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In this paper, a hybrid scheme is proposed to find the reliable point-correspondences between two
images, which combines the distribution of invariant spatial feature description and frequency
domain alignment based on two-stage coarse to fine refinement strategy. Firstly, the source and the
target images are both down-sampled by the image pyramid algorithm in a hierarchical multi-scale
way. The Fourier-Mellin transform is applied to obtain the transformation parameters at the coarse
level between the image pairs; then, the parameters can serve as the initial coarse guess, to guide
the following feature matching step at the original scale, where the correspondences are restricted
in a search window determined by the deformation between the reference image and the current
image; Finally, a novel matching strategy is developed to reject the false matches by validating geo-
metrical relationships between candidate matching points. By doing so, the alignment parameters
are refined, which is more accurate and more flexible than a robust fitting technique. This in return
can provide a more accurate result for feature correspondence. Experiments on real and synthetic
image-pairs show that our approach provides satisfactory feature matching performance.

1. Introduction

Given two or more images of a scene, the ability to match reliable corresponding points
between these images is a fundamental and very important problem in computer vision
field. In fact, many computer vision applications rely on the success of finding corresponding
points [1–5], for example, stereo vision, image registration, motion analysis, object
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recognition, and 3D reconstruction. Point correspondences are usually established by
matching the local descriptors of a small region around the interest points [6–9]. However,
usually a large proportion of them are false matches because of perceptual alias, occlusion,
change of illumination and view-points, and so forth. One strong feature may appear weak
in the two images, which makes feature matching nearly impossible. In extreme situation, the
correspondence is physically meaningless, even though they have similar local appearance.
Although the point correspondence problem techniques have been much developed in last
decades, it still remains a challenge in various situations.

Nowadays, a considerable amount of previous research has been conducted on the
works on efficient feature descriptors, which have used the spatial domain representation
of various image features [6–9], such as line segments, corners, implicit and parametric
curves and surfaces. Actually, any geometrical feature can be represented as a point set to
find meaningful correspondence with another point set. A common approach to obtain such
feature that possess above properties is known as “key-point” or “interest point” extraction
[6, 7], involving identify points that can be reliably extracted from different images of the
same scene. Some of them are well known, for example, Harris, SIFT [7], and SURF (Speeded
Up Robust Features) [9, 10]. In the spatial domain representation, many works registered
the images by selecting a number of windows in high-variance areas of one image, locating
the corresponding windows in the other image and using the window geometric centers as
control points to determine the registration parameters [11, 12].

However, those spatial domain approaches conduct exhaustive search of local
appearance templates, making it very time consuming and difficult, especially in presence
of occlusion junctions, large change of viewpoint, multiple similar structure, and handling
of appearing and disappearing features. Even when the most effective invariant descriptors
are applied, the performance of feature correspondence in spatial representation is not very
satisfactory. These drawbacks are the common problems where overall images are used as the
search space for exhaustively finding putative correspondence without guidance. Another
more difficult problem is that some difference between the images due to object movements,
lighting changes, using different types of sensors or with different sensor parameters, cannot
be modeled by a spatial transform alone. They make the registration more difficult since
accurate registration can be no longer achieved between two images, even after spatial
transformation.

Due to the limitations of spatial domain methods, some researchers take advantage
of frequency representation information to assist the image registration process or motion
analysis [4, 5, 13, 14]. Since the image pairs can be related by the camera motion which
consists of relative translation, rotation, scale, and other geometric transformation, so motion
estimation techniques could be introduced into our algorithm. Frequency domain processing
has several advantages over spatial domain methods. The motion estimation is based on the
phase changes of the Fourier Transformation, so it is robust to global illumination changes.
The partial occlusion does not affect the deformation analysis, as the initial geometric
transformation estimation is to be obtained in the frequency domain instead of spatial
information. However, transformation computation in frequency domain processing alone is
not adequate for all image registration tasks, so spatial information is used for more accurate
correspondence.

This suggests a simple but effective approach that we denote a coarse-to-fine
hierarchical approach. In fact, coarse-to-fine hierarchical ways have been applied by various
researchers [3, 15, 16]. However, until now, there have been few approaches to solve the
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strongly interconnected problems that can take advantage of both frequency and spatial
domain information.

