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This paper gives a novel traffic feature for identifying abnormal variation of traffic under DDOS
flood attacks. It is the histogram of the maxima of the bounded traffic rate on an interval-by-
interval basis. We use it to experiment on the traffic data provided by MIT Lincoln Laboratory
under Defense Advanced Research Projects Agency (DARPA) in 1999. The experimental results
profitably enhance the evidences that traffic rate under DDOS attacks is statistically higher than
that of normal traffic considerably. They show that the pattern of the histogram of the maxima of
bounded rate of attack-contained traffic greatly differs from that of attack-free traffic. Besides, the
present traffic feature is simple in mathematics and easy to use in practice.

1. Introduction

People nowadays are heavily dependent on the Internet that serves as an infrastructure in the
modern society. However, distributed denial-of-service (DDOS) flood attackers remain great
threats to it. By consuming resources of an attacked site, the victim may be overwhelmed such
that it denies services it should offer or its service performances are significantly degraded.
Therefore, intrusion detection system (ISD) for detecting DDOS flood attacks has been greatly
desired.

There are two categories regarding IDSs. One is misuse detection and the other
anomaly detection. Attacking alerts given by misuse detection is primarily based on a library
of known signatures to match against network traffic, see, for example, [1–5]. Thus, attacking
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Figure 1: Time series: OM-W1-1-1999AF for the first 1024 points.
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Figure 2: Traffic upper bound of OM-W1-1-1999AF for 0 ≤ I ≤ 63.

with unknown signatures from new variants of an attack can escape from being detected by
signature-based IDSs with the probability one, see, for example, [6], making such a category
of IDSs at the protected site irrelevant. However, based on anomaly detection, abnormal
variations of traffic are identified as potential intrusion so that this category of IDSs are
particularly paid attention to for identifying new attacking, see, for example, [7–13]. For the
simplicity, in what follows, the term IDS is in the sense of anomaly detection.

Noted that the detection accuracy is a key issue of an anomaly detector, see, for
example, [14, 15]. To be effective, IDSs require appropriate features for accurately detecting
an attack and distinguishing it from the normal activity as can be seen from [10, Section IV].
Hence, developing new traffic features for anomaly detection is essential.

The reference papers regarding traffic features for IDS use are wealthy. For example,
86 features for clustering normal activities are discussed in [9]. Note that a selected feature is
methodology-dependent. In this regard, [16] uses packet head data. The paper [17] utilizes
autocorrelation function of long-range dependent (LRD) traffic time series in packet size and
[18] employs the Hurst parameter. Scherrer et al. adopt scaling properties of LRD traffic [19].

The traffic models used in [17–23] are in the sense of fractal. In general, fractal models
might be somewhat complicated in practical application in engineering in comparison with
the traffic feature proposed in this paper.



Mathematical Problems in Engineering 3

0 21 42 63
0

200

400

600

I

G
A

M
A
(I
)
(b

yt
es

pe
r
I)

Figure 3: Traffic rate bound of OM-W1-1-1999AF for 0 ≤ I ≤ 63.
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Figure 4: Traffic upper bound series for OM-W1-1-1999AF.

Recall that there are two categories in traffic modeling [24, Section XIV]. One is
statistical modeling (e.g., LRD processes). The other bounded modeling, which has particular
applications to modeling traffic at connection level, see, for example, [25–30]. Bounded
models, in conjunction with a class of service disciplines, are feasible and relatively efficient
in applications, such as connection admission control (CAC) in guaranteed quality-of-service
(QoS). In addition, such models are simple in mathematics and relatively easy to be used in
practice in comparison with fractal models. This paper aims at providing a new traffic feature
for anomaly detection based on bounded modeling of traffic. The main contributions in this
paper are as follows.

(i) We present the histogram of the maxima of bounded traffic rate on an interval-by-
interval basis as a traffic feature for exhibiting abnormal variation of traffic under
DDOS flood attacks.

(ii) The experimental results exhibit that the maxima of rate bound of attack-contained
traffic is statistically greater than that of attack-free traffic drastically.

The rest of paper is organized as follows. Experimental data and related work
are briefed in Section 2. The histogram of the maxima of traffic rate bound is proposed
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Figure 5: Traffic rate bound series for OM-W1-1-1999AF.
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Figure 6: Traffic rate bound series. Solid lines for attack-free traffic OM-W1-1-1999AF. Dot lines for attack-
contained traffic OM-W1-1-1999AC.

in Section 3. Experimental results are demonstrated in Section 4, which is followed by
discussions and conclusions.

