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The idea of a methodology capable of determining in a precise and practical way the optimal
sample size came from studying Monte Carlo simulation models concerning financial problems,
risk analysis, and supply chain forecasting. In these cases the number of extractions from the
frequency distributions characterizing the model is inadequate or limited to just one, so it is
necessary to replicate simulation runs many times in order to obtain a complete statistical
description of the model variables. Generally, as shown in the literature, the sample size is fixed
by the experimenter based on empirical assumptions without considering the impact on result
accuracy in terms of tolerance interval. In this paper, the authors propose a methodology by means
of which it is possible to graphically highlight the evolution of experimental error variance as a
function of the sample size. Therefore, the experimenter can choose the best ratio between the
experimental cost and the expected results.

1. Introduction

According to the universally accepted definition, a Monte Carlo simulator is a teller of
the possible histories of the object system. The model “goodness” depends not only on its
constructor ability (i.e., system analysis, data survey, and logic transcription) but also on a
correct experimental activity, which should include, among its main targets, experimental
error measurement, which is generally distributed as a normal distribution (0, o?), affecting
the model [1-3].

The o2 entity, which can be estimated according to Cochran’s theorem [3] through the
measurement of the mean square pure error (MSPE), its unbiased estimator, is an intrinsic
characteristic of each model. o2 is strictly connected to the investigated reality, since it is
directly dependent on the overall stochasticity by which this reality is affected.
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In other words any object system displays its own level of stochasticity affecting the
behaviours of the output variables and entering in the simulation model, by producing a char-
acteristic “noise,” which cannot be set aside. In the experimental phase, the real problem is not
the background noise entity, which cannot be eliminated since it is inherent in any stochastic
system, but the possibility to add another major source of noise to it. This error component,
on the contrary, can be controlled and, if necessary, even eliminated. It is associated with a
number of extractions from distributions of random variables in the model. However, said
number is inadequate to obtain, in terms of statistical parameters, total adherence in the
simulation phase to the probability distributions describing real system behaviour.

The study of the MSPE trend in the simulated time makes it possible to solve the
problem through a graph whose examination clearly points out, without any particular
difficulty in interpretation, the total model noise fraction in each moment of the simulated
time [4, 5]. Therefore, while examining the graph, it is possible, if necessary, to separate from
the total noise the real system noise. So all the positive consequences that can arise from it in
terms of reliability analysis on the model output results can be appreciated.

On the contrary, there are object systems that cannot be managed in the experimental
phase according to the MSPE evolution scheme in the simulated time.

This occurs each time the number of extractions from the frequency distributions is
limited to a single value or, in any case, to a limited number of samples that is not large
enough to obtain an effective description of the aforementioned distributions.

A typical case—yet not the only one as shown further below—is represented by the
Corporate Models used for the construction of possible future economic scenarios. In these
models some input variables, characterising any following accounting period, are assigned
under the form of frequency distributions displaying a character of uncertainty that grows
in the time (costs of raw materials, personnel, services; sale proceeds, transfers, investments,
etc.). In the experimental phase, a single value will be selected, at worst, from these distribu-
tions to characterise any specific activity [6, 7].

The main difference between this methodology and the evolution time methodology is
that, in this case, both the variance of the mean response (called by the authors MSPEygp) and
the variance of the standard deviation (called by the authors MSPEgsrpry) must be monitored.
These two parameters make it possible to choose the optimal number of runs needed to obtain
an unbiased evaluation of the experimental error affecting the objective function.

As it is well known, the larger the sample, the better the description of the population.
With this methodology it is possible to graphically highlight the evolution of the variance
experimental error as a function of the sample size. So the experimenter will be able to choose
the best ratio between the experimental cost and expected results.

In conclusion, the proposed methodology allows the determination of the number
of replicated runs capable of minimising, according to the experimenter’s needs, the noise
generated by an inadequate overlapping of the probability density functions of the variables
concerned.

2. Theoretical Development of the Methodology

The technique for MSPE study in replicated runs, which is conceptually similar to the metho-
dology used for the MSPE study in simulated time, can be divided into the following phases:

(1) to set a number K > 2 of simulation runs, carried out in parallel, in which the
independent model variables are maintained always at the same level, modifying
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Table 1: Collection of experimental data.

