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In this paper, based on the kinematic accuracy theory and matrix-based system reliability analysis
method, a practical method for system reliability analysis of the kinematic performance of planar
linkageswith correlated failuremodes is proposed. The Taylor series expansion is utilized to derive
a general expression of the kinematic performance errors caused by random variables. A proper
limit state function (performance function) for reliability analysis of the kinematic performance of
planar linkages is established. Through the reliability theory and the linear programming method
the upper and lower bounds of the system reliability of planar linkages are provided. In the course
of system reliability analysis, the correlation of different failure modes is considered. Finally, the
practicality, efficiency, and accuracy of the proposed method are shown by a numerical example.

1. Introduction

Mechanisms are the skeletons of modern mechanical products and devices. The kinematic
accuracy of mechanisms greatly influences the performance and reliability of the mechanical
products and devices. Traditionally, in mechanism synthesis, a designer often tries to choose
proper mechanism configurations and component dimensions to make the designed mecha-
nism meet prespecified requirements. However, in the physical realization of any constituent
member, primary errors always occur due to technological features of production. Once a
theoretical solution is translated into physical reality, a theoretically feasible mechanism
might be unable to meet practical requirements because of the effects of uncertain factors (e.g.
manufacturing tolerances, elastic deformations and joint clearances). Since these uncertain
factors are inevitable, it is necessary to build a proper mode to quantify the effects of the
uncertain factors on the accuracy of mechanisms and optimally allocate the working ranges
of the mechanisms [1–3].

In recent years, with the continual increase of the demands of consumers on the kine-
matic and dynamic performance of mechanical products, the theory of mechanical reliability
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is more andmore widely applied inmechanism analysis and synthesis. Mechanism reliability
can simply be defined as the capability that a mechanism performs its prespecifiedmovement
accurately, timely, and coordinately throughout its lifetime. Based on the analysis of the
sources of original errors, Sergeyev [4] clarified the main failure modes of mechanisms and
presented an analytical method for reliability analysis of mechanisms preliminarily. Sub-
sequently, there have been various attempts to derive the reliability of the kinematic and
dynamic accuracy of mechanisms, such as the linear regression method [5], the mean value
first-order second-moment method [6], the advanced first-order second-moment method [7],
the hybrid dimension reduction method [8], and the Monte-Carlo simulation method [9].

As shown in practical engineering, most performance deficiencies of mechanical pro-
ducts are found in the stage of systematic analysis, therefore it’s important to build a proper
system reliability analysis model to evaluate the performance quality of mechanical equip-
ments and products. Recently, Zhang et al. [9] studied the method for system reliability anal-
ysis of mechanisms without considering the interactions of failure modes. However, to the
best of the authors’ knowledge, system reliability analysis of mechanisms with correlated
failure modes has not been reported yet. Combining the mechanism theory and system reli-
ability analysis method, this paper proposes a general method for system reliability analysis
of planar mechanisms with correlated failure modes.

2. Reliability Analysis for Kinematic Performance of Planar Linkages

The kinematic performance function of planar linkages can be expressed as [10]

Q = Q(V,L,U), (2.1)

where Qs×1 is the performance parameter vector. For example, for a function generator, Qs×1
may be referred to the positions of the output link, and for a path generator, it may be the
coordinates of a point on the output link. Vm×1 is the input (independent) variable vector,
Lp×1 is the effective dimension variable vector, and Un×1 is the output (dependent) variable
vector which can be obtained by solving the loop closure equations of planar linkages

F(L,U,V) = 0. (2.2)

The performance errors of the mechanism under consideration can be obtained as

ΔQ =
∂Q
∂LT

ΔL +
∂Q
∂UT

ΔU +
∂Q
∂VT

ΔV, (2.3)

where ∂Q/∂LT , ∂Q/∂UT and ∂Q/∂VT are Jacobian matrices, whose values are got at the
mean values of the random variables. ΔLp×1, ΔUn×1, and ΔVm×1 are the tolerance vectors
of random design variables. ΔVm×1 and ΔLp×1 are determined by several objective factors
such as the machining accuracy, the assembly accuracy and the operation precision. From
(2.3), ΔUn×1 can be obtained:

