
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 369472, 16 pages
doi:10.1155/2012/369472

Research Article
Adaptive Regularized Level Set Method for
Weak Boundary Object Segmentation

Meng Li,1, 2 Chuanjiang He,1 and Yi Zhan3

1 College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China
2 School of Mathematics and Finances, Chongqing University of Arts and Sciences, Yongchuan,
Chongqing 402160, China

3 College of Mathematics and Statistics, Chongqing Technology and Business University,
Chongqing 400067, China

Correspondence should be addressed to Meng Li, limeng7319@yahoo.cn

Received 24 August 2011; Revised 31 January 2012; Accepted 3 February 2012

Academic Editor: J. Jiang

Copyright q 2012 Meng Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

An adaptive regularized level set method for image segmentation is proposed. A weighted p(x)-
Dirichlet integral is presented as a geometric regularization on zero level curve, which is used to
diminish the influence of image noise on level set evolution while ensuring the active contours
not to pass through weak object boundaries. The idea behind the new energy integral is that the
amount of regularization on the zero level curve can be adjusted automatically by the variable
exponent p(x) to fit the image data. This energy is then incorporated into a level set formulation
with an external energy term that drives the motion of the zero level set toward the desired objects
boundaries, and a level set function regularization term that is necessary for maintaining stable
level set evolution. The proposedmodel has been applied to awide range of both real and synthetic
images with promising results.

1. Introduction

Image segmentation is a key initial step before performing high-level tasks such as objects rec-
ognition and tracking [1, 2] in most computer vision applications. Until now, image segmen-
tation is yet a difficult task although it has been studied extensively in past decades. Typical
difficulties result from facts that most natural images include noise, low intensity contrast
with weak edges, and intensity inhomogeneity. A number of segmentation techniques are
developed to overcome these difficulties, in which the level set methods [3–6] have been
proved to be a class of efficient techniques.

The level set method, originally introduced by Osher and Sethian [7], is a general
framework for the computation of evolving interfaces using implicit representations. In
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image processing and computer vision applications, geometric active contours (GAC) [3–
5], that is, active contours implemented via level set methods [7], were first introduced
independently by Caselles et al. [3] andMalladi et al. [4] for image segmentation. Afterwards,
many works constitute very interesting applications of the level set method within the active
contour framework [8–10]. The basic idea is to represent an active contour as a zero level
set of an implicit function in a higher dimension, called level set function, and to deform
the level set function according to an evolution partial differential equation (PDE). They
are appealing for the ability to handle topological changes automatically, which is generally
impossible in the traditional parametric active contours [11]. The evolution PDE for the
level set function can be derived from the related evolution equation of a parameterized
contour [4–6]. Alternatively, it can be directly derived from the minimization problem for
an energy functional defined on the level set function [8–10, 12]. This type of methods is
known as variational level set (VLS) methods. There are several desirable advantages of the
VLS methods over classical image segmentation methods, such as thresholding and region
grow. First, the VLS methods allow incorporation of various prior knowledge, such as shape
and intensity distribution, under a principled energy minimization framework. Second, they
can provide closed and continuous contours for further applications, such as image analysis
and object tracking. Third, they are amenable to the introduction of constraints on level set
function; smoothnesses of level set function are typical constraints. Generally, the constraints
within a model can be categorized into two parts: level set function regularization and zero
level curve regularization.

In conventional level set methods [3–6], the level set function may develop shocks
during the evolution, which cause numerical errors and eventually destroies the stability of
the level set evolution. To overcome this difficulty, level set function regularization, com-
monly known as reinitialization [13, 14], was introduced to restore the regularity of the level
set function and maintain stable level set evolution. Although re-initialization as a numerical
remedy is able to maintain the regularity of the level set function, there are serious theoretical
and practical problems, as pointed out by Gomes and Faugeras [15]. Recently, Li et al. [16, 17]
proposed a variational level set formulation with an intrinsic mechanism of maintaining the
signed distance property of the level set function.