Experimental table

Runs
yl,l ]/1,2 e eee ]/1,K
Y21 Y22
Yij s
erl . e e ... yN,K

only the triggering seeds of the random numbers. In the case of a single replication
factorial experiment or central composite design application, K will be equal to the
central runs used in the experimental design (in this regard, it should be borne
in mind that the variance of the pure experimental error must be constant in
each point of the operability region and hence at the centre as well as along the
boundary);

(2) to determine a number N > 1 of replications y;; withi =1,...N, j = 1...K for
each simulation run (see Table 1);

(3) to calculate for each of the K runs N means, defined as y;; withi = 1,...n... N,
where

Xy
Vaj = = 2.1)

(4) to calculate N means of means, defined as Y;withi=1...n...N, given by

EPYEET)

Yn K 7 (22)

(5) to calculate N values of MSPEygp, with1 < j < K and with 1 <i < N, as shown in
Table 2

S (7 -%)

MSPEwiep (i) = ——o—7

(2.3)

These values, transferred on the plane (i, MSPEpgD), highlight the trend of the mean square
pure error curve in the replicated runs, thus showing, step by step, the entity of the error
variance affecting the simulation trial by impacting each objective function.

As mentioned above, according to Cochran’s theorem, MSPE\gp is the best estimator

of the experimental error variance 02 and, consequently, allows for the measurement of the
experimental error affecting the mean value of the means distributions.
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Figure 1: MSPE\ep generation display.
Table 2: Means calculation.
Means table
Runs Row mean
K =
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Figure 1 effectively shows the MSPEyEp concept as a dependent variable dispersion
measure:

(i) having chosen the number N of replications, for each of the K runs, we can obtain
a frequency distribution having a mean of yn;;

(i) the duly sampled K means, yn; with 1 < j < K, produce the mean frequency
distribution whose mean is Yy and whose variance has MSPEygp as an unbiased
estimator.
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Table 3: Standard deviation calculation.

Stdev table
Runs Row mean
stdevy; =0 ‘e stdevy, =0 stdevy =0
— 2 — 2
- + -
stdevyy = \/(yll Vo)™ + (Y21 — V)
stdev;; 2
— 2 — 2 K

— 4o+ — J— Z': StdEVN'
stdevn; = \/(3/11 Yn1) - (YN1 = Y1) stdevin  stdeve = %

The same approach is also valid for the standard deviation (see Table 3). For each of
the K runs it is possible to calculate N standard deviation, defined as stdev;(y1;, y2j, - - -, ¥ij)
with 1 <i < N, from which we can obtain N means of standard deviation, given by

K
ijl stdev,;

stdev, = e (2.4)
Now we can calculate N MSPEgstpgy as follows:
K 2
> P <stdevi]- - stdevi>
MSPEstpey (i) = (2.5)

K-1

with1 <j< Kandwith1<i<N.

The knowledge of the MSPE values in each point makes it possible to obtain important
inferences on the behaviour of the real experimental responses. In fact, always by the effect
of Cochran’s Theorem, it makes it possible to know the interval in which there is a 99.7%
probability that the value y* from a single simulation run lies in it.

While in the time-based evolution systems, having generally to manage small samples
(in fact the K parallel runs in the simulation problems seldom overcome ten elements) the
generic expression of this interval is given by

y -3V MSPEMED < y* < y + 3/ MSPEMED, (26)

in the runs-based evolution systems, what happens is

i i
¥ — 3V MSPEwep — 31/ VAR + MSPEgrpey < y* < 7 + 3V MSPEwiep + 3/ VAR + MSPEgrpry,
(2.7)

where VAR is the square of stdevy.
Moreover, it should be noted that when each sample of experimental responses,
resulting from K parallel runs, would be broad enough to provide an exhaustive description
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of the population behaviour, the two MSPEs evolving in the runs would crash on the X-axis
(MSPE = 0). This way the totality of the stochastic description of the real system, and, hence,
in the model, is represented by the experimental response variance. Put otherwise

]\1{111’1 MSPEMED = ]\lllm MSPESTDEV =0 (28)
for which
Yuep — 3V VAR < y** <, o0 + 31/ VAR, (2.9)

For the experimenter, the problem is not to obtain a theoretical MSPE = 0 but to limit the
number of runs N through a careful check of the experimental error evolution in terms of
both of magnitude and adjustment, so as to limit also its impact on y* to acceptable values.

As previously shown, the parameter N influences, for each replication, the number
of runs that needs to be carried out in the statistical parameters calculation (mean, etc.) of
the dependent variable and the number of R survey points of the dependent variable MSPE
calculation.

As concerns the number of K runs carried out in parallel, it is clear that the interest
to choose a high K value can be correct. In fact, the higher the K, the wider the sample used
for the operation. Therefore, the K size necessarily affects the accuracy of the mean of the
dependent variable mean/variance distribution. In many cases, despite the computational
power available, it may happen that, as K grows, the time to calculate MSPE quickly becomes
heavy.