2. Experimental Data and Related Work

2.1. Experimental Data

While DDOS attacks continue to be a problem, there is currently not much quantitative
data available for researchers to study the behaviors of DDOS flood attacks. The data in the
1998-1999 DARPA (http://www.ll.mit.edu/IST/ideval) are valuable but rare for public use
though there are points worth further discussion [31]. Those data were obtained under the
conditions of realistic background traffic and mean examples of realistic attacks [32, 33]. The
used data sets in 1999 contain more than 200 instances and 58 attacks types, see, for details
[34]. Two data sets are explained below.

2.1.1. Set One: Attack-Free Traffic (1999 Training Data—Week 1)

The first set of data containing 5 traces. We name them by OM-W1-i-1999AF (i = 1, 2, 3, 4, 5),
meaning Outside-MIT-week1-i-1999-attack-free. Table 1 indicates the actual times at which
the first packet and last one were extracted for each trace.
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Figure 7: Maxima of traffic rate bound. (a) Maxima of GAMA(I, n) for OM-W1-1-1999AF. (b) Maxima of
GAMA(I, n) for OM-W2-1-1999AC.

Table 1: Data set for attack-free traffic.

First Packet Time Last Packet Time Trace Name
Mon Mar 1 08:00:02 Tue Mar 2 06:00:02 OM-W1-1-1999AF
Tue Mar 2 08:00:02 Wed Mar 3 06:00:01 OM-W1-2-1999AF
Wed Mar 3 08:00:03 Thu Mar 4 06:00:01 OM-W1-3-1999AF
Thu Mar 4 08:00:03 Fri Mar 5 06:00:02 OM-W1-4-1999AF
Fri Mar 5 08:00:02 Sat Mar 6 06:00:02 OM-W1-5-1999AF

2.1.2. Set Two: Attack-Contained Traffic (1999 Training Data—Week 2)

Five traces are included in the second data set. They are named as OM-W2-i-1999AC (i = 1, 2,
3, 4, 5), implying Outside-MIT-week2-i-1999-attack contained. The actual times at which the
first packet and last one were extracted for each trace are listed in Table 2.

2.2. Traffic Rate under DDOS Flood Attacks

Roughly, high rate is the radical feature of attack-contained traffic. The paper [35] reported
the real events in 2000. He noticed that “the attacks inundated servers with 1 gigabit per
second of incoming data, which is much more traffic than they were built to handle [35, page
12].” The analysis given by Moore et al. says that “to load the network, an attacker generally
sends small packets as rapidly as possible since most network devices (both routers and
NICs) are limited not by bandwidth but by packet processing rate [36, Section 2.1].” They
infer that traffic rate is usually the best measure of network load during an attack. In short,
computer scientists consider high rate as a basic feature of attack-contained traffic, also see,
for example, [37–42]. The experimental results in this paper are simply for the data of the
1999 DARPA in the case of high-rate attacks.
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Figure 8: Histograms. (a) Hist[MGAMA F(n)] of OM-W1-1-1999AF. (b) Hist[MGAMA C(n)] of OM-W1-
1-1999CF. (c) Comparison: Corr FC = 0.01751.

Table 2: Data set for attack-contained traffic.

First Packet Time Last Packet Time Trace Name
Mon Mar 8 08:00:01 Tue Mar 9 06:00:49 OM-W2-1-1999AC
Tue Mar 9 08:00:01 Wed Mar 10 06:00:59 OM-W2-2-1999AC
Wed Mar 10 08:00:03 Thu Mar 11 06:00:01 OM-W2-3-1999AC
Thu Mar 11 08:00:03 Fri Mar 12 06:00:00 OM-W2-4-1999AC
Fri Mar 12 08:00:02 Sat Mar 13 06:00:00 OM-W2-5-1999AC

2.3. Traffic Bounds

In this subsection, we brief the deterministic bounds for accumulated traffic and traffic rate
with the help of demonstrations using traffic traces OM-W1-1-1999AF and OM-W1-1-1999CF.



Mathematical Problems in Engineering 7

0 256 512 768 1024
0

1000

2000
Attack free

i

x
(i
)
(b

yt
es
)

(a)

Attack contained

0 256 512 768 1024
0

1000

2000

i

x
(i
)
(b

yt
es
)

(b)

Figure 9: Time series of traffic traces. (a) The first 1024 points of OM-W1-2-1999AF. (b) The first 1024 points
of OM-W2-2-1999AC.
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Figure 10: Series of traffic rate bound. (a) For OM-W1-2-1999AF. (b) For OM-W2-2-1999AC.