A problem for GAC models is the extraction of weak boundaries in noise and/or in-
tensity inhomogeneity images. As we know, Gaussian kernel filter is a valid denoising meth-
od which smoothes away the isolated points. For example, Zhang et al. [18] proposed a local
image fitting (LIF) energy based on Gaussian filtering for variational level set to regularize
the level set function. Wang et al. [19] proposed a region-based tensor level set model for
image segmentation, in which a three-order tensor involving the Gaussian filter bank was
introduced to comprehensively depict features of pixels. These models are robust to noise.
However, the level set evolution only depending on Gaussian kernel filter cannot achieve an
accurate separation between weak objects and noise in complex images since the Gaussian
kernel filter often eliminates weak boundaries or details. Some regularity must be imposed
on the zero level curve to diminish the influence of image noise on level set evolution.

In this paper, we focus on the issue of zero level curve regularization with variational
method. Length regularization [6, 8, 9, 18] is an initially popular choice of the geometric
constraint on zero level curve, in the spirit of the Mumford-Shah functional [20]. But it is
less robustness to noise. In [21], two smoother regularizations

∫
Ω |∇φ|2dxdy and ‖|∇φ|‖L∞(Ω)

were introduced. However, the smoother regularizationmay cause the active contours to pass
through weak objects boundaries. Recently, there were many different choices of regulariza-
tion in the literature, for example, p-Dirichlet integral regularization [22] and weighted
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p-Dirichlet integral regularization [23]. Different value of p ≥ 1 results in a constrain which
is somewhere between length-based and smoother regularization. However, the constant
exponent p cannot reflect the local property of image, thus the p-regularization do not adapt
the exponent to fit the data automatically. This problem has limited their application.

This paper proposes an adaptive variational level set formulation with a weighted
p(x)-Dirichlet integral, an external energy, and a level set regularization term. The weighted
p(x)-Dirichlet integral integrating the gradient information is designed as a geometric regu-
larization on zero level curve, which is used to diminish the influence of image noise on level
set evolution while ensuring the active contours not to pass through weak object boundaries.
To demonstrate the effectiveness of the weighted p(x)-Dirichlet integral, we apply it to an
edge-based GAC model for image segmentation. So an external energy based on Laplacian
of Gaussian (LoG) filter is defined, and then it drives the level set function to deform in
opposite direction (up or down) on either side of edge. The level set regularization term
makes level set function behave approximately like a signed distance function, which ensures
stable level set evolution. The resulting evolution of the level set function is the gradient flow
that minimizes the overall energy functional. Due to the image data fitting in the weighted
p(x)-Dirichlet integral term, intensity information in local regions is extracted to guide the
regularization of contours. Thereby our model can extract weak boundaries in noisy and/or
intensity inhomogeneity images. An added benefit of the proposed model is that the level set
function can be initialized to a constant function. The constant function is more easier to use
in practice than the widely used signed distance function or binary step function.

The remainder of this paper is organized as follows. In Section 2, we simply review
level set method and some typical regularizations on zero level set curve. The proposed
model is introduced in Section 3. Numerical algorithm and experimental results are presented
in Section 4. This paper is summarized in Section 5.

2. Background

2.1. Level Set Method and Level Set Function Regularization

In the level set formulation, a moving curve C(t) is represented by the zero level set of a
Lipschitz function φ(x, y, t) defined on the entire image domain. The evolution of the curve
C(t) along its normal direction with speed F is described by the following evolution PDE [7]:

∂φ

∂t
+ F
∣∣∇φ
∣∣ = 0 (2.1)

with the initial condition φ(x, y, 0) = φ0(x, y). For image segmentation, the speed function F
depends on both image data and the level set function φ.

The function φ in (2.1) may develop shocks during the evolution. As a result, some
regularities must be imposed on φ in order to prevent φ to be too steep or too fat near the
zero level curve. A common means is to initialize and periodically reinitialize the level set
function to a signed distance function so as to keep steady level set evolution and ensure
usable results. The reinitialization equation is

∂φ

∂t
= sign

(
φ̂
)(

1 − ∣∣∇φ
∣∣), (2.2)
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where φ̂ is the function to be re-initialized, and sign (·) is the sign function. Although re-
initialization as a numerical remedy is able to maintain the regularity of the level set function,
it still remains a fundamental problem as when and how to apply the re-initialization [14, 15].

