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The effect of thermal radiation on steady hydromagnetic heat transfer by mixed convection flow
of a viscous incompressible and electrically conducting fluid past an exponentially stretching
continuous sheet is examined. Wall temperature and stretching velocity are assumed to vary
according to specific exponential forms. An external strong uniform magnetic field is applied
perpendicular to the sheet and the Hall effect is taken into consideration. The resulting governing
equations are transformed into a system of nonlinear ordinary differential equations using
appropriate transformations and then solved analytically by the homotopy analysis method
(HAM). The solution is found to be dependent on six governing parameters including the
magnetic field parameterM, Hall parameterm, the buoyancy parameter ξ, the radiation parameter
R, the parameter of temperature distribution a, and Prandtl number Pr. A systematic study is
carried out to illustrate the effects of these major parameters on the velocity and temperature
distributions in the boundary layer, the skin-friction coefficients, and the local Nusselt number.

1. Introduction

In many industrial manufacturing processes, the problem of flow and heat transfer in two-
dimensional boundary layer on a continuous stretching surface, moving in an otherwise
quiescent fluid medium, has attracted considerable attention during the last few decades.
Examples may be found in continuous casting, glass-fiber production, hot rolling, wire
drawing, paper production, drawing of plastic films, metal and polymer extrusion, andmetal
spinning. In recent years MHD flow problems have become more important in industry,
since many metallurgical processes involve the cooling of continuous strips or filaments.
By drawing them in an electrically conducting fluid in the presence of a magnetic field,
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the rate of cooling can be controlled. Another important application of hydromagnetics to
metallurgy is the purification of moltenmetals from nonmetallic inclusions by the application
of a magnetic field. The flow past a moving or stretching surface in an ambient fluid differs
from that of the classical Blasius problem of flow past a stationary surface. The moving
surface sucks the fluid and pumps it back in the downstream direction. Consequently, both
the surface shear stress and the heat transfer are significantly enhanced. Sakiadis [1] firstly
studied the boundary layer flow over a stretched surface moving with a constant velocity.
Crane [2] extended this concept to a stretching sheet with linearly varying surface speed
and presented an exact analytical solution for the steady two-dimensional stretching of a
surface in a quiescent fluid. This problem has later been extensively studied in various
directions including porous surface, non-Newtonian fluids, magnetohydrodynamic fluid,
heat transfer, mass transfer, porous medium, and slip effects. Some interesting investigations
are mentioned in the references [3–9]. It is known that the buoyancy force can produce
significant changes in the velocity and temperature distribution and, hence, in the heat
transfer rate from the surface. The effect of buoyancy force over continuous moving surfaces
through an otherwise quiescent fluid was investigated by Chen and Strobel [10] and Fan
et al. [11] for horizontal surfaces, by Chen [12], Ali and Al-Yousef [13, 14] and Abd El-Aziz
and Salem [15] for vertical surfaces and by Moutsoglou and Chen [16], Strobel and Chen
[17], and Chen [18] for vertical and inclined surfaces. A new dimension is added to the
study of flow and heat transfer in a viscous fluid over a stretching surface by considering
the effect of thermal radiation. We know that the radiation effect is important under many
nonisothermal situations. If the entire system involving the polymer extrusion process is
placed in a thermally controlled environment, then radiation could become important.
Radiative heat transfer flow is very important in manufacturing industries for the design
of reliable equipment, nuclear plants, gas turbines, and various propulsion devices for
aircraft, missiles, satellites, and space vehicles. Also, the effect of thermal radiation on the
convective flows is important in the content of space technology and processes involving
high temperature. The knowledge of radiation heat transfer in the system can perhaps
lead to a desired product with a sought characteristic. However, in all the stretching sheet
problems (both hydrodynamic and hydromagnetic) mentioned earlier, radiation effect has
not been considered. Extensive literature that deals with flows in the presence of radiation
effects is now available (see e.g, England and Emery [19], Gorla and Pop [20], Raptis
[21], and Abd El-Aziz [22–24]). All the above-mentioned investigations were limited to a
continuous surface moving with a constant, linear, or nonlinear velocity. However very little
attention is given to the flow over an exponentially stretching sheet. Magyari and Keller [25]
analyzed the steady free convection flow and heat transfer from an exponentially stretching
vertical surface. Elbashbeshy [26] examined the flow and heat transfer characteristics by
considering exponentially stretching continuous surface. Viscoelastic boundary layer flow
over an exponential stretching continuous sheet has been examined by [27, 28]. Recently,
Partha et al. [29] studied the effect of viscous dissipation on the mixed convection heat
transfer from an exponentially stretching surface. Very recently, Abd El-Aziz [30] examined
the problem of viscous dissipation effect on mixed convection flow of a micropolar fluid
over an exponentially stretching sheet. When the conducting fluid is an ionized gas, and
the strength of the applied magnetic field is large, the conductivity normal to the magnetic
field is reduced due to the free spiraling of electrons and ions about the magnetic lines
of force before suffering collisions and a current is induced in a direction normal to both
electric and magnetic fields. This phenomenon is called Hall effect. In all of the previous
investigations, the Hall term was ignored in applying Ohm’s law as it has no marked effect
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for small and moderate values of the magnetic field. When the medium is rarefied or if a
strong magnetic field is present, the conductivity of the fluid is anisotropic and the effect
of Hall current cannot be neglected. The study of MHD viscous flows with Hall current has
important applications in problems of power generators andHall accelerators as well as flight
magnetohydrodynamics. The current trend for the application of magnetohydrodynamics is
toward a strong magnetic field (so that the influence of electromagnetic force is noticeable)
and towards a low density of the gas (such as in space flight and in nuclear fusion
research) [31]. Under these conditions the Hall current becomes important. With the above
understanding, Pop and Watanabe [32] studied the problem of free convection flow of an
electrically conducting viscous fluid without neglecting the Hall effect. Abo-Eldahab and
Abd El-Aziz [33] analyzed the problem of MHD free convection flow of an electrically
conducting and heat generating/absorbing fluid past a semi-infinite vertical plate taking into
consideration the effects of Hall and ion-slip currents. Megahed et al. [34] investigated the
effects of Hall currents on a steady free convection flow andmass transfer past a semi-infinite
plate past a viscous incompressible electrically conducting fluid using similarity analysis.
Abo-Eldahab and Abd El-Aziz [35] studied the effect of Hall current and Ohmic heating
on mixed convection boundary layer flow of a micropolar fluid from a rotating cone. Abo-
Eldahab and Abd El-Aziz [36] presented an analysis for the effects of viscous dissipation
and Joule heating on the flow of an electrically conducting and viscous incompressible
fluid past a semi-infinite plate in the presence of a strong transverse magnetic field and
heat generation/absorption. Saha et al. [37] analyzed the effect of Hall current on the
steady, laminar, natural convection boundary layer flow of MHD viscous and incompressible
fluid from a semi-infinite heated permeable vertical flat plate. However, relatively little
work has been done on the effect of Hall current on the boundary layer flow of an
electrically conducting viscous fluid past a stretching surface. The effect of Hall current on
a steady, laminar, hydromagnetic boundary layer flow of an electrically conducting and heat
generating/absorbing fluid along a stretching sheet is considered by Abo-Eldahab et al. [38]
and Salem and Abd El-Aziz [39]. Recently, Abd El Aziz [40] studied the unsteady flow
and heat transfer over a stretching surface with Hall effect. To the best of our knowledge,
no analytical or numerical results have been reported for the effects of Hall current on the
convective heat transfer past an exponentially stretching sheet in the presence of thermal
radiation. Recently, Sajid and Hayat [41] gave analytical solution for the problem of radiation
effect on heat transfer of a viscous fluid over an exponentially stretching sheet using the
homotopy analysis method (HAM) (Liao [42, 43]). This method is based on a fundamental
concept in topology, that is, homotopy [44] which is widely used in numerical techniques
(Chan and Keller [45], Grigolyuk and Shalashilin [46]). In this paper, HAM is employed to
find an analytical solution of the problem of Hall effect on MHD mixed convection flow past
a vertical stretching surface in the presence of radiation.