Let x(ti) be the series, indicating the number of bytes in the ith packet (i = 0, 1, . . .)
of arrival traffic at time ti. Then, x(i) is a discrete series, indicating the number of bytes in the
ith packet of arrival traffic. Figure 1 shows a plot of x(i) for the first 1024 points of OM-W1-
1-1999AF.

According to [27, 43], an upper bound of arrival traffic x(i) is given below.

Definition 2.1. Let x(i) be the arrival traffic function. Then,

F(I) = max
i≥0

[x(i + I) − x(i)], for i > 0, I > 0, (2.1)

is called traffic upper bound of x(i) over the duration of length I.
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Figure 11: Series of the maxima of traffic rate bound. (a) For OM-W1-2-1999AF. (b) For OM-W2-2-1999AC.

Note 1. The physical meaning of F(I) is that the accumulated amount of arrival traffic x(i)
over the duration of length I is upper bounded by F(I). The unit of F(I) is bytes. F(I) is an
increasing function in terms of I. Figure 2 indicates F(I) of OM-W1-1-1999AF for 0 ≤ I ≤ 63.

Definition 2.2. Let x(i) be the arrival traffic function. Then,

GAMA(I) =
F(I)
I

=
maxi≥0[x(i + I) − x(i)]

I
, for i > 0, I > 0, (2.2)

is called upper bound of traffic rate (traffic rate bound for short) of x(i).

Note 2. Equation (2.2) specifies that GAMA(I) is the maximum arrival rate at a specific point
in the network over any duration of length I. The unit of GAMA(I) is defined as Bytes per
I. GAMA(I) is a decreasing function in terms of I. Figure 3 demonstrates GAMA(I) of OM-
W1-1-1999AF for 0 ≤ I ≤ 63.

3. Histogram of Maxima of Traffic Rate Bound: A Feature for
Identifying Abnormal Variation of Traffic under DDOS Attacks

In this section, we first introduce the time series of traffic rate bound. Then, we establish
the maxima of traffic rate bound. Finally, we achieve the histogram of the maxima of traffic
rate bound. The demonstrations with the experimental data are used for facilitating the
discussions.
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Figure 12: Histograms of the maxima of traffic rate bound. (a) For OM-W1-2-1999AF. (b) For OM-W2-2-
1999AC. (c) Comparison: Corr FC = 0.163261.

3.1. Traffic Bound Series

Theoretically, I can be any positively real number. In practice, however, I is selected as a finite
positive integer. Fix the value of I and observe traffic bounds in the interval ((n−1)I, nI), n =
1, 2, . . . ,N. Then, we express traffic bounds as a function in terms of the interval index n.
Considering the index n, we express traffic upper bound by F(I, n), which is a series.

Note that x(i) is a stochastic series and so is F(I, n). That is, F(I,m)/=F(I, n) for m/=n.
We term F(I, n) traffic upper bound series. Similarly, we use GAMA(I, n) to represent traffic
rate bound series. Figure 4 shows the traffic upper bound series. Figure 5 plots the rate bound
series.

Since GAMA(I, n) is random, identification in a single interval is not enough. We use
Figure 6 to explain this point of view. From Figure 6, we see that the rate bound of attack-
contained traffic is greater than that of attack-free traffic in some intervals, for example, in
the second and third intervals. However, it is less than the rate bound of attack-free traffic
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Figure 13: Time series of traffic traces. (a) The first 1024 points of OM-W1-3-1999AF. (b) The first 1024
points of OM-W2-3-1999AC.
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Figure 14: Series of traffic rate bound. (a) For OM-W1-3-1999AF. (b) For OM-W2-3-1999AC.

in some intervals, for example, in the first and fourth intervals. Therefore, we will study the
issue how the bound series of traffic rate statistically varies under DDOS flood attacks. For
this reason, we study the maxima of traffic rate bound.

3.2. Maxima of Traffic Rate Bound

Denote that

MGAMA(n) = Max[GAMA(I, n)], (3.1)
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Figure 15: Series of the maxima of traffic rate bound. (a) Maxima of GAMA(I, n) for OM-W1-3-1999AF.
(b) Maxima of GAMA(I, n) for OM-W2-3-1999AC.

over the index I in each interval [(n − 1)I, nI]. Then, MGAMA(n) represents a series to
describe the maximum value of GAMA(I, n) in each interval [(n − 1)I, nI]. In other words,
MGAMA(n) stands for the maxima of GAMA(I, n). The unit of MGAMA(n) is the same
as that of GAMA(I, n). Here and below, we use the notation MGAMA F(n) for attack-
free traffic and MGAMA C(n) for attack-contained traffic. Figures 7(a) and 7(b) give the
plots of MGAMA F(n) and MGAMA C(n) for OM-W1-1-1999AF and OM-W2-1-1999AC,
respectively.