In [16], Li et al. introduced an internal energy to keep the regularity of the level set
function. It is formulated in a variational framework on the level set function φ as follows:

E
(
φ
)
= μP

(
φ
)
+ Eext

(
φ
)
, (2.3)

where P(φ) is the internal energy and Eext(φ) is a certain external energy that would drive
the motion of the zero level curve of φ.

Let Ω be the image domain, the internal energy term is defined as

P
(
φ
)
=

1
2

∫

Ω

(∣∣∇φ
∣∣ − 1

)2
dx dy (2.4)

which makes the level set function φ behave approximately like a signed distance function,
and so eliminates the re-initialization step during level set evolution. With this internal
energy, level set evolution can be implemented by simple finite difference scheme and is
initialized to a binary step function [8, 9, 16–18].

2.2. Some Typical Regularizations on Zero Level Curve

In order to control the smoothness of the zero level curve and further avoid the occurrence
of small, isolated regions in the final segmentation, the regularization on zero level curve is
very crucial in level set methods. The length regularization [6, 8, 9, 18] is to minimize the
following energy functional:

L
(
φ
)
=
∫

Ω

∣∣∇H
(
φ
)∣∣dx dy =

∫

Ω
δ
(
φ
)∣∣∇φ

∣∣dx dy, (2.5)

where H(·) is Heaviside function and δ(·) is Dirac delta function. The energy functional
L(φ) in (2.5) computes the length of the zero level curve of φ in the conformal metric
ds = |C′(p)|dp. The length regularization imposes a penalty on the length of the curve that
smoothes the zero level curve and diminishes some false contours. But the smoothing is only
along the tangent direction of each level line, so this regularization is less robustness to noise.

In [21],Chung and Vese proposed a smoother regularization:

R
(
φ
)
=
∫

Ω

∣∣∇φ
∣∣2dx dy. (2.6)

This regularization means isotropic smoothing at every point (x, y), so the level lines tend to
maintain smoothing and further penalize the false contours in noise image. But the smoother
regularization cannot stop the active contours to pass through some weak object boundary.
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In [23], Zhou and Mu proposed a weighted p-Dirichlet integral regularized level set
evolution. The geometric regularization has the following form:

Lp

(
φ
)
=
∫

Ω
δ
(
φ
)∣∣∇φ

∣
∣pdx dy. (2.7)

Different value of p ≥ 1 results in a tradeoff between length regularization and smoother
regularization. However, if the image intensities representing objects are nonuniform or if an
image is highly degraded, this regularization may become sensitive to exponent p.

3. Weighted p(x)-Dirichlet Integral Regularized Level Set Evolution

In this section, we propose a new variational level set formulation for image segmentation,
in which a weighted p(x)-Dirichlet integral is presented to regularize the zero level curve.

Let Ω ⊂ R2 be a image domain. For a given image I : Ω → R and a level set function
φ(x, y) : Ω → R, we define an energy functional E(φ) by

E
(
φ
)
= Lp(·)

(
φ
)
+ νEext

(
φ
)
+ μP

(
φ
)
, (3.1)

where ν, μ > 0 are constants, Lp(·)(φ) is the zero level curve regularization term, Eext(φ) is a
certain external energy that would drive the motion of the zero level curve of φ, and P(φ) is
the level set function regularization term that controls the smoothness of the level set function
during the level set evolution.

3.1. Weighted p(x)-Dirichlet Integral

The zero level curve regularization term Lp(·)(φ) is defined as follows:

Lp(·)
(
φ
)
=
∫

Ω

1
p(|∇Gσ ∗ I|)δ

(
φ
)∣∣∇φ

∣∣p(|∇Gσ∗I|)dx dy, (3.2)

where ∇ is gradient operator and Gσ ∗ I is the convolution of the image I with the Gaussian
function Gσ with standard deviation σ. The exponent p(s) : [0,+∞) → [1, 1.5] is a monotoni-
cally increasing function with lims→ 0p(s) = 1 and lims→+∞p(s) = 1.5. A simple example is

p(s) =
3
2
− 1
2 + s

. (3.3)

The functional (3.2) is in fact a weighted p-Dirichlet integral with variable exponent
p(|∇Gσ ∗ I|), thus it is called the weighted p(x)-Dirichlet integral in this paper.