2. Analysis

Consider the steady mixed convection boundary layer flow past a heated semi-infinite
vertical wall stretching with velocity Uw and a given temperature distribution Tw moving
through a quiescent viscous, incompressible, and electrically conducting fluid with constant
temperature T∞. The positive x coordinate is measured along the stretching sheet in the
direction of motion and the positive y coordinate is measured normal to the sheet in the
outward direction toward the fluid. The leading edge of the stretching sheet is taken as
coincident with z-axis (see Figure 1). The fluid is considered to be a gray, absorbing-emitting
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Figure 1: Schematic representation of the physical model and coordinates system.

radiation but nonscattering medium and the Rosseland approximation is used to describe the
radiative heat flux in the energy equations. Also, the flow is subjected to a strong transverse
magnetic field B0 with a constant intensity along the positive y-direction. The magnetic
Reynolds is assumed to be small enough (Rem � 1) so that the induced magnetic field can
be neglected. This assumption is justified since the magnetic Reynolds number is generally
very small for weakly ionized gases [47]. In general, for an electrically conducting fluid, Hall
current affects the flow in the presence of a strong magnetic field. The effect of Hall current
gives rise to a force in the z-direction, which induces a crossflow in that direction and hence
the flow becomes three-dimensional. To simplify the problem, we assume that there is no
variation of flow quantities in z-direction. This assumption is considered to be valid if the
surface is of infinite extent in the z-direction. If the Hall term is retained in generalized Ohm’s
law, then the following expression holds [48]:

J +
ωeτe
B0

(J × B) = σ
(
E +V × B +

1
ene

∇pe
)
, (2.1)

where J = (Jx, Jy, Jz) is the current density vector, V is the velocity vector, B = (0, B0, 0) is
the magnetic induction vector, ωe is the cyclotron frequency of electrons, τe is the electron
collision time, and σ is the electrical conductivity. The ion-slip and thermoelectric effects
are not included in (2.1). Further it is assumed that ωeτe ∼ O (1) and ωiτi < 1 where
ωi and τi are cyclotron frequency and collision time for ions, respectively. In addition, we
consider the case of a short circuit problem in which the applied electric field E = 0 and for
partially ionized gas, the electron pressure gradient may be neglected. Assuming the plate
to be electrically nonconducting, the generalized Ohm’s law under the above conditions
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gives Jy = 0 everywhere in the flow. Hence under these assumptions, equating the x and
z components in (2.1) and solving for the current density components Jx and Jz, we have

Jx =
σB0

(1 +m2)
(mu −w),

Jz =
σB0

(1 +m2)
(u +mw).

(2.2)

Here u, v, and w are the x-, y-, and z-components of the velocity vector V and m(= ωete) is
the Hall parameter.

Finally, we assume the fluid is isotropic, homogeneous, and has the scalar constant
viscosity and electric conductivity. Under the above assumptions and invoking the
Boussinesq approximation, the boundary layer equations governing the flow and heat
transfer of a viscous and incompressible fluid can be written as

∂u

∂x
+
∂v

∂y
= 0, (2.3)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) −

σB2
0

ρ(1 +m2)
(u +mw), (2.4)

u
∂w

∂x
+ v

∂w

∂y
= ν

∂2w

∂y2
+

σB2
0

ρ(1 +m2)
(mu −w), (2.5)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1
ρcp

∂qr
∂y

, (2.6)

where T is the fluid temperature, ν(= μ/ρ) is the kinematic coefficient of viscosity with μ
being the fluid viscosity and ρ is the fluid density, α(= k/ρcp) is the thermal diffusivity with
k being the fluid thermal conductivity and cp is the heat capacity at constant pressure, and qr
is the radiative heat flux.

The radiative heat flux qr under Rosseland approximation [41] has the form

qr = − 4σ
3k1

∂T4

∂y
, (2.7)

where σ is the Stefan-Boltzmann constant and k1 is the mean absorption coefficient.
We assume that the temperature difference within the flow is sufficiently small such

that T4 may be expressed as a linear function of temperature. This is accomplished by
expanding T4 in a Taylor series about T∞ and neglecting higher-order terms, thus

T4 ∼= 4T3
∞T − 3T4

∞. (2.8)
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In view of (2.7) and (2.8), (2.6) reduces to

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
16σT3

∞
3k1ρcp

∂2T

∂y2
. (2.9)

The associated boundary conditions are

u = Uw(x), v = 0, w = 0, T = Tw(x), at y = 0,

u −→ 0, w −→ 0, T −→ T∞ at y −→ ∞.
(2.10)

The stretching surface is assumed to have an exponential velocity distribution of the form
[30]:

Uw(x) = U0 exp
(x
L

)
. (2.11)

Here U0 is a constant and L is the reference length. The exponential velocity (2.11) is valid
only when x � Lwhich occurs very near to the slot [28].

Also the surface temperature Tw(x) of the stretching sheet is assumed to be in the form:

Tw(x) = T∞ + T0 exp
(ax
2L

)
, (2.12)

where a and T0 are the parameters of temperature distribution on the stretching surface and
T∞ is the ambient temperature. The special case a = 0 corresponds to the well-known but
important particular case of the isothermal plate.

Introduce the dimensionless variables η, f , h, and θ as follows:

η = y

√
U0

2νL
exp

( x

2L

)
, (2.13)

ψ
(
x, y

)
=
√
2νLU0 exp

( x

2L

)
f
(
η
)
, (2.14)

w = U0 exp
(x
L

)
h
(
η
)
, (2.15)

T = T∞ + (Tw − T∞)θ
(
η
)
. (2.16)