ΔU = −
[
∂F
∂UT

]−1( ∂F
∂VT

ΔV +
∂F
∂LT

ΔL
)
. (2.4)
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A limit state is defined as a condition in which a mechanism becomes unsuitable for
its intended motion (i.e., a violation of the serviceability limit state). The corresponding limit
state functions (performance functions) when the mechanism meets the requirements of the
upper and lower limits are

gU(X) = ε −ΔQ = ε − JΔX,

gL(X) = ΔQ + ε = JΔX + ε,
(2.5)

where

J =

[
∂Q
∂VT

− ∂Q
∂UT

(
∂F
∂UT

)−1 ∂F
∂VT

,
∂Q
∂LT

− ∂Q
∂UT

(
∂F
∂UT

)−1 ∂F
∂LT

]
. (2.6)

gU and gL are called the upper and lower limit state functions, X = [V1, . . . , Vm, L1, . . . , Lp]
T

is the basic variables, ε is the allowable errors, and ΔX = [ΔV1, . . . ,ΔVm,ΔL1, . . . ,ΔLp]
T are

used to represent the random error vector of basic variables.
The kinematic reliability of a mechanism is the probability that the mechanism realizes

its required motion within a specified tolerance limit. The lower limit reliability of the kth
dependent variable, Qk, is defined as:

R
(k)
L =

∫
g
(k)
L (X)>0

f(X)dX, (2.7)

where f(X) is the joint probability density function of multidimensional basic random
variables, X and g

(k)
L (X) = ΔQk+εk = JkΔX+εk is the limit state function of the kth dependent

variable, Qk. Note that Jk is the kth row of matrix J.

The mean value, μ(k)
L , and variance, (σ(k)

L )
2
, of the limit state function, g(k)

L (X), can be
expressed as

μ
(k)
L = E

[
g
(k)
L (X)

]
= JkE(ΔX) + εk,

(
σ
(k)
L

)2
= Var

[
g
(k)
L (X)

]
= J[2]k cs(Cov(ΔX)),

(2.8)

where E(ΔX) and Cov(ΔX) are the mean value vector and covariance matrix of primary
errors, respectively, Jk is the kth row of matrix J, (·)[2] = (·)⊗(·) is the second-order Kronecker
power of (·), and ⊗ represents Kronecker product [11]

Ap×q ⊗ Bs×t =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11B a12B . . . a1qB

a21B a22B . . . a2qB

...
...

. . .
...

ap1B ap2B . . . apqB

⎤
⎥⎥⎥⎥⎥⎥⎦

ps×qt

, (2.9)
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cs(·) is the column string of (·), the column sequence

cs
(
Ap×q

)
=

q∑
j=1

(
ejq×1 ⊗ Ip×p

)
Ap×qe

j

q×1, (2.10)

where Ip×p is identity matrix with p × p dimensions, and ejq×1 is the jth elementary vector
with q × 1 dimensions, all zeros except 1 in the jth position.

In the mechanism literature, the distribution of the random variables is always
assumed independent normal [4–8]. The distance from the “minimum” tangent plane to the
failure surface may be used to approximate the actual failure surface, and the reliability index
of the ith output variable is defined as:

β
(k)
L =

μ
(k)
L

σ
(k)
L

, (2.11)

which can be used to reflect the position (the distance from the original point) and dispersion
degree of the safety margin. When the primary errors are normally and independently
distributed, the unary estimator of the kinematic performance reliability of planar linkages is
represented as follows:

R
(k)
L = Φ

(
β
(k)
L

)
, (2.12)

where Φ(·) is the standard normal distribution function.
The correlation coefficient between performance functions g(k)