Remarks. (1) If p(|∇Gσ ∗ I|) = 1, the functional Lp(·)(φ) is simplified to

Lp(·)
(
φ
)
=
∫

Ω
δ
(
φ
)∣∣∇φ

∣∣dx dy. (3.4)
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It is well known that the energy functional computes the length of the zero level
curve of φ.

(2) When p(|∇Gσ ∗ I|) = p > 1 is a constant, the functional Lp(·)(φ) is the weighted p-
Dirichlet integral. It is chosen as one of geometric regularization on zero level curve
in [23].

However, the constant exponent p is not an intelligent choice. An important reason
is that the constant exponent p does not reflect the local property of image, and so does not
adapts the exponent to fit the image data automatically. We let p = p(|∇Gσ ∗ I|) depend
on local intensity information. This way the regularization ensures weak regularization
(p(|∇Gσ ∗ I|) ≈ 1) in regions where the image almost has a constant intensity (i.e., where
the intensity gradient almost is zero) to avoid the disappearance of weak boundaries, while
it ensures strong regularization (p(|∇Gσ ∗I|) ≈ 1.5) in other regions to force the false contours
to vanish in final segmentation. We will show this by a simple experiment in Section 3.4.
Therefore, the variable exponent p(x) controls the tradeoff between weak regularization and
strong regularization automatically.

3.2. External Energy Term Eext(φ)

In image segmentation, an external energy depending on image information must be defined
to move the zero level curve toward the objects boundaries. The weighted p(x)-Dirichlet
integral in (3.2) can be used in various applications with different definitions of the external
energy Eext(φ). In this subsection, we only provide an application of the weighted p(x)-
Dirichlet integral to an active contour model using edge-based information in the external
energy, as a demonstration of the effectiveness of the weighted p(x)-Dirichlet integral
formulation.

Next, we define the external energyEext(φ) based on the Laplacian of a Gaussian (LoG)
filter as follows, which drives the level set function to deform in opposite direction (up or
down) on either side of edge:

Eext
(
φ
)
=
∫

Ω
(ΔGσ ∗ I) ·H(−φ)dx dy, (3.5)

where ΔGσ is the LoG filter. The LoG filter calculates the second derivative of an image,
which is often used for zero crossing edge detectors. It is well known that at the inflection
point the second derivative vanishes and changes sign. The LoG response is zero in areas
where the image has a constant intensity. In the vicinity of a change in intensity, the LoG
response is positive on the darker side and negative on the lighter side. By incorporating the
edge-based information (the LoG filter) into the external energy term, the level set function
can move up or down on either side of edge and cause the sign of φ to flip around edges. And
the objects boundaries can be extracted at image locations where two opposite directions of
flow encounter. In this formulation, the level set function can be initialized to a constant
function. Such initialization scheme is quite simple and computationally efficient in practice
application.
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3.3. The Energy Formulation

In order to keep the regularity of level set function, the energy P(φ) in (2.4) is adopted in our
model. This functional makes our level set formulation that has an intrinsic mechanism of
maintaining the desired shape of φ.

With the energy functionals (3.2),(3.5), and (2.4), the proposed energy formulation
(3.1) can be rewritten as

E
(
φ
)
=
∫

Ω

1
p(|∇Gσ ∗ I|)δ

(
φ
)∣∣∇φ

∣
∣p(|∇Gσ∗I|)dx dy

+ v

∫

Ω
(ΔGσ ∗ I) ·H(−φ)dx dy +

1
2
μ

∫

Ω

(∣∣∇φ
∣
∣ − 1

)2
dx dy.