In (2.14) the stream function ψ(x, y) is defined by u = ∂ψ/∂y and v = −∂ψ/∂x, such that the
continuity equation (2.3) is satisfied automatically and (Tw − T∞) is given by (2.12).
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In terms of these new variables, the velocity components can be expressed as

u = U0 exp
(x
L

)
f ′(η), v = −

√
νU0

2L
exp

( x

2L

)(
f + ηf ′), (2.17)

where prime denotes ordinary differentiation with respect to η. Now substituting (2.7)–(2.10)
in (2.4), (2.5), and (2.9)we obtain the following locally similar ordinary differential equations:

f ′′′ + ff ′′ − 2f ′2 + 2ξθ − 2M
1 +m2

(
f ′ +mh

)
= 0, (2.18)

h′′ + fh′ − 2f ′h +
2M

1 +m2

(
mf ′ − h) = 0, (2.19)

(
1 +

4
3R

)
θ′′ + Pr

(
fθ′ − af ′θ

)
= 0. (2.20)

The boundary conditions (2.10) then turn into

f ′(0) = 1, f(0) = 0, h(0) = 0, θ(0) = 1,

f ′(∞) −→ 0, h(∞) −→ 0, θ(∞) −→ 0,
(2.21)

where ξ = Grx/Re2x is the mixed convection or buoyancy parameter with Grx = gβ(Tw −
T∞)L3/ν2 being the local Grashof number and Rex = UwL/ν is the local Reynolds number,
M = σB2

0L/ρUw is the local magnetic field parameter, R = kk1/4σT3
∞ is the radiation

parameter, and Pr = ν/α is the Prandtl number.
We notice that when ξ = 0, (2.18), (2.19), and (2.20) are uncoupled and a purely forced

convection situation results. In this case, the flow field is not affected by the thermal field.
Also, in the absence of Hall (m = 0), buoyancy (ξ = 0), and radiation (R → ∞) effects, we
notice that (2.18)–(2.20) reduce to those of Magyari and Keller [25].

For practical applications, the major physical quantities of interest are the local skin-
friction coefficient in the x-direction

Cfx =
2τwx
ρU2

w

=
2μ

(
∂u/∂y

)
y=0

ρU2
w

=
√
2Re−1/2x f ′′(0), (2.22)

local skin-friction coefficient in the z-direction,

Cfz =
2τwz
ρU2

w

=
2μ

(
∂w/∂y

)
y=0

ρU2
w

=
√
2Re−1/2x h′(0), (2.23)

and the local Nusselt number,

Nux =
L

(Tw − T∞)
(
−∂T
∂y

)
y=0

= − 1√
2
Re1/2x θ′(0). (2.24)
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3. HAM Solutions

In order to solve the governing nonlinear system (2.18)–(2.20) subject to the boundary
conditions (2.21)we employ the homotopy analysis method [43]. According to the boundary
conditions (2.21), it is reasonable to assume that f(η), h(η), and θ(η) can be expressed by the
following set of base functions:

{
ηke−nη | k � 0, n � 0

}
(3.1)

such that

f
(
η
)
=

∞∑
m=0

∞∑
n=0

∞∑
k=0

akm,nη
ke−nη,

h
(
η
)
=

∞∑
m=0

∞∑
n=0

∞∑
k=0

bkm,nη
ke−nη,

θ
(
η
)
=

∞∑
m=0

∞∑
n=0

∞∑
k=0

dkm,nη
ke−nη,

(3.2)

where akm,n, b
k
m,n and dkm,n are constant coefficients. The rule of solution expression provides

us with a starting point. It is under the rule of solution expression that initial approximations,
auxiliary linear operators, and the auxiliary functions are determined. So, according to the
rule of solution expression, we choose the initial guess and auxiliary linear operator [49–51]
in the following forms:

f0
(
η
)
= 1 − e−η,

h0
(
η
)
= ηe−η,

θ0
(
η
)
= e−η,

Lf = f ′′′ + f ′′,

Lh = h′′ + h′,

Lθ = θ′′ + θ′

(3.3)

in which the auxiliary linear operators have the following properties:

Lf

[
C1 + C2η + C3e

−η] = 0,

Lh

[
C4 + C5e

−η] = 0,

Lθ

[
C6 + C7e

−η] = 0,

(3.4)

whereC′
is (i = 1, ..., 7) are constants. Let p ∈ [0, 1] denote the embedding parameter and let �1,

�2, and �3 indicate nonzero auxiliary parameters. We then construct the following equations.
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3.1. Zeroth-Order Deformation Equations