In this paper, we propose a novel way to hierarchically integrate the estimation in
the frequency domain and in the spatial domain. These problems are alleviated by firstly
resorting to a rough estimate of the transformation parameters between the image pairs at
the coarsest level using the frequency information, then this reasonable approximation guide
the matching process in spatial domain at the original level. In such a way, we fuse spatial
and frequency domain information in a new efficient manner. The integration of frequency
and spatial domain can not only avoid the drawbacks of spatial domain methods, but also
make use of spatial information for precise feature localization. It should be noted that our
idea in certain steps seems similar to some image registration approaches, that employ a set of
correspondence features to determine the transformation between the image pairs. Indeed, to
the best of our knowledge, this is the first time that by introducing Fourier-Mellin Transform
at the coarse-scale, the captured deformation parameters are then applied to assist the feature
matching procedure in spatial domain.

The paper is organized as follows. Section 2 introduces our hybrid image registration
scheme. Section 3 presents experimental results that demonstrate the advantage of this
combination of matching schemes. Section 4 summarizes the paper.

2. Problem Presentation and Our Approach

It is assumed that the image pairs containing the same scene are taken at different times, from
different imaging devices, or from different perspectives, due to changes in camera position
and pose.

We present a novel algorithm that takes advantage of both spatial and frequency
domain information in a hierarchical multiscale decomposition way, as is described in
Figure 1. The main idea is to take advantage of the estimation obtained in the frequency
domain at the coarse scale, to guide the accurate spatial feature matching. Meanwhile, the
multiscale decomposition also reducesmuch time for the point correspondences. The Fourier-
Mellin Transform (in frequency domain) is applied to determine the coarse transformation
parameters that map the current image to the source image, which is beneficial to establish
the quick correspondence of a set of features. This strategy alleviates the difficult and time-
consuming identification of corresponding features in the image pairs and is not dependent
upon exact exhaustive searching of point correspondences. Our approach saves much
computational efforts, since it need not to search through overall image space for each key
point, but in a small window guided by the transformation.

2.1. Coarse Transformation Estimation by Frequency Domain Alignment

Since the image pairs can be related by the camera motion which consists of relative
translation, rotation, scale, and other geometric transformation, so motion estimation
techniques could be introduced into our algorithm. The affine motion model [11] is adopted
in this paper as it provides good tradeoff between generality and ease of estimation. Actually,
any Rotation-Scale-Translation (RST) transformation may be expressed as a combination of a
single translation, rotation, and scale factor, all operating in the plane of the image. The wrap
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Figure 1: Framework of the presented method.

model between the reference image f1(X) and current image f2(X) is mathematically
expressed as,

f2(X) = f1(sRX + t),

X =
[
x
y

]
, R =

[
cos θ − sin θ
sin θ cos θ

]
, t =

[
Δx
Δy

]
,

(2.1)

where X are coordinates of corresponding pixels in current image. sR is linear part and
t is translational part of the affine motion parameters, s, θ, Δx, and Δy are the scaling,
rotation, and shift along the x- and y-axis. It means that each point r(x1;y1) in the reference
image maps to a corresponding point p(x2;y2) in the current image, according to the matrix
equation

[
x2

y2

]
=
[
s · cos θ −s · sin θ
s · sin θ s · cos θ

Δx
Δy

][
x1

y1

]
. (2.2)

Global motion estimation methods can be broadly classified into two categories:
spatial domain [2, 15, 16] and frequency domain. Frequency domain [4, 5, 13, 14] processing
has several advantages over spatial domain methods. The motion estimation is based on the
phase changes of the Fourier Transformation, so it is robust to global illumination changes. Its
computational cost is significantly lower, making it more useful for practical applications. The
partial occlusion does not affect the motion analysis, as the initial geometric transformation
estimation is to be obtained in the frequency domain instead of spatial information.