(3.6)

In order to compute the associated Euler-Lagrange equation for the unknown function
φ, we consider slightly regularized versions of the function H and δ(φ), denoted here by Hε

and δε, as ε → 0. LetHε be a C∞(Ω) regularization ofH, and δε = H ′
ε. In a dynamical scheme

via steepest descent, minimizing the energy functional (3.6) with respect to φ, we obtain the
evolution PDE:

∂φ

∂t
= δε

(
φ
)
div
(∣∣∇φ

∣∣p(|∇Gσ∗I|)−2∇φ
)
−
(

1
p(|∇Gσ ∗ I|) − 1

)
δ′
ε

(
φ
)∣∣∇φ

∣∣p(|∇Gσ∗I|)

+ νδε
(
φ
)
(ΔGσ ∗ I) + μ

(

Δφ − div

(
∇φ
∣∣∇φ
∣∣

)) (3.7)

with the initial condition φ(x, y, 0) = φ0(x, y).
In all numerical experiments, we choose the following functions:

δε(s) =
1
π

ε

ε2 + s2
, (3.8)

for our evolution PDE (3.7).

3.4. Weighted p(X)-Dirichlet Integral Effect

In this subsection, we demonstrate the weighted p(x)-Dirichlet integral (3.2) effect by
a simple experiment, just as shown in Figure 1. We will see that the variable exponent
p(|∇Gσ ∗ I|) in Lp(·)(φ) effectively controls the tradeoff between the weak regularization
and the strong regularization automatically. The test images are an aerial image (128 × 128)
with cognitive boundaries (i.e., discontinuous boundaries) and a blood vessel image (103
× 131) with intensity inhomogeneity, as shown in Column 1. In this experiment, we take
σ = 2.0, ε = 1.5, μ = 0.04. The level set function is initialized to φ0(x, y) = 0.5 and the
level set function φ evolves according to (3.7) with different exponents p(|∇Gσ ∗ I|). We
observe from Figures 1(b) and 1(f) (where p(|∇Gσ ∗ I|) = 1, length regularization) that
some false contours appear in final segmentation (see the interior of object in Figure 1(b)
and the upper left and right corners in Figure 1(f)). We can see from Figures 1(c) and 1(g)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Weighted p(x)-Dirichlet integral effect on real images (top: ν = 0.25, bottom: ν = 0.5). Column 1:
original images. Column 2: length regularization. Column 3: weighted p-Dirichlet integral regularization.
Column 4: weighted p(x)-Dirichlet integral regularization.

(where p(|∇Gσ ∗I|) = 1.5, weighted p-Dirichlet integral regularization) that some weak edges
cannot be extracted effectively although the false contours are suppressed (see the middle
of Figure 1(c) and the bottom of Figure 1(g)). With the variable exponent p(|∇Gσ ∗ I|) =
1.5 − (2 + |∇Gσ ∗ I|)−1(weighted p(x)-Dirichlet integral regularization), the proposed model
not only successfully extracted the weak boundaries, but also effectively suppressed the false
contours, as shown in Figures 1(d) and 1(h).

4. Numerical Algorithm and Experimental Results

4.1. Numerical Algorithm

In this subsection, we briefly present the numerical algorithm and procedure to solve the
evolution (3.7). Equation (3.7) can be implemented via a simple explicit finite difference
scheme as in [16, 17] rather than a complex upwind scheme as in the traditional level set
methods [14]. We consider the 2D case with a time-dependent level set function φ(x, y, t).
The spatial derivatives ∂φ/∂x and ∂φ/∂y in our model are approximated by the central
difference, and the temporal partial derivative ∂φ/∂t is discretized as the forward difference.

We recall first the usual notations: let Δt be the time step, h be the space step, and
(xi, yi) = (ih, jh) be the grid points. Let φn

i,j = φ(xi, yj , nΔt) be an approximation of φ(x, y, t),
with n ≥ 0, φ0 = φ0, the central differences are

Δxφi,j =
φi+1,j − φi−1,j

2h
, Δyφi,j =

φi,j+1 − φi,j−1
2h

. (4.1)
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Set n = 0, and start with initial level set function φ0
i,j , we first compute p(|∇Gσ ∗ I|) according

to (3.3). Then, the numerical approximation to (3.7) is given by the following discretization:

φn+1
i,j − φn

i,j

Δt
= δε

(
φn
i,j

)
lni,j −

(
1

p(|∇Gσ ∗ I|) − 1
)
δ′
ε

(
φn
i,j

)((
Δxφn

i,j

)2
+
(
Δyφn

i,j

)2)p(|∇Gσ∗I|)/2

+ νδε
(
φn
i,j

)
(Δx(Δx(Gσ ∗ I)) + Δy(Δy(Gσ ∗ I)))