Consider

(
1 − p)Lf

[
f
(
η; p

) − f0(η)] = p�1Nf

[
f
(
η; p

)
, h
(
η; p

)
, θ
(
η; p

)]
,

(
1 − p)Lh

[
h
(
η; p

) − h0(η)] = p�2Nh

[
f
(
η; p

)
, h
(
η; p

)]
,

(
1 − p)Lθ

[
θ
(
η; p

) − θ0(η)] = p�3Nθ

[
f
(
η; p

)
, θ
(
η; p

)]
,

(3.5)

f
(
0; p

)
= 0,

df
(
η; p

)
dη

∣∣∣∣∣
η=0

= 1,
df

(
η; p

)
dη

∣∣∣∣∣
η=∞

= 0,

h
(
0; p

)
= 0, h

(∞; p
)
= 0,

θ
(
0; p

)
= 1, θ

(∞; p
)
= 0,

(3.6)

where the nonlinear operatorsNf, Nh, andNθ, respectively, are

Nf

[
f
(
η; p

)
, h
(
η; p

)
, θ
(
η; p

)]
=
∂3f

(
η; p

)
∂η3

+ f
(
η; p

)∂2f(η; p)
∂η2

− 2

(
∂f

(
η; p

)
∂η

)2

+ 2ξθ
(
η; p

)

− 2M
1 +m2

(
∂f

(
η; p

)
∂η

+mh
(
η; p

))
,

Nh

[
f
(
η; p

)
, h
(
η; p

)]
=
∂2h

(
η; p

)
∂η2

+ f
(
η; p

)∂h(η; p)
∂η

− 2
∂f

(
η; p

)
∂η

h
(
η; p

)

+
2M

1 +m2

(
m
∂f

(
η; p

)
∂η

− h(η; p)
)
,

Nθ

[
f
(
η; p

)
, θ
(
η; p

)]
= (3R + 4)

∂2θ
(
η; p

)
∂η2

− 3PrR

(
a
∂f

(
η; p

)
∂η

θ
(
η; p

) − f(η; p)∂θ
(
η; p

)
∂η

)
.

(3.7)
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Obviously when p = 0 and p = 1, the above zeroth-order deformation equations (3.5) have
the solutions:

f
(
η; 0

)
= f0

(
η
)
, f

(
η; 1

)
= f

(
η
)
,

h
(
η; 0

)
= h0

(
η
)
, h

(
η; 1

)
= h

(
η
)

θ
(
η; 0

)
= θ0

(
η
)
, θ

(
η; 1

)
= θ

(
η
)
.

(3.8)

Expanding f(η; p), h(η; p), and θ(η; p) in Taylor’s series with respect to p, we have

f
(
η; p

)
= f0

(
η
)
+

∞∑
m=1

fm
(
η
)
pm,

h
(
η; p

)
= h0

(
η
)
+

∞∑
m=1

hm
(
η
)
pm,

θ
(
η; p

)
= θ0

(
η
)
+

∞∑
m=1

θm
(
η
)
pm,

(3.9)

where

fm
(
η
)
=

1
m!

∂mf
(
η; p

)
∂pm

∣∣∣∣∣
p=0

,

hm
(
η
)
=

1
m!

∂mh
(
η; p

)
∂pm

∣∣∣∣∣
p=0

,

θm
(
η
)
=

1
m!

∂mθ
(
η; p

)
∂pm

∣∣∣∣∣
p=0

.

(3.10)

3.2. mth-Order Deformation Equations

Differentiating the zeroth-order deformation equations (3.5) m-times with respect to p, then
setting p = 0, and finally dividing them by m!, we obtain the mth-order deformation
equations:

Lf

[
fm

(
η
) − χmfm−1

(
η
)]

= �1R
f
m

(
η
)
,

Lh

[
hm

(
η
) − χmhm−1

(
η
)]

= �2R
h
m

(
η
)
,

Lθ

[
θm

(
η
) − χmθm−1

(
η
)]

= �3R
θ
m

(
η
)

(3.11)
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subject to the boundary conditions:

fm(0) =
dfm

(
η; 0

)
dη

∣∣∣∣∣
η=0

=
dfm

(
η; 0

)
dη

∣∣∣∣∣
η=∞

= 0,

hm(0) = hm(∞) = 0,

θm(0) = θm(∞) = 0,

(3.12)

where

R
f
m

(
η
)
= f ′′′

m−1
(
η
)
+ 2ξθm−1

(
η
) − 2M

1 +m2

(
f ′
m−1

(
η
)
+mhm−1

(
η
))

+
m−1∑
k=0

[
fm−1−k

(
η
)
f ′′
k

(
η
) − 2f ′

m−1−k
(
η
)
f ′
k

(
η
)]
,

Rh
m

(
η
)
= h′′m−1

(
η
)
+

2M
1 +m2

(
mf ′

m−1
(
η
) − hm−1

(
η
))

+
m−1∑
k=0

[
fm−1−k

(
η
)
h′k

(
η
) − 2hm−1−k

(
η
)
f ′
k

(
η
)]
,

Rθ
m

(
η
)
= (3R + 4)θ′′m−1

(
η
) − 3PrR

m−1∑
k=0

[
aθm−1−k

(
η
)
f ′
k

(
η
) − θ′m−1−k

(
η
)
fk
(
η
)]
,

χm =

{
0, m � 1,
1, m > 1.