L and g
(t)
L is

Cov
(
g
(k)
L , g

(t)
L

)
= E

[(
g
(k)
L − g

(k)
L

)(
g
(t)
L − g

(t)
L

)]
=

m+l∑
i=1

m+l∑
j=1

∂g
(k)
L

∂Xi

∂g
(t)
L

∂Xj
Cov

(
Xi,Xj

)
. (2.13)

The correlation coefficient between performance functions g(k)
L and g

(t)
L is

ρ
(k,t)
L =

Cov
(
g
(k)
L , g

(t)
L

)
√
Var

(
g
(k)
L

)
Var

(
g
(t)
L

) . (2.14)

Then the joint reliability of g(k)
L and g

(t)
L can be estimated by the joint normal distribution

function:

R
(k,t)
L = 1 −

∫∫0

−∞
fkt

(
g
(k)
L , g

(t)
L

)
dg

(k)
L dg

(t)
L = 1 −

∫−βtL

−∞

∫−βkL

−∞
φ
(k,t)
L (u, v)dudv

= 1 −
∫−βtL

−∞
Φ

⎡
⎢⎢⎣

−βkL − ρ
(k,t)
L v√

1 −
(
ρ
(k,t)
L

)2

⎤
⎥⎥⎦φ(v)dv,

(2.15)
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where

fkt
(
g
(k)
L , g

(t)
L

)
=

1

2πσ(k)
L σ

(t)
L

√[
1 −

(
ρ
(k,t)
L

)2
]

× exp

⎧⎪⎪⎨
⎪⎪⎩
− 1

2
[
1 −

(
ρ
(k,t)
L

)2
]
⎡
⎢⎣

(
g
(k)
L − μ

(k)
L

)2

Var
(
g
(k)
L

) − 2ρ(k,t)L

(
g
(k)
L − μ

(k)
L

)(
g
(t)
L − μ

(t)
L

)

σ
(k)
L σ

(t)
L

+

(
g
(t)
L − μ

(t)
L

)2

Var
(
g
(t)
L

)
⎤
⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

(2.16)

is the joint PDF of g(k)
L and g

(t)
L .

In the same way, the reliability corresponding to each failure modes and the joint reli-
ability between each two failure modes while the mechanism satisfies the upper limits could
be obtained. Then the reliability corresponding to each failure model and the joint reliability
between two failure models while the mechanism meets the upper and lower limits can be
derived as

Rk = R
(k)
L + R

(k)
U − 1,

R(k,t) = R
(k,t)
L + R

(k,t)
U − 1.

(2.17)

3. System Reliability of Linkage Performance

For convenience system reliability analysis of structures with multi-failure modes is often
performed by consuming that the failure modes are independent between each other. In
most cases, however, the failure modes of a mechanism (e.g., the position and pose of
a rigid-body guidance mechanism) are correlated. Consequently, it is of great meaning
to propose an accurate and efficient system reliability analysis method to evaluate the
working state of the mechanism. Ditlevsen [12] presented the well-known “narrow bounds
theory” for computing system reliability. The correlation between each of the two failure
modes is considered in Ditlevsen’s method, making it more physically reasonable. And then
the bounds method in which the system reliability is estimated by computing the bound
values developed continuously and received wide acceptance [13–15]. In this section, a
practical method for system reliability analysis of mechanisms is proposed by using the linear
programming.

Linear programming solves the problem of minimizing or maximizing a linear func-
tion, whose variables are subject to linear equality and inequality constraints. And the linear
programming for solving the possible bounds on the system reliability of linkages can be pre-
sented as follows:
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min(max) cTp
s.t. a1p = b1

a2p ≥ b2,

(3.1)

where p is the design variable vector of the linear programming, c is a vector of coefficients,
cTp is the linear objective function, and a1, a2, b1, and b2 are the coefficient matrices and
vectors that represent the equality and inequality constraints, respectively.