+ μ
(
Δx
(
Δxφn

i,j

)
+ Δy

(
Δyφn

i,j

)
− kn

i,j

)
,

(4.2)

where

lni,j = Δx

⎛

⎜⎜⎜⎜
⎝

Δxφn
i,j

√((
Δxφn

i,j

)2
+
(
Δyφn

i,j

)2)2−p(|∇Iσ |)

⎞

⎟⎟⎟⎟
⎠

+Δy

⎛

⎜⎜⎜⎜
⎝

Δyφn
i,j

√((
Δxφn

i,j

)2
+
(
Δyφn

i,j

)2)2−p(|∇Iσ |)

⎞

⎟⎟⎟⎟
⎠

,

(4.3)

kn
i,j = Δx

⎛

⎜⎜
⎝

Δxφn
i,j

√(
Δxφn

i,j

)2
+
(
Δyφn

i,j

)2

⎞

⎟⎟
⎠ + Δy

⎛

⎜⎜
⎝

Δyφn
i,j

√(
Δxφn

i,j

)2
+
(
Δyφn

i,j

)2

⎞

⎟⎟
⎠. (4.4)

This system (4.2) is solved by an iterative method, and we use fixed space step h = 1 (implies
pixel spacing) for computing spatial derivatives. The choice of the time step for this finite
different scheme must satisfy the condition μΔt < 0.25 for numerical stability, and for more
details, we refer the reader to [17].

It is worth noting that the spatial derivatives in conventional level set formulation are
discretized by upwind scheme [14]. Due to the added the level set regularization term in our
model, Central difference scheme is valid for the PDE (3.7). all the spatial derivatives in (3.7)
can be discretized by central difference scheme, and the corresponding numerical scheme
is stable without the need for re-initialization. Moreover, the central difference scheme is
more accurate and efficient than the first-order upwind scheme that is commonly used in
conventional level set formulation, as pointed out by Li et al. in [17].

In summary, the main steps of the algorithm (3.7) are as follows.
(1) Initialize the level set function φ0 = constant, set n = 0.
(2) Compute p(|∇Gσ ∗ I|) according to (3.3).
(3) Solve the PDE in φ from (4.2), to obtain φn+1.
(4) Check whether the evolution has stationary. If not, n = n + 1 and repeat.

4.2. Experimental Results

This section shows the results of the proposed model for both synthetic and real images. The
level set function φ(x, y, t) is simply initialized to φ0(x, y) = ρ (nonzero constant); we choose
|ρ| = 0.5 for all experiments. Besides, we use the following default parameter setting for all
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experiments: σ = 2.0, ε = 1.5, μ = 0.04, Δt = 5.0. The parameter ν is not the same in different
experiments; we will give the exact value of ν in each experiment, together with the sign of
ρ. For pixels on the borders of the image I, we take a mirror reflection in all experiments.

Figure 2 shows the segmentation process of the proposed model on a synthetic image
(88 × 85), a T-shaped image (127 × 96), an X-ray image of vessels (176 × 167), and a
hysterosalpingography (HSG) image (130 × 96) which are plotted in Column 1 of Figure 2.
All of them are typical images with intensity inhomogeneity. In these images, parts of the
objects boundaries are quite weak, which make it a nontrivial task to extract the objects
from the background. Since the level set function is computed from the initial condition
φ0(x, y) = ρ (top to bottom: ρ = 0.5, −0.5, 0.5, and 0.5, resp.), there are no initial contours (zero-
level curve) superimposed on the original images. The contours (zero-level curve) evolution
processes are shown in Column 2 to Column 5.We see fromColumn 2 that the contours (zero-
level curve) emerge automatically in a single iteration due to the introduction of the external
energy term. And then the generated contours evolve toward objects boundaries, as shown
in Column 3. Afterwards the evolving curve continues to propagate and the generat-ed false
small contours gradually disappear (see Column 4). This shrinking effect can be interpreted
as the regularization of the weighted p(x)-Dirichlet integral. Finally, the evolving curves
convergence to the objects boundaries (see Column 5). These results show that our model,
starting with a constant function, can detect weak boundary objects in intensity inhomogene-
ity images.