In this paper, we recover the coarse rotation, translation, and scale parameters of
the transformation at the top level by using the Fourier-Mellin Transform (FMT), which
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is essentially a phase correlation method based on the Fourier and Log-polar transform.
The idea behind FMT method is to makes use of the Fourier Shift Theorem and the
Fourier Rotation Theorem to provide invariance to rotation, translation, and scale. Then it
is performed by phase correlation of the cross-power spectra.

Equation (2.1) can be expressed in Fourier domain as

F2(u, v) =
1
s2
e−j2π(x0u+y0v) · F1

(
u cos θ + v sin θ

s
,
−u sin θ + v cos θ

s

)
, (2.3)

with F2(u, v) the Fourier transform of f2(X) and so is F1(u, v). Let ‖·‖ represent themagnitude
notation, then ‖F2(u, v)‖ and ‖F1(u, v)‖ are related by

‖F2(u, v)‖ =
1
s2

∥∥∥∥F1

(
u cos θ + v sin θ

s
,
−u sin θ + v cos θ

s

)∥∥∥∥. (2.4)

We can see that, the Fourier Transform (FT) itself is translation invariant. So the
rotation and scaling parameters can be determined independent of the translation parameter.

Since dynamic range of the output of FFT is very high, making interpolation in the
frequency domain difficult; this range is compressed by resampling the Fourier magnitude
spectra on log-polar grid. When the Fourier magnitude spectra are converted from Cartesian
coordinate system to a log-polar representation (ρ, γ) as follows,

μ = log
(
ρ
)
, ν = log(s), γ = γ. (2.5)

Then it converts to polar-logarithmic coordinates so that rotation θ and scale s effects
appear as translational shifts along orthogonal γ and log ρ axes. We can obtain

∥∥F2
(
ρ, γ

)∥∥ =
∥∥∥∥F1

(
ρ

s
, γ − θ

)∥∥∥∥. (2.6)

In other words, it can be written in the following way,

∥∥F2
(
log ρ, γ

)∥∥ =
∥∥F1

(
log ρ − log s, γ − θ

)∥∥. (2.7)

It can be seen that, the Fourier-Mellin transform (FMT) gives a transform that its
resulting spectrum is invariant in rotation, translation, and scale.

We can summarize the Fourier-Mellin Transform (FMT) as follows. Firstly, by
working in this translation invariant (Fourier-Mellin) domain, linear component A of affine
transformation (rotation angle and scale factor) can be determined by phase-correlation
method [8, 9, 13], independent of translational component B. Once linear component has
been determined, it can be compensated for and translation. Then, the translation parameters
of x-axis and y-axis can be also calculated by the same method. The procedure that obtains
the coarse estimation by Fourier-Mellin Transform at the top level of the multiscale image
pyramid is also depicted in Figure 2.

Since Fourier magnitude spectrum is applied as translation invariant domain, FFT
of whole original image is needed, making it computational expensive. This problem is
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Figure 2: Coarse Estimation By Fourier-Mellin Transform at the top level of the multiscale image pyramid.

alleviated by multiscale decomposition [3, 15, 16]. The coarse-scale images contain only the
main shapes and general features and less noise, so resulting transformation procedure is
much faster than in original fine scale. For better efficiency, integer low-pass filter is used
with very few nonzero bits in the coefficients. Thus, supplement the frequency method with
a coarse-to-fine multiresolution approach and feature-based registration can overcome most
limitations of the previous scheme.

2.2. Guided Constrained Search in Spatial Domain

Thus, by Fourier-Mellin Transform in the frequency domain of the coarse-scale image,
the initial transformation parameters in (2.1) are obtained. Once the transformation is
computed, the coarse locations of corresponding points are simply handled by applying the
transformation to each interest point extracted in the reference image:

f2
(
x′
i

)
= f1(sRxi + B), (2.8)

where in the query image, x′
i is the ideal corresponding location relating the interest point xi

in the reference image. Due to measurement errors and other uncertainties in camera position
and orientation, matching points may not occur exactly on the estimated mapping locations
in the image plane; in this case, a search in a small neighborhood is necessary. So a search
window centered about the ideal mapping location x′

i is used to significantly limit the search
space for finding conjugate point-pairs. Under the guidance of transformation of each interest
point, efficient candidate correspondence can be estimated within a small region, without
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Figure 3: The transformation obtained by frequency information guide the correspondence search within
small windows, whose centers are ideally mapped from those interest points detected in the reference
image.

meaningless exhaustive search in the entire image. This strategy is illustrated in the following
figure.