3.3. Histogram of Maxima

Denote Hist[MGAMA F(n)] and Hist[MGAMA C(n)] as the histograms of MGAMA F(n)
and MGAMA C(n), respectively. Then, they represent empirical distributions of
MGAMA F(n) and MGAMA C(n). Figures 8(a) and 8(b) indicate the Hist[MGAMA F(n)]
and Hist[MGAMA C(n)] for OM-W1-1-1999AF and OM-W1-1-1999CF, respectively. From
Figure 8(c), we see that the pattern of Hist[MGAMA F(n)] considerably differs from that of
Hist[MGAMA C(n)]. To investigate this phenomenon quantitatively, we need a measure to
describe the similarity or dissimilarity between the pattern of Hist[MGAMA F(n)] and that
of Hist[MGAMA C(n)], which will be explained in the next subsection.

3.4. Correlation Coefficient Used as a Similarity Measure for
Pattern Matching

There are many measures to characterize the similarity or the dissimilarity of two patterns
in the field of pattern matching, see, for example, [44, 45]. Among them, the correlation
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Figure 16: Histograms of the maxima of traffic rate bound. (a) For OM-W1-3-1999AF. (b) For OM-W2-3-
1999AC. (c) Comparison: Corr FC = 0.045515.

coefficient between two patterns is commonly used in engineering, see, for example, [46].
We use it to measure the pattern similarity in this research. Denote that

CorrFC =
∣
∣corr

{

Hist
[

MGAMAF(n)
]

, Hist
[

MGAMAC(n)
]}∣
∣, (3.2)

where corr implies the correlation operation.
It is known that 0 ≤ Corr FC ≤ 1. The larger the value of Corr FC the more

similar between the pattern of Hist[MGAMA F(n)] and that of Hist[MGAMA C(n)].
Mathematically, the case of Corr FC = 1 implies that the pattern of Hist[MGAMA F(n)] is
exactly the same as that of Hist[MGAMA C(n)]. On the contrary, Corr FC = 0 means that
the pattern of Hist[MGAMA F(n)] is totally different from that of MGAMA C(n)]. From the
point of view of engineering, however, the extreme case of either Corr FC = 1 or Corr FC = 0
does not make much sense due to errors and uncertainties in measurement and digital
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Figure 17: Time series of traffic traces. (a) The first 1024 points of OM-W1-4-1999AF. (b) The first 1024
points of OM-W2-4-1999AC.
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Figure 18: Series of traffic rate bound. (a) For OM-W1-4-1999AF. (b) For OM-W2-4-1999AC.

computation. In practical terms, one uses a threshold for Corr FC to evaluate the similarity
between two. The concrete value of the threshold depends on the requirement designed by
researchers that but it is quite common to take 0.7 as the smallest value of the threshold for the
pattern patching purpose. Suppose that we consider 0.8 as the threshold value. Then, we say
that the pattern of Hist[MGAMA F(n)] is similar to that of Hist[MGAMA C(n)] if Corr FC
≥ 0.8 and dissimilar otherwise.

By computing, we obtain Corr FC = 0.01751 for OM-W1-1-1999AF and OM-W2-
1-1999CF, implying the pattern of Hist[MGAMA F(n)] considerably differs from that of
Hist[MGAMA C(n)] as indicated in Figure 8(c). We will further demonstrate this interesting
phenomenon in the next section.
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Figure 19: Series of the maxima of traffic rate bound. (a) Maxima of GAMA(I, n) for OM-W1-4-1999AF.
(b) Maxima of GAMA(I, n) for OM-W2-4-1999AC.

4. Experimental Results

The value of Corr FC for OM-W1-1-1999AF and OM-W2-1-1999CF has been mentioned
above. In this section, we illustrate experimental results describing Corr FC for OM-W1-2-
1999AF and OM-W2-2-1999CF. The plots to illustrate Corr FC for OM-W1-3-1999AF and OM-
W2-3-1999CF, OM-W1-4-1999AF and OM-W2-4-1999CF, OM-W1-5-1999AF and OM-W2-5-
1999CF and are listed in the appendices.

Figures 9(a) and 9(b) are the plots of the first 1024 points of OM-W1-2-1999AF
and OM-W2-2-1999CF, respectively. Figures 10(a) and 10(b) indicate the series of traffic
rate bound for OM-W1-2-1999AF and OM-W2-2-1999CF for n = 0, 1, . . . , 16 with I = 64,
respectively. Figures 11(a) and 11(b) demonstrate the maxima of rate bound for both traffic
traces for n = 0, 1, . . . , 128. Figures 12(a) and 12(b) show the histograms of the maxima
of traffic rate bound for both traces. Figure 12(c) gives the comparison between two. By
computation, we have Corr FC = 0.163261, meaning that the pattern of Hist[MGAMA F(n)]
considerably differs from that of Hist[MGAMA C(n)] for OM-W1-2-1999AF and OM-W2-2-
1999AC.