Figure 3 shows that our model starting with a constant function can work well for
images with multiple weak objects and is compared with the RSF model [8] and LIF model
[18]. The RSF model and the LIF model represent the state of the art of variational level set
methods which are able to handle intensity inhomogeneity efficiently and are less sensitive to
noise. The codes of the RSF model and the LIF model are cited from http://www.engr.uconn
.edu/∼cmli/ and http://www4.comp.polyu.edu.hk/∼cslzhang/papers.htm, respectively.
Two test images, which are shown in Column 1, are a DNA channel image (229 × 168)
and a bacteria image (173 × 173). These images intensities representing objects are typical
nonuniform. To make fair comparison, we try our best to choose the optimal parameters and
initial contours for RSFmodel. We can see from Column 2 and Column 3 that some unwanted
contours were generated in the results of the RSF model and the LIF model. Our level set
evolution starts with φ0(x, y) = ρ (top: ρ = 0.5, bottom: ρ = −0.5). Column 4 shows that our
model successfully extracts all objects contours from background.

Figure 4 shows the robustness of our model to noise. For this purpose, we create four
images by adding Gaussian noise to a synthetic dragon-like image (128 × 128) and a vascular
biopsy image (94 × 123), as shown in Row 1. Then, the RSF model, the LIF model, and our
model are applied to these original and noisy images. We observe that the three models are
able to segment the objects in the original images (see Column 1 and Column 4). But for
the noisy images, the contours of the RSF model collapse due to boundary leaks (see Row
2). Although some false contours are generated in the results of the LIF model, it still work
by and large (see Row 3). We can see from Row 4 that our method successfully extracts all
objects correctly in these noisy images (see Row 4).

Figure 5 shows the comparison of the proposed model with the LIF model on bimodal
images. The goal is to show the accuracy of our model. Five test images, which are shown in
Row 1, are a synthetic image (84 × 84), wrench image (100 × 100), hand image (108 × 130),
plane image (135 × 125), and rice image (128 × 128), respectively. The true objects can be
extracted from the original images by a thresholding algorithm (see Row 2). The segmenta-
tion results obtained by the LIF model and our model are shown in Rows 3 and 4. It can be
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(a) (b) 1iteration (c) 15iteration (d) 60iteration (e) 130iteration

(f) (g) 1iteration (h) 15iteration (i) 60iteration (j) 160iteration

(k) (l) 1iteration (m) 5iteration (n) 7iteration (o) 15iteration

(p) (q) 1iteration (r) 2iteration (s) 10iteration (t) 70iteration

Figure 2: Segmentation processes of our model (top to bottom: ν = 0.27, 0.46, 0.6, 0.46). Column 1: original
images. Column 2 to 5: the curve evolution process from the automatically generated contours to the final
contours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Comparisons of the RSF model [8], the LIF model [18] and our model for images with multiple
weak objects. Column 1: original images. Column 2: results of the RSF model. Column 3: results of the LIF
model. Column 4: results of our model (top to bottom: ν = 0.46, 0.15).
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 4: Segmentation results on images with and without (Gaussian) noise. Row 1: original and noise
images ((a) and (d) original images; (b) noisy image (zero mean, 0.04 variance); (c) noisy image (zero
mean, 0.1 variance); (e) noisy images (zero mean, 0.01 variance); (f) noisy image (zero mean, 0.04
variance)). Row 2: results of the RSF model [8]. Row 3: results of the LIF model [18]. Row 4: results of
our model (left to right: ν = 0.5, 0.28, 0.2, 0.4, 0.25, 0.21).

observed that the LIF model and our model have achieved similar final results for the first
three images by visual comparison. For the plane image, the LIF model incorrectly identifies
parts of the plane projection as the objects (see Figure 5(n)). For the rice images, the rice are
very close to each other, and the LIF model fails to segment them (see Figure 5(o)). With the
constant function initialization (φ0 = 0.5), our method can achieve satisfactory results for the
plane and rice images (see Figures 5(s) and 5(t)). We also demonstrate the accuracy of our
model by quantitative comparison. The metric adopted in this paper is the dice similarity
coefficient (DSC) [24] as follows:

DSC =
2N(S1 ∩ S2)

N(S1) +N(S2)
, (4.5)

whereN(·) indicates the number of pixels in the enclosed set, and S1 and S2 represent a given
baseline foreground region (e.g., true object) and the foreground region found by the model,
respectively. The closer the DSC value to 1, the better the segmentation. Table 1 shows the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 5: Segmentation results on bimodal images. Row 1: original images. Row 2: results of thresholding
method (left to right: the threshold values are 140, 150, 180, 110, and 110, resp.). Row 3: results of the LIF
model [18]. Row 4: results of our model (ν = 0.4).