(3.13)

If we let f∗
m(η), h

∗
m(η), and θ∗m(η) as the special solutions of (3.11), the general solution is

given by

fm
(
η
)
= f∗

m

(
η
)
+ C1 + C2η + C3e

−η,

hm
(
η
)
= h∗m

(
η
)
+ C4 + C5e

−η,

θm
(
η
)
= θ∗m

(
η
)
+ C6 + C7e

−η,

(3.14)

where the integral constants C′
is (i = 1, ..., 7) are determined by the boundary conditions

(3.12). In this way it is easy to solve the linear nonhomogeneous equations (3.11) by using
Maple one after the other in the orderm = 1, 2, 3, . . ..

3.3. Convergence of the Analytic Solution

Liao [43] showed that whenever a solution series converges, it will be one of the solutions
of considered problem. Therefore, it is important to ensure that the solutions series are
convergent. The solutions series (3.9) contain the nonzero auxiliary parameters �1, �2, and �3,
which can be chosen properly by plotting the so-called �-curves to ensure the convergence of
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Figure 3: �2 curve for 14th-order of approximation.

the solutions series and rate of approximation of the HAM solution. To plot the convergence
curve of one of the auxiliary parameters �1, �2, and �3 we must choose the values of other
two parameters. In the present work, the optimal HAM [52] is used to obtain the optimal
values of the auxiliary parameters by means of the minimum of the residual squares of the
governing equations. The interval on �-axis for which the �-curve becomes parallel to the �-
axis is recognized as the set of admissible values of � for which the solution series converges.
To see the range for admissible values of �1, �2, and �3 for the present problem, �-curves
of f ′′(0), h′(0), and θ′(0) are shown in Figures 2, 3, and 4 for 14th-order of approximation
when Pr = 0.72, M = n = 1, m = 0.2, R = 5, and ξ = 1. According to these figures,
the convergence ranges for f ′′(0), h′(0), and θ′(0) are −0.07 � �1 � −0.01, −0.07 �
�2 � −0.01, and −0.1 � �3 � −0.7. To assure the convergence of the HAM solution,
the values of �1, �2, and �3 should be chosen from these regions. The region for the



Mathematical Problems in Engineering 13

0

0.1

0.2

0.3

0.4

14th-order approximation

0−0.2−0.4−0.6−0.8
ħ3

−θ
′ (

0)

Figure 4: �3 curve for 14th-order of approximation.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

M = 0, 0.5, 1, 1.5, 2, 2.5, 3

f ′

η

Figure 5: Tangential velocity profiles for various values ofM withm = 2, ξ = 1, a = 1, R = 5, and Pr = 0.72.

values of �1, �2, and �3 is strongly dependent on the values of involving parameters.
Obviously our calculations show that the series (3.9) converge in the whole region of η when
�1 = �2 = −0.04 and �3 = −0.4.

4. Results and Discussion

This section describes the graphical results of some interesting parameters for velocity and
temperature profiles. Figures 5, 6, and 7 present typical tangential velocity f ′(η), transverse
velocity h(η), and temperature θ(η) profiles form = 0.2, ξ = 1, a = 1, R = 5, and Pr = 0.72 and
various values of the magnetic parameter M (M = 0, 0.5, 1, 1.5, 2, 2.5 and 3). Figures 5 and
7 demonstrate that the velocity of the fluid diminishes, whilst the temperature distribution
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enhances within the boundary layer the magnetic parameterM rising from 0 to 3. This is due
to the fact that the application of a transverse magnetic field results in a drag-like force called
the Lorentz force. This force tends to slow down the movement of the fluid along surface and
increases in the temperature. On the other hand, asM increases a crossflow in the transverse
direction is greatly induced due to the Hall effect. Accordingly the transverse velocity h(η)
increases asM increases as shown in Figure 6.

Figures 8, 9, and 10 illustrate the influence of the Hall parameter m on the tangential
velocity f ′(η), transverse velocity h(η), and temperature θ(η) profiles in the boundary
layer. Figure 8 shows that the tangential velocity f ′(η) increases while the temperature θ(η)
decreases with increasingm. This is due to the fact that the effective conductivity (σ/(1+m2))
decreases with increasing m which in turn reduces the magnetic damping force on f ′(η).
Also it is shown from these figures that the velocity and temperature profiles approach their
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classical hydrodynamic values when the Hall parameterm increases to∞ since the magnetic
force terms approach zero value for very large values of m. On the other hand Figure 9
shows that the transverse flow in the z-direction first increases gradually with m, reaching
a maximum profile for m = 1.7 and then decreases for m > 1.7 being equal to zero when m
becomes very large. This is due to the fact that for large values ofm, the term (1/(1 +m2)) is
very small and hence the resistive effect of the magnetic field is diminished.