It is an obvious consequence that the study of the experimental error evolution, and
the resulting search for the characteristic background noise, can be particularly burdensome,
due to the lack of a careful setting of the various parameters.

While, for the purpose of a correct evaluation of both the stochastic effect on the
experimental response and the characteristic noise, it is important for N to choose values
having a size of 10 or greater.

Figure 2 displays the comparison of the behaviours of the mean and standard
deviation of the mean squares pure error, with reference to the simulation model described
further below in paragraph 3, for each K value in the chosen 3-10 inquiry range.

The figure confirms the poor influence of the K replication number. It should be noted
that, both for MSPEyEp and MSPEsrpry, the curves tend to overlap after about 600 runs, with
the only exception of K = 3 which maintains a trend of about a hundredth greater than the
others.

This leads to the conclusion that it is not necessary to operate with high values of K
since, as already shown, it is a linear multiplication factor of the computational effort [3].
On the contrary, as it will be seen further below in other case studies, significant changes
of statistical parameters can be obtained by increasing the N replications of each run (with
K limited to 5). This can be logically correct as this operation is equivalent to an increase
of the extraction number from the frequency distributions and, hence, to a more careful
identification of them using experimental samples having a greater width.

Finally, it should remembered that, in multiobjective problems, the curve stabilization
point to be used as the “optimal run length” is that of the curve that reaches the stabilization
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Figure 2: Influence of the number of replications on the behaviour of MSPEyEp and MSPEgstpgy.

phase with the greatest number of runs (in this case the greater between the MSPEyipp and
the MSPEgstpgy as shown in Figure 2).

3. Applications to Two Simulation Models

In order to better understand the application of the methodology under consideration, two
applications addressing two different types of business management problems are illustrated
below.

3.1. The IT Corporate Model

The application is related to an engineering company, operating internationally in the sale
to third parties and performing design only or design plus supply for the realization of
engineering works with the “turn-key” formula.

The company model [8] is made up of three fundamental subsystems as shown in
Figure 3:

(1) marketing and production: fed with exogenous variables (market, management),
it is bound to generate both the necessary personnel and the other management
variables as an output,

(2) personnel: fed with the number of personnel provided as well as by exogenous
phenomena such as overtime and production bonus, it is possible to estimate the
costs related to the said personnel,

(3) profit and loss: fed with the output resulting from the two previous models, it
gives the economic parameters (i.e., EBTDA) in the future accounting periods as
an output.
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Figure 3: Model structure scheme.

By setting the four years following the last accounting period as maximum temporal forecast
horizon, the model allows to carry out yearly forecast of

(i) order situations (acquired and acquirable),

(ii) in-house necessary resources (management variables),
(iii) career movements, seniority, and personnel scholarship level,
(iv) incomes and EBTDA.

Uncertainty has been applied to all the significant variables of the marketing and production
model and the profit and loss one, by means of #7(t) coefficients that multiply the basis
relationships of the former deterministic model. Each variable takes the form of a normal-
type distribution (p(7(t)), o(r(t))) with a growing variance in the following years () in order
to take into consideration the increasing levels of uncertainty with the projection in the future
(Figure 4).

The information provided about the IT model architecture and about the nature of
frequency distributions clearly underscores how difficult it is to establish a link between
traditional experimentation and the reliability of the output results. Indeed, it is absolutely
wrong to believe that it is possible to obtain statistically reliable results with a single
extraction or just a few extractions from each of the 52 normal distributions of the input
variables.

At this point, the necessity to carry out an experimental strategy capable of
overcoming this drawback is clear. It can be achieved by using an N number of replications
for each simulation run:

(i) coverage suitably, the input distributions.

(ii) the same distributions are affected by an experimental error rate which is under the
experimenter’s control and wholly visible in its evolution as the 7, survey points
grOwW.
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Figure 4: Scheme of variable stochasticity.

In order to evaluate the methodology efficacy, the authors have carried out a series of
tests on an objective function, EBTDA, expressing the maximum model sensitivity. The
EBITDA is calculated with the “profit and loss” model whose input is the results from
the “marketing and production” and “personnel” submodels and accurately represents the
ultimate synthesis of the entire action of the forecasting model.