Note that the values of Corr FC for other three pairs of test traces, see Figures 16(c),
20(c), and 24(c), also exhibit that the pattern of Hist[MGAMA F(n)] is noticeably different
from that of Hist[MGAMA C(n)]. We summarize the values of Corr FC of all five pairs of
traces in Table 3, which shows that Corr FC < 0.2 for all pairs of test traces.

5. Discussions and Conclusions

The maxima of rate bound of attack-contained traffic is not always higher than that of attack-
free traffic, see Figure 7. Statistically, however, it is higher than that of attack-free traffic
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Figure 20: Histograms of the maxima of traffic rate bound. (a) For OM-W1-4-1999AF. (b) For OM-W2-4-
1999AC. (c) Comparison: Corr FC = 0.141885.

significantly as can be seen from the experimental results illustrated by Figures 8(c), 12(c),
16(c), 20(c), and 24(c). In addition, the results expressed in Table 3 indicate that the pattern
of Hist[MGAMA F(n)] is obviously different from that of Hist[MGAMA C(n)]. Thus, the
results in this paper suggest that the histogram of the maxima of traffic rate bound may
yet be a traffic feature to distinctly identify abnormal variation of traffic under DDOS flood
attacks.

In comparison with fractal model of traffic as discussed in [18, 19, 43], the present
feature has an apparent advantage. Recall that statistical models like LRD processes, see,
for example, [18, 19], are usually for traffic in the aggregate case, but there is lack of evidence
to use them to characterize statistical patterns of real traffic at connection. As a matter of
fact, finding statistical patterns of traffic at connection may be a tough task. To overcome
difficulties in describing traffic at connection level, bounded modeling is introduced [25–29].
Thus, if we let xj,k(t) be all flows going through server k from input link j and let Fj,k(I)
be the maximum traffic constraint function of xj,k(t), the present analysis method of traffic
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Figure 21: Time series of traffic traces. (a) The first 1024 points of OM-W1-5-1999AF. (b) The first 1024
points of OM-W2-5-1999AC.
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Figure 22: Series of traffic rate bound. (a) For OM-W1-5-1999AF. (b) For OM-W2-5-1999AC.

Table 3: Correlation coefficients between the pattern of Hist[MGAMA F(n)] and that of
Hist[MGAMA C(n)] for 5 pairs of test traces.

Attack-free traffic traces Attack-contained traffic traces Corr FC

OM-W1-1-1999AF OM-W2-1-1999AC 0.01751
OM-W1-2-1999AF OM-W2-2-1999AC 0.163261
OM-W1-3-1999AF OM-W2-3-1999AC 0.045515
OM-W1-4-1999AF OM-W2-4-1999AC 0.141885
OM-W1-5-1999AF OM-W2-5-1999AC 0.177468
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Figure 23: Series of the maxima of traffic rate. (a) Maxima of GAMA(I, n) for OM-W1-5-1999AF. (b)
Maxima of GAMA(I, n) for OM-W2-5-1999AC.

is technically sound and usable for xj,k(t) but fractal models may not. Since the bounded
models of traffic are mainly used at connection level in some applications, such as real-time
admission control, it is clear that the present traffic feature for identifying abnormal variation
of traffic under DDOS flood attacks can be extracted at early stage of attacks.

Appendices

These appendices gives experimental results for three pairs of traces. They are OM-W1-
3-1999AF and OM-W2-3-1999CF, OM-W1-4-1999AF and OM-W2-4-1999CF, and OM-W1-5-
1999AF and OM-W2-5-1999CF. The values of Corr FC for each pair of traces are given in the
captions of Figures 16(c), 20(c), and 24(c), respectively.

A. Experiments for OM-W1-3-1999AF and OM-W2-3-1999CF

See Figures 13, 14, 15, and 16.

B. Experiments for OM-W1-4-1999AF and OM-W2-4-1999CF

See Figures 17, 18, 19, and 20.

C. Experiments for OM-W1-5-1999AF and OM-W2-5-1999CF

See Figures 21, 22, 23, and 24.
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Figure 24: Histograms of the maxima of traffic rate bound. (a) For OM-W1-5-1999AF. (b) For OM-W2-5-
1999AC. (c) Comparison: Corr FC = 0.177468.
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