2.3. Correspondence Refinement by RANSAC and Geometrical Relationships

Once the transformation parameters are obtained in the frequency domain, under the guid-
ance for each interest feature extracted in the source image, a set of features correspondence
can be established by search within a small area around the ideal projected center. Even so, it
is not assured that all of the matches are necessarily the exact correspondences. Sometimes,
even a small error can have a large influence in the recovered parameters. Actually, in the
case of occlusion or removal, a most similar feature point within that window will be proved
to be false candidate match.

To identify and eliminate outliers, we apply the robust estimation algorithm RANSAC
[17] to find the transformation that is consistent with the largest number of inliers. Inliers are
defined as those putative matches {xi, x

′
i} such that

∥∥f2(x′
i

) − f1(xi)
∥∥ < λ, (2.9)

where λ is a threshold. RANSAC returns the transformation with the largest consensus and
the list of matches in the consensus set. If the set of inliers changes with the improved
transformation, we continue to reestimate the transform until the consensus set converges.
Those false matches which are not consistent with the dominant transformation are rejected
as outliers, ignored at the rest steps. To further improve the estimate, we use the consensus
set to reestimate the transform with all inliers. At each iteration of RANSAC, the location of
each inlying corresponding feature is rectified as follows:

x′
i,k =

(
x′
i,k

+ x′
i,k−1

)
2

, (2.10)

where the x′
i,k−1 and x′

i,k are the location of the ith corresponding point mapped by dominant
transformation at the (k − 1)th and kth iteration. This update can undoubtedly accelerate
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the convergence process. By this step, simultaneous precise feature correspondence and
refined wrap between the image pairs are achieved in a hybrid way.

Then, we make use of the distribution of collections of nearby interest points to
increase the correspondence belief for each other . But how to select such a group of points
and what metrics can be utilized to enhance the performance is a challenge. Following the
works in [18], we make use of structural relationship of interest points to avoid the false
matches caused by local similar regions. The stable geometrical relationships between a set
of interest points can make such a group of points distinct from the similar ones, even in the
case that they looks similar within the single local neighborhood.

An instance of the distribution of nearby corresponding point sets is designed as
follows. For every initial matched feature point pair {zi ↔ z′i}, three nearest points {v1, v2, v3}
around zi in the source image and three nearest points {v′

1, v
′
2, v

′
3} around z′i in the target

image are selected in the reference image, as well as in the captured image, as illustrated in
Figure 4. It is assumed d1 < d2 < d3 and d′

1 < d′
2 < d′

3 in Euclidean distance. Then any two of
these three points and zi can construct an angle. Next, we start with the point v1 and compute
the angle from it to the second point v2 and zi which is marked as α:

tanα =
(kv2zi − kv1zi)
(1 + kv2zikv1zi)

,

d1 =
√
(v1 · x − zi · x)2 +

(
v1 · y − zi · y

)2
.

(2.11)

The angle from v2 to v3 and zi is marked as β. These variables can be computed
in accordance with forums to the above. Also, we compute α′, β′, d′

1, d
′
2, and d′

3 by the
corresponding points in the other image. For a correct matching point pair, the ratio between
α and β is close to ratio between α′ and β′. Further, the ratio between d1 and d2 or d2 and d3 is
close to that in the other image, as expressed in the following equations:

∣∣∣∣αβ − α′

β′

∣∣∣∣ < c1,

∣∣∣∣∣
d1

d2
− d′

1

d′
2

∣∣∣∣∣ < c2,

∣∣∣∣∣
d1

d3
− d′

1

d′
3

∣∣∣∣∣ < c3,

(2.12)

where c1, c2, and c3 are the predefined thresholds to justify whether the neighboring points
around the potential corresponding point are also matched well.