It is important to note in this regard that the response obtained from the IT model on
the EBITDA shows the following features:

(i) the MSPEyEp and MSPEgstpey of the two population distributions, at the changing
of K, have values that are undoubtedly low (107%). This points out, differently from
many other cases, a strong centripetal trend with consequent confidence intervals
width on the mean responses that are almost negligible for N > 200 (Figures 2 and
5);

(ii) the mean variance VAR is significantly high if compared to the Yy (the value is
about 3,5 versus 23.30) The oscillation field of the dependent variable EBITDA at
the Year 5 gives a range of expected responses, compared to 23.30 included, between



10 Mathematical Problems in Engineering

0.2 I
"
|
|
0.15 - |
|
|
|
£ 01 4 ™
0
> i
|
0.05 - k
O T T T T T T
0 200 400 600 800 1000
Replications
Variable

—e— MSPE MED
—a— MSPE srpev

Figure 5: IT Model: MSPE\gp and MSPEgrpgy evolution trend.

29 and 17.6. This happens although, for N > 200, both MSPEs are almost negligible.
VAR is in fact the parameter connected to the real system stochasticity. The ability
of the experimenter, thanks to the proposed methodology, is to not add to model
outputs a noise not characteristic of the real system but strictly connected with the
experimental phase.

In these cases, by extending N up to values that are apparently out of a common experimental
practice (such as 25,000/30,000/50,000 and more) it will be generally possible to observe
important drops both in the MSPE of the standard deviation and, in some cases of systems
affected by endogenous stochasticity of a particular type, in the magnitude of the mean
variance.

It is duty to remind that, when optimisation problems are faced using Monte
Carlo simulators, the three variance sources (W, MSPEMep, and MSPEstpey) must be
strongly controlled since they can generate, with their magnitudes, significant deviations of
the punctual mean responses by putting into evidence, in consequence, distorted and/or
inexistent superficial response behaviours.

3.2. The Project Management Model

The objective of this study was the evaluation of the job delivery date of a company order
relative to the revamping-reburning-S.A.B. of a 320 MW unit of a thermoelectric power plant
[9]. For this scope the authors developed a tool to

(i) deal with the problem of forecasting in a stochastic regime,

(ii) provide Project Managers with an online control methodology (fed by data coming
from the job site) to rebalance the effects of the stochastic nature and/or incorrect
initial forecasts.
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The application of stochasticity to the deterministic duration values supplied by the estima-
tors takes place by assuming the duration of each activity equal to appropriate frequency
distributions.

Nine delay scenarios were defined for the activities comprising the order:

(i) Gaussian, with a mean equal to the value hypothesised by the deterministic ap-
q yp y P
proach and standard deviations equal to 33%, 20%, and 10% of the activity duration,

(ii) negative exponential, with the same mean and standard deviations as indicated
above,

(iii) mixed, part Gaussian and part negative exponential, with the same mean and
standard deviations as indicated above.

Undoubtedly, the scenarios will be characterised by an uncertainty peak at the estimation
time with a resulting effect on the delivery dates. This uncertainty is bound to decrease
with job progress under the effect of the progressive transformation of the various stochastic
elements into deterministic ones (i.e., completed operations or, in phase of completion,
corrective interventions carried out in progress) and, hence, with the possibility for the model
to anticipate the delivery date with reasonable accuracy.

Thanks to the transformation of increasing portions of activities that switched from the
stochastic to the deterministic regime and to the improved knowledge of the possible delays
for the future activities, it became possible, during the experimentation phase, to reduce the
global uncertainty level of the object system. As a consequence, it is possible to gradually
approximate, with increasing accuracy, the maximum and minimum durations of the possible
plant delivery delay.

Starting from the nine hypothesised scenarios, the authors decided to use the Monte
Carlo method for each scenario to find the probabilistic delivery range compared to the job
final delivery date hypothesised by the company:.

Figure 6 shows the output of the simulation in terms of job completion time obtained
by the simulation model where there is a noticeable variation (such as maximum, minimum
and average value) in relation to the stochasticity and time progress.

One of the authors’ targets was to underscore how changes in the endogenous
stochasticity can induce changes in the related MSPEyvep and MSPEgstpey behaviour and
consequently in the reliability of the model output.

Among the stochastic typologies considered, it has been chosen by way of example to
select two different scenarios characterised, respectively, by

(1) negative exponential having a variance of 33% compared to the deterministic value
of each operation, being assumed, by the estimators, as the minimum completion
time of each operation,

(2) negative exponential having a variance of 10%.