In the proposed system reliability analysis method, the kinematic failure space of a
mechanism can be divided into 2n mutually exclusive and collectively exhaustive (MECE)
events according to the number of failure modes, n. Typically, for a system with three
failure modes, the performance sample space can be depicted as Figure 1 by defining
kinematic safety of the mechanism as event S and defining the performance Qi meets the
requirement of performance quality as event Ei. The space S is divided into 8 MECE events,
{e1 = E1E2E3, e2 = E1E2E3, e3 = E1E2E3, e4 = E1E2E3, e5 = E1E2E3, e6 = E1E2E3, e7 =
E1E2E3, and e8 = E1E2E3}. Let pi = P(ei), i = 1, 2, . . . , 8 denotes the probability of the ith basic
MECE event. These probabilities serve as the design variables in the linear programming
problem to be formulated. According to the basic definition of probability,

8∑
i=1

pi = 1, (3.2)

pi ≥ 0, i = (1, 2, . . . , 8). (3.3)

The constraint (3.2) is analogous to the equality constraints in linear programming (3.1)with
a1 being a row vector of 1′s and b1 = 1, whereas (3.3) is analogous to the inequality constraints
with a2 being an 8 × 8 identity matrix and b2 a 8 × 1 vector of 0′s.

As can be seen from Figure 1,

P(Ei) = Pi =
∑

r:er⊆Ei

pr , (3.4)

P
(
EiEj

)
= Pij =

∑
r:er⊆EiEj

pr , (3.5)

scilicet,

P(E1) = P1 = p1 + p3 + p4 + p7,

P(E2) = P2 = p1 + p2 + p4 + p6,

P(E3) = P3 = p1 + p2 + p3 + p5,

P(E1E2) = P12 = p1 + p4,

P(E1E3) = P13 = p1 + p3,

P(E2E3) = P23 = p1 + p2.

(3.6)
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S

Figure 1: Sample space for the linkage.

Equations (3.4) and (3.5) provide linear equality constraints on the design variable pwith a1 a
matrix having elements of 0 or 1 and b1 a vector listing the known reliability.With the increase
of the known or computed reliability, such as the uni-, bi-, and sometimes trimode reliability,
the upper and lower bounds of the system reliability obtained by the linear programming
become increasingly accuracy. However, there is always a tradeoff between complexity and
accuracy, and with the increase of the constraints, the convergence of the linear programming
becomes more and more difficult.

By now, the coefficient matrices and vectors of the constraint functions of linear
programming (3.1) to obtain the upper and lower bounds of the system reliability of the
mechanism are completely established, which are

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 0 1 1 0 0 1 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b1 =
[
1 P1 P2 P3 P12 P13 P23

]T
,

a2 = I8 × 8,

b2 =
[
0 0 0 0 0 0 0 0

]T
,

(3.7)

where I8 × 8 is identity matrix with 8 × 8 dimensions.
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Table 1: Coefficients of the object functions cTp.

c1 c2 c3 c4 c5 c6 c7 c8

E1 ∪ E2 ∪ E3 1 1 1 1 1 1 1 0
E1 ∩ E2 ∩ E3 1 0 0 0 0 0 0 0
E1 ∩ E2 ∪ E3 1 1 1 1 1 0 0 0
(E1∪E2)∩(E2∪E3) 1 1 1 0 0 0 1 0

A

B

C

D
E

F

M
y

x

α2

α3

α4
α6

α7

r1

r2

r3

r4

r5

r6

r7

α9

r8

r9

G

Figure 2: Double-rocker four-bar linkage with driving crank.

According to the relationship between failure modes (series or parallel), there are
four different kinds of systems. As shown in Table 1, the coefficient ci (i = 1, 2, . . . , 8) of
the object functions of linear programming (3.1) for each kind of system can be determined,
respectively. So far, the linear programming to derive the lower and upper bounds of the
system reliability of a mechanism with random parameters is completely established.

4. Numerical Examples

Consider the vector loop as shown in Figure 2, the nominal geometry characteristics of the
double-rocker four-bar linkage with driving crank are shown as: r1 = 2.36 cm, r2 = 1.33 cm,
r3 = 5.08 cm, r4 = 3.94 cm, r5 