3. Experiments

In this section, we conduct the point correspondence experiments using both the real images
and synthetic deformed image-pairs. We demonstrate the accuracy and the robustness of the
algorithm presented in the second section.
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Figure 4: The illustration of an instance our strategy. For each initial matched feature point pair,
the geometrical relationships between the three nearest points around zi are applied to describe the
distribution.

(a) (b)

Figure 5: Some examples of feature matches in the image pairs named as col90p1 and col91p1, which are
supplied by Leica Geo-systems Geospatial Imaging. A few of them are false matches due to the similarity
of local appearance information.

3.1. Real Remote-Sense Image Matching

Image matching plays a critical important role in remote sensing applications. Due to the
large volumes of remote-sensing data available, automated feature correspondence is highly
desirable. We will consider images that differ by a approximate planar motion, which is
suitable for remote sensing image registration. To measure the performance of the proposed
method, we apply our algorithm to two sets of images. The first set is the image pairs named
as col90p1 and col91p1 (showed in Figure 5), which are supplied by Leica Geo-systems
Geospatial Imaging. The second set is the image pairs of Ji-Ning coal area captured by the
satellite SPOT5.

As noted above, any geometrical feature can be represented as a point set to find
meaningful correspondence with another point set. However, it is important for feature-
based methods to adopt discriminative and robust feature descriptors that are invariant to
the differences between the two image pairs. Lowe [7] presented the SIFT method to extract
distinctive invariant features from images. These features are invariant to image scale and
rotation and provide robust matching across a substantial range of affine distortion, addition
of noise, and changes in illumination. Gauglitz [10] had shown that of several currently
used key point descriptors, SIFT descriptors are the most effective. In this experiment, SIFT
detector and descriptor was adopted for its effective invariant attribute.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 6: Two examples of performance comparison of standard SIFT and the proposed method. The first
column: original interest point in the reference image. The second column: corresponding interest point
using standard SIFT detection in the current image. The third column: the rectified locations yield subpixel
accuracy using our method.

First, the standard SIFT matching procedure is implemented to the image pairs sup-
plied by Leica Geo-systems Geospatial Imaging. Figure 5 shows the feature correspondences
between the image pairs. It can be seen from Figure 5 that, although most classical SIFT
features contain enough discriminative information to match with other corresponding ones,
some of them are false matches due to the similarity of local appearance information. If the
corresponding point pairs are enlarged to watch the details, just like we do in Figures 6 (a1),
(b1), (a2) and (b2). From the images comparison of every left columns and middle columns,
it shows that the locations extracted by SIFT algorithm are not accurate sufficiently, at least
several pixels apart.

Currently in our algorithm, 3-pixel is used as the projection error threshold for
RANSAC and we repeat the RANSAC loop just for 10 times using 3 putative matches to
compute the affine wrap parameters. The length and width of the constrained window for
each mapped point are both 20 pixels, as showed in the right part of the Figure 3.

In the first experiment, given two sets of interested points detected and described by
SIFT feature in the Figure 5(a), the initial set of putative correspondences is established by
standard SIFT matching procedure, which contains 1952 inliers and 1327 outliers totally. All
of the 3279 putative point correspondences are presented in Figure 5(a), from which we can
see almost half of them are mismatches (actually 40.47% are outliers). From Figure 5(b), we
can see that the results are satisfactory, where 98.6% of the outliers are correctly detected
by checking their consistency with the known transformation parameters. The percentage of
outliers is dramatically reduced from 40.47% down to 0.56%.
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Figure 7: The Example of Fixed Source Image and the Synthesized Image pairs.

The experiment on SPOT5’s Ji-Ning coal satellite images also achieves satisfactory
result. The transformation parameters are [1.0007, −0.0226, 48.4592, 0.0323, 0.9969, and
−806.2157] in the form of [s · cos θ,−s · sin θ, x0; s · sin θ, and s · cos θ, y0] according to (2.2).

We also performed the experiments on ten pairs of images from several distinct
domains, including medical scans, natural scenes, and military surveillance. The proposed
method is computationally efficient. This comes from the shift property of the Fourier
Transform (FT) and the use of Fast Fourier Transform. Another reason is that the
transformation obtained in frequency domain at the coarse layer, can serve as an initial good
guess to the matching process, leading to an easy search within a small region.