In Figures 11, 12, and 13, the influence of the radiation parameter R on the profiles
of the tangential velocity, transverse velocity, and temperature is presented, respectively, for
M = 1, m = 0.2, ξ = 1, a = 1, and Pr = 0.72. From Figure 13 it is obvious that the temperature
θ(η) is greatly increased as R is decreased. This is due to the fact that a decrease in the
values of R(= kk1/4σT3

∞) for given k and T∞ leads to a decrease in the Rosseland radiation
absorptivity k1. According to (2.6) and (2.7), the divergence of the radiative heat flux ∂qr/∂y
increases as k1 decreases which in turn increases the rate of radiative heat transferred to
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Figure 11: Tangential velocity profiles for various values of R with M = 1, m = 2, ξ = 1, a = 1, and Pr =
0.72.

the fluid and hence the fluid temperature increases. In view of this explanation, the effect
of radiation becomes more pronounced as R → 0 (R/= 0) and can be ignored when R → ∞.
The increase in the fluid temperature has a direct effect on the buoyancy force which in turn
induces more flow in the boundary layer causing the velocity (tangential and transverse)
of the fluid there to increase as obvious from Figures 11 and 12. Also, it is seen from Figures
11–13 that the larger the R, the thinner the momentum and thermal boundary layer thickness.

The effect of the buoyancy parameter ξ on the tangential velocity f ′(η), transverse
velocity h(η), and temperature θ(η) profiles is displayed in Figures 14, 15, and 16,
respectively, for M = 1, m = 0.2, a = 1, R = 5, and Pr = 0.72. From Figure 14 it is seen that
the tangential velocity f ′(η) increases with the positive values (assisting) of the buoyancy
parameter ξ and decreases with the negative values (opposing flow) of ξ as compared to
the case of pure forced convection (ξ = 0). This is due to the fact that a positive ξ induces
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a favorable pressure gradient that enhances the fluid flow in the boundary layer, while a
negative ξ produces an adverse pressure gradient that slows down the fluid motion. The
effect of buoyancy parameter ξ on the transverse velocity h(η) is the same as that on the
tangential velocity f ′(η) as shown in Figure 15. Further, it is clear from Figure 16 that the
effect of buoyancy parameter ξ is to increase the temperature θ(η) in the case of opposing
flow and decrease it in the case of assisting flow. The reason for this trend is that the
positive (negative) buoyancy force accelerates (decelerates) the fluid in the boundary layer
(as mentioned earlier) which results in thinner (thicker) thermal boundary layer.

The effect of the wall temperature distribution characterized by the parameter a on
the profiles of f ′(η), h(η), and θ(η) is depicted in Figures 17, 18, and 19 for M = 1, m = 0.2,
ξ = 1, R = 5, and Pr = 0.72. It is seen from Figure 19 that the temperature θ(η) decreases as
a increases. The decreased temperature has a direct effect in decreasing the thermal buoyancy
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0.72.

forces, which in turn decrease the tangential and lateral velocities f ′(η) and h(η), respectively,
as obvious from Figures 17 and 18. Also, Figure 19 shows a change in the direction of heat
flow as a result of the peak which occurs in the temperature profile when a = −1.5. The
presence of the peak indicates that the temperature attains its maximum value in the body of
the fluid close to the surface and not at the surface and hence heat is expected to transfer to
the surface from the ambient fluid.

The variations with positive values of the buoyancy parameter ξ (0 � ξ � 2) of
the local skin-friction coefficient in the x-direction in terms of f ′′(0), the local skin-friction
coefficient in the z-direction in terms of h′(0), and the local Nusselt number in terms of
−θ′(0) for various values of the radiation parameter R and the wall temperature distribution
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characterized by the parameter a are shown in Figures 20, 21, and 22, respectively.
Figure 20 shows that for a fixed ξ and both values of R, the local skin-friction coefficient f ′′(0)
increases for negative values of a (a < 0) and decreases for positive values of a (a > 0) as
compared to the constant wall temperature case (a = 0). Also, the effect of a on f ′′(0) is more
pronounced for higher values of ξ. In addition, for given R and a the local skin-friction coeffi-
cient f ′′(0) is greatly increased as ξ is increased. As mentioned earlier, the positive buoyancy
force acts like a favorable pressure gradient which accelerates the fluid in the boundary layer.
This results in thinner boundary layer and hence in higher velocity gradient at the surface.
Therefore, the skin friction coefficient increases with ξ. Further, it is noted from Figure 20
that a single value of f ′′(0) = −1.4737 is obtained for all R and a values when ξ = 0 (the
forced convection flow). This is because (2.18) and (2.20) are uncoupled when ξ = 0; that is,
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the solutions of the flow and thermal fields are independent when buoyancy force is absent.
Accordingly the parameters of the thermal field have no effect on the flow field. On the other
hand, Figure 20 shows for given ξ (ξ > 0) that f ′′(0) decreases with increasing R for all values
of a but the effect of R is more pronounced for positive values of a and larger values of ξ.