Table 1: The DSC values of the LIF model [18] and our model for the images in Figure 5.

Image Figure 5(a) Figure 5(b) Figure 5(c) Figure 5(d) Figure 5(e)

LIF model 0.9759 0.9801 0.9881 0.5020 0.5164
Our model 0.9903 0.9951 0.9905 0.9571 0.9164

DSC values of the LIF model and our model. It can be clear that our model achieves more
accurate results.

Figure 6 shows the segmentation results of our model for five real images with
intensity inhomogeneity. Five medical images in different scenario are chosen to serve as the
test images, which are two X-ray vessel images (111 × 110, 132 × 131), a bladder MR image
(180 × 107), a brain MR images (120 × 160), and a wrist image (90 × 196), as shown in Row
1. Our level set evolution starts with φ0 = ρ (left to right: ρ = 0.5, 0.5, −0.5, 0.5 and 0.5, resp.).
As can be seen in the second row of Figure 6, our model successfully extracted all objects
contours from nonuniform background. This experiment also demonstrates that our model
can handle more general images with intensity inhomogeneity.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Segmentation results of our model on images with intensity inhomogeneity (ν = 0.50). Row 1:
original images. Row 2: results of our model (left to right: 60, 100, 20, 20, and 160 iterations, resp.).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Segmentation results of our model on images with complex background (left to right: ν = 0.23,
0.23, 0.35, 0.28). Row 1: original images. Row 2: results of our model (left to right: 50, 50, 120, and 10
iterations).

Figure 7 shows that our model can extract weak objects boundaries from images with
complex background (250 × 180). In actual sky-mountain-water conflicts, the background
of these real infrared images was quite complex (see Row 1). Moreover, parts of objects
(boat, sun) are quite weak. Our level set evolution starts with φ0 = 0.5. As can be seen in the
second row of Figure 7, our model successfully extracts the desired objects from the complex
background.

Figure 8 shows that our model can handle real noisy image with different types of
shapes. Five test images, which are shown in Row 1, are two breast cyst images (91 × 92,
157 × 110), an MR image of a human brain (159 × 122), a skin lesion image (180 × 180), and
a ultrasonic image (100 × 100). These images are contaminated by texture tissue and clutter
noise, thus it is very difficult to segment the objects in such images. Our level set evolution
starts with φ0 = ρ (left to right: ρ = 0.5, 0.5, 0.5, −0.5 and −0.5, resp.). As can be seen in Row 2,
our model successfully extracted the desired objects from the noisy images.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Segmentation results of our model on real medical images (left to right: ν = 0.22, 0.22, 0.22, 0.20,
and 0.185, resp.). Row 1: original images;Row 2: results of our model (left to right: 120, 180, 300, 290, and
400 iterations).

5. Conclusion

We have proposed a novel variational level set formulation for image segmentation based on
weighted p(x)-Dirichlet integral and LoG filter. By incorporating local intensity information
into the weighted p(x)-Dirichlet integral, this regularization term preserves the good proper-
ties of both length regularization and p-Dirichlet integral regularization, as well as a combina-
tion of the two. The external energy based on the LoG filter drives the level set function up or
down on either side of edge and locates objects edges. Due to the good properties of the
weighted p(x)-Dirichlet integral term, our model can extract weak edge in noise and/or
intensity inhomogeneity images. The proposedmodel also allows the use of more general ini-
tialization of the level set function, that is, constant function. This implies that our model is
free of manual initialization. Given its efficiency and accuracy, we expect that the proposed
model will be useful for real-time applications. In our future work, we will extend the current
model to motion tracking, where motion information can be included in the segmentation
process.
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