3.2. On Synthetic Image-Pairs

To further quantitatively evaluate the accuracy of the proposed technique, we perform
an easy way to do the evaluation, in which a known transformation (we take affine
transformation as the concrete example of the transformation style in this case) is applied
to the source image, and the estimated transformation is compared with the known
transformation parameters, to see the accuracy. Two examples are shown in Figure 7. We then
decompose the image pairs into 5 hierarchical layers. The initial guess of the transformation
parameters is obtained by frequency analysis using the first coarse scale images, and then is
tuned at the original level by robust spatial features matching techniques.

Under various parameters of transformation, we compute three metrics, including
Root Mean Square (RMS) error between the point sets after alignment, the correlation
coefficients between the original image and rectified image, and ratio of outlier to putative
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Table 1: RMS error and the correlation coefficient between after the transformation.

Trial number 1 2 3 4 5
RMS error 0.021 0.033 0.043 0.058 0.038
Correlation coefficient 0.993 0.992 0.989 0.988 0.993
Outlier rate 0.42% 0.46% 0.58% 0.65% 0.43%

Table 2: The average relative error and computation time performance compared to FFT and HMIR
method.

Average relative error (%)
Time (sec)

Δx Δy θ s

FMT method 0.9 1.2 4.3 2.7 18.4
HMIR method 4.3 3.9 3.6 2.2 34.7
Proposed method 0.4 0.6 1.4 1.9 21.8

matched point-pairs. The RMS error represents the difference between the original control
points and the new control point locations calculated by the transformation process. Note
that optimum value of the RMS error is 0, indicating exact matching between the images
before and after the rectification; while poor matches result in large RMS error values, small
correlation coefficients and high outlier rate.

In detail, for the fixed source image, we constructed a target image set which contains
100 frame images that were synthesized from random affine transformations with rotation
θ ∈ (−45◦, 45◦), scale s ∈ (0.6, 1.4), and translation t ∈ (±0.25 ×width,±0.25 × height) pixels.
The input image pairs present scale, rotation, and shift changes. We list the 3 metric items
using the first 5 synthesized image pairs under random affine transformations (without
explicit deformation parameter). The 3 metric items, such as correlation coefficients, RMS
error, and outlier rate presented in Table 1 quantitatively confirmed the accuracy of the
proposedmethod. For all of the image pairs between fixed image and the various synthesized
images, the proposed technique significantly improves the 3 metric items. The results in
Table 1 demonstrate that the algorithm successfully recover the deformation between the
image pairs. The capability of detecting outlier is very robust and the capability of matching
correctly is not weakened by the variation of deformation parameter such as scale, rotation,
and translation.

Comparison to Fast Fourier Transform (FFT) [13, 14] and mutual-information-based
registration (HMIR) [16] is provided in Table 2. We repeated 10 times on the five pairs of test
images, which are synthesized using random affine transformations, as stated above. The
table lists the average relative error and computational time that each algorithm needs. For
each of the three algorithms, there are five columns, Δx, Δy, θ, s, and the shift parameters
along the x- and y-axis, the rotation, and scaling parameters using the three algorithms.
The table shows that the transformation parameters estimated using the proposed method
are very close to those actual parameters. Our approach demonstrates robustness with high
accuracy. The mutual information based approach tends to be unstable, especially for large
rotation angles.

In the results, SIFT points are used for the comparison but not for a final application
(the computation time for our proposed method does not take the SIFT point detection into
account). Actually, we also test using Harris corners could be greatly faster without the
degradation of accuracy. The type of the point detector (using SIFT detector or Harris corner
detector) do not have any influence on the performance of proposed method.
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4. Conclusions

In this paper, the combination of these different methods in spatial-frequency domain tends
to compensate for any deficiencies in the individual methods. The integration of frequency
and spatial domain can simultaneously find the correct feature correspondences within small
support windows, the mapping between these image pairs of a same scene and have a
more accurate location result after the rectification step. It has been shown that our hybrid
hierarchical estimation techniques can achieve efficient and robust performance.
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