Figures 7 and 8 show the behaviour of MSPE mean evolution in the case of the 33%
negative exponential distribution. As it can be noted, the mean of the MSPEyigp shows a
beginning phase, up to 5000 replications, characterised by broad oscillations with a first
settlement phase around 0.6 days? between 5,000 and 15,000 runs. It follows a decreasing
phase, with a more or less constant slope of about 45° compared to the x-axis. This phase
is characterised by punctual oscillations having a very small width, bringing the MSPEwmep
value at 30.000 runs within an interval of +0,002 days?.
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Figure 6: Project delivery date with stochasticity.
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It is interesting to note how the MSPEgsrpgy contribution on the total delay of the job
delivery is, in any case, of great relevance at 30,000 runs (Figure 9). It involves a standard
deviation on the mean variance distribution of about 30 days, with the increase of the
maximum completion date to about 330 days due to the two variances, in terms of the related
standard deviations. This analysis phase on the stochasticity resulting from the 33% negative
exponential points out, with respect to the budgeted time equal to 380 days, that the maximal
cumulative delay is about 500 days.

The analysis of the “10% negative exponential” case underlines an MSPEyrp evolution
trend characterised by strong oscillations between 0 and 5,000 runs with a rapid fall of the
MSPE value to 5E-2, followed by a second phase of further descent between 5,000 and 15,000
runs up to E-3 with a final settlement trend around this value in the last curve part (Figure 10).

As concerns MSPEstppy (Figures 11 and 12), it is possible to observe a widely oscillat-
ing phase up to 10,000 runs followed by a sudden decrease from 100 days? 20 days® between
10,000 and 15,000 runs to achieve a settlement around to 20 days2 at 30,000 runs after a small
peak at 50 days? at 22,500 runs.
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Figure 9: MSPEstpry exp neg 33%.

By translating the influence of the 10% negative exponential in terms of maximum
delay, it is possible to note a possible increase of 117 days compared to 380 days scheduled in
the budget.

Considering the behaviour of the variance evolution, the comparative analysis of the
MSPEwyep and MSPEgtpgy curves in the 10% negative exponential case (Figure 13) shows the
need to use a value of N greater than 30,000.

The comparative analysis of the mean and variance MSPE curves in the 33% negative
exponential case (Figure 14) also shows, considering the behaviour of the variance evolution,
the need to use an N value greater than 30,000.

The endogenous stochastic variation is highlighted by the model in a strong way
both in terms of mean and variance of the mean populations and in terms of MSPE of both
parameters. In particular, in both case studies, with reference to the MSPE, it is the standard
deviation that assumes an important role in terms of impact on the final delivery date, while
the MSPEygp in both cases (10%, 33%) leads to a stabilization at values, which cannot affect,
in a significant way, the mean of the means value.
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As shown above, the fundamental role of the MSPE evolution curves lies in indicating
the value of the optimal N at which it is necessary to stop the experimental phase, with the
certainty that the final result, in a ratio of costs/benefits, will not be influenced by the inner
stochasticity of the model.

From this point of view, the experimentation on the project model confirms the validity
of the methodology that in both cases, characterised by an extremely different magnitude of
the duration distribution variances, identifies 30,000 as the lowest number of runs necessary
to achieve a suitable stabilisation of the MSPEstpgy .

The experimentation underscores once again that the role of the experimental response
mean population variance cannot be set aside. This is well known in elementary statistics, but
it is forgotten too often by simulation model builders.

4. Conclusions

The aim of the authors was the theoretical systemisation of the mean square pure error
evolution methodology in the replicated runs, not only through the in-depth study of some
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Figure 13: Comparison of MSPEyiep versus MSPEsrpey exp neg 10%.

theoretical fundamental steps but also through their application to some appropriately
chosen simulation models.

The methodology, outlined in the mid-80s, had never been studied in an exhaustive
way, because it was considered for use only in few particular operating situations studied
through the use of Monte Carlo simulation models [8].

The observations proposed in this work point out, on the contrary, a wide range of
model situations to which the tool can be applied to obtain a correct experiment. Among
these, the authors recall the models of systems operating on jobs, which are temporally closed
and nonrepetitive, the stochastic models for project management, models for the description
of repetitive operations characterized by a demand of high variability performances, and the
financial models with an evolution in future time [10].
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The key point of this discussion is the acknowledgment of the need, in these kinds of
models, of the simultaneous control not only of the two traditional output values, as in the
objective function study of temporal evolution models (response and related MSPE), but also
of four parameters, such as mean, variance, and the related MSPE, with the variance being
the element with the greatest capacity of affecting punctual response.

Based on these assumptions, the role of the MSPEyigp and MSPEgrpgy is fundamental
in determining the run number capable of providing the experimenter the most suitable ratio
between run time and punctual response accuracy.
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