The effects of ξ, R, and a on the local skin-friction coefficient in the z-direction h′(0)
are the same as those on f ′′(0) as depicted in Figure 21. It is seen further that h′(0) decreases
with R for all a-values but this trend is found to be more noticeable at a positive value of
a and larger values of ξ. On the other hand, for forced convection flow (ξ = 0), the local
skin-friction coefficient h′(0) has a unique value of 0.322377 despite the values of R and a for
the same reason mentioned previously.

Figure 22 reveals that the local Nusselt number −θ′(0) is increased with increasing the
value of a for all values of R and ξ; in other words, heat transfer rate can be enhanced by
enlarging the surface temperature variation. Also, the local Nusselt number −θ′(0) increases
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Figure 21: Local skin-friction coefficient h′(0) for various values of R and a for M = 1, m = 2, ξ = 1, and
Pr = 0.72.

with R for all ξ and a negative value of a (a = −1.5). On the other hand, the effect of radiation
parameter R on −θ′(0) for a constant wall temperature (a = 0) and a positive value of
a (a = 1) is opposite to that of negative value of a. Namely, the heat transfer rate is reduced
as R is increased for a positive value of a and all values of ξ. It is noted that negative heat
transfer rates are obtained for a = −1.5 which indicate that heat is transferred from the fluid
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to the stretching surface in spite of the excess of surface temperature over that of the free
stream fluid. On the other hand, −θ′(0) increases with ξ for values of a � 0 while the opposite
trend is true for a < 0.

The variations of the local skin-friction coefficient in the x-direction f ′′(0), the local
skin-friction coefficient in the z-direction h′(0), and the local Nusselt number −θ′(0) as a
function of the buoyancy parameter ξ for two M values of 1 and 2 and different values of
Hall parameter m are presented in Figures 23, 24, and 25. It is clear from these figures that
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for fixed m and ξ the skin-friction coefficient in the x-direction f ′′(0) and the local Nusselt
number −θ′(0) decrease while the local skin-friction coefficient in the z-direction h′(0)
increases with increasing the magnetic parameterM. Further, it is remarkable to note that the
effect of the magnetic parameterM on f ′′(0) and −θ′(0) for higher values of m (m = 1.5 and
3) is much less than that for lower values of m (m = 0.3) while the opposite trend is noticed
for the local skin-friction coefficient in the z-direction h′(0). On the other hand, for all ξ and
M values Figures 23 and 25 show that the local skin-friction in the x-direction f ′′(0) and
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Table 1: Comparison of the values of −θ′
(0) obtained by HAM forM = m = ξ = 0 and R → ∞ and various

values of Pr and awith those of Magyari and Keller [25].

Pr
a = −0.5 a = 0.0 a = 1 a = 3

Reference [25] HAM Reference [25] HAM Reference [25] HAM Reference [25] HAM

0.5 0.175815 0.174455 0.330493 0.330824 0.594338 0.594112 1.008405 1.007963

1 0.299876 0.299795 0.549643 0.549589 0.954782 0.955325 1.560294 1.560759

3 0.634113 0.635700 1.122188 1.123344 1.869075 1.869397 2.938535 2.934606

5 0.870431 0.874551 1.521243 1.524815 2.500135 2.500382 3.886555 3.889363

10 1.308613 1.309138 2.257429 2.256776 3.660379 3.673949 5.628198 5.625053

the local Nusselt number −θ′(0) increase as m increases. Further, from Figure 24 it is
interesting to note that for all values of ξ and M the local skin friction coefficient in the
z-direction h′(0) increases as m increases from 0.3 to 1.5 and then decreases as m increases
from 1.5 to 3 and this result agrees well with the profiles of h(η) introduced in Figure 9.

Finally, Table 1 shows a good agreement of our results for heat transfer rate −θ′(0)
obtained by homotopy analysis method with the numerical results reported by Magyari
and Keller [25] for forced convective flow (ξ = 0) of a viscous incompressible fluid over an
exponentially stretching sheet in the absence of magnetic field (M = 0), Hall current (m = 0),
and radiation (R → ∞) at selected values of a and Pr.
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