approximation when the environment state
is a constant state R, while the higher-order terms, which satisfy the normalization relations

Trp{ xV (0} = Tra{x@ ()} =+ =0, (4.10)

describe the environment dynamics that is correlated to the system dynamics. For an equation
of motion of the form

% = eBY[5(t),t] + 2B@ [5(1),1] (4.11)
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From (4.7), (4.9), and (4.11) we get a system of coupled equations:

d )?(1)
dt

Re BO (1), ] + S =L [7R(0) + V0, Ra (1),

(4.12)

R B[00, + 27 L[5 1 70, 70 ).

By calculating the partial traces over the environment states and using the normalization
conditions (4.10), from these equations we get successively the terms of the equation of
motion (4.11):

BO[p(1),1] = —%Trg [VR(t) +V(t),R ®ﬁ(t)],
| (4.13)
BO[5(t),1] = —%Trs [\7R(t) + V(t),)f(l)(t)],

while, integrating by time, we get “excitation” terms of the total density operator (4.9):

7D t) = J‘t { —% [\7R () +V(t),Re ﬁ(t’)] ~ReBY[3(),1] }dt',
0 (4.14)

£ = [ {-2[75) + 7). 5 ()] - Ro B p(0). 1) ot

The first-order equation (4.13) represents the system evolution when the environment is
considered as being in a constant state R, while for the higher-order term (28), we take
into consideration some changes of the environment matrix (4.14). Further on, we will show
that the first-order terms (4.13) describe the hamiltonian dynamics of the system, while the
second-order term (28) describes system one-particle transitions related to environment.

5. The Generalized Bloch-Feynman Equations

An alternative description of dissipative system dynamics is given by Bloch-Feynman
equations for systems of fermions obtained by defining the pseudo-spin operators [14].

In particular, for a system with two-level known Bloch-Feynman, equations are
obtained, where, Qi, is the field operator, Pj, is the polarization operator, and N, is
population operator:

& (Qu) = —1.(Qu) +wa(Po),
%(Pu) = —w1{(Q12) = Y1.(P12), (5.1)

& N2 = [¢N2) - N2,
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with microscopic coefficients y, si y expressed by dissipative coefficients A;; of the master
equation:

YL = Az + Ao + Ayg + Ao, (5.2)
Y =2(M2 + Ao1), (5.3)
NO _ A (5.4)

R PP P

The condition 2y, > 7y is a confirmation of master equation (4.7) which led to the estab-
lishment of Bloch equations-Feynman, because this condition is verified experimentally.

6. Dynamics of Dense Media under the Action of Short Optical Pulses

Maxwell-Bloch equations of a two-level atomic medium generalized to include interactions
between the dipoles approach [15, 16, 32] have been used to describe the system dynamics
under the action of ultrafast optical pulses. These equations, for systems with homogeneous
broadening of spectral lines in about semiclassical treating, were established using the density
matrix formalism as

d _ 3
d—ff = y(w+1)+ %(E*Rub +ERY,), (6.1)
dg;b =—[yr +i(A + ew)| Rap — %Ew. (6.2)

In the above equations, w is the inversion of population, R,, nondiagonal elements of density
matrix slow variable, indices a and b refer to lower and higher energy states, with the gap
hwy, Ey is slowly varying local field A = wy — w is the frequency deviation in relation to the
center frequency of the field resonance frequency, y is the transition matrix element of the
electric dipole, and y), y. are longitudinal and transverse relaxation rates.

Contributions of the dipole-dipole interactions occur in (6.2) by term iew R, where
e = nu?/3hes < wy is the strength parameter of dipole-dipole interactions having
a dimension of a frequency. Equations (6.1) and (6.2) for the atomic variables and for
field variables realise the description Maxwell-Bloch of optically dense environment. These
equations were generalized and used to study intrinsic optical bistability, propagation effects
in nonlinear media, and so forth.

For numerical simulation, we considered the case resonant (A = 0), a characteristic
distance between dipoles much smaller than the wavelength of the central field (propagation
effects are negligible) and ultrafast pulses (pulses much shorter than Yﬂ‘l ; this enables us to
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Figure 1: Final state of population inversion, depending on the hyperbolic secant pulse maximum value
E(t) = Egsech(t/1,) (solid line), e7, = 20 (continuous line) and £7,, = 30.

neglect dissipation processes). In these conditions, the matrix element R, is decomposed
into its real and imaginary parts Ru, = 1/2(v + iu), resulting in system

du
- (eTy)vw,

% = (etp) <u + %)w, (6.3)
(2,

whose outcome is possible only numerically.

In the above equations t' = t/ 7, is the normalized time, 7, is the measured width pulse,
Q(t) = uE(t)/h is the instantaneous Rabi frequency, and E(t) is the intensty of electrical pulse.

In Figure 1, we present the final population inversion function of maximum Rabi
frequency for hyperbolic secant pulses E(t) = Egsech(t/ 7). As long as the Rabi frequency
has a value so that (/¢ < 1, the final population inversion is w = —1. In the region €,/ > 1,
the final population inversion has an oscillatory behavior, almost rectangular wave. As the
parameter €7, value is greater, the oscillation period decreases, the transitions become abrupt,
and the first half cycle of the rectangular wave becomes more centered to /¢ = 1.
In Figure 2, temporal evolution of the system is presented for a hyperbolic secant pulse with
a peak higher than one (when t — oo, the population inversion performs a number of
oscillations before reaching a value 1; under certain conditions when t — oo, after a number
of oscillations, the system remains in the ground state).
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Figure 2: Temporal evolution of the system for a hyperbolic secant pulse, E(t) = Egsech(t/ Tp).

7. Conclusions

General expressions which relate the coupling parameters a;, in Lindblad equation with envi-
ronment operators I'; have been established. These expressions allow deeper understanding
of causal processes of friction- and diffusion-related quantum effects: broadening and shift of
spectral lines, tunneling rates, bifurcations, and instability.

For a system of fermions coupled with a dissipative environment quantitative micro-
scopic expressions for the coefficients of the dissipative master equation are presented.

These coefficients depend on the potential matrix elements, the densities of states of
the environment, and the occupation probabilities of these states.

Expressions of the dependence of the particle distributions on temperature are taken
into account. It can be shown that a system of fermions located in a dissipative environment
of bosons tends to a Bose-Einstein distribution.

Studying the systems of fermions coupled by electric dipole interactions of free elec-
tromagnetic field, has established general explicit expressions which describe the changes of
the environment density operator during the system evolution for fermion systems coupled
with free electromagnetic field. This description is not restricted to the Born approximation,
taking into account the environment time evolution as a function of the system evolution. The
study can be continued with the calculation of the higher-order term of the reduced matrix
equation in order to describe the correlated transition of the system particles. The results of
the dissipative dynamics of the system of fermions in the presence of laser field are applicable
to the dissipative structures.

Generalized Bloch-Feynman equations for N-level systems with microscopic coef-
ficients in agreement with generally accepted physical interpretations are presented. On
this basis, the problem of a quantum system control is explicitly formulated in terms of
microscopic quantities: matrix elements of the dissipative two-body potential, densities of
the environment states, and occupation probabilities of these states.
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Studying the dynamics of dense media under the action of ultrafast optical pulses
using Maxwell-Bloch formalism to include interaction between close atomic dipoles showed
that, in a system initially without inversion, in the presence of optical pulses, the final
population has two extreme values, the ratio of Rabi frequency and the parameter that des-
cribes the interactions between close dipoles, which contribute to understanding the specific
mechanisms of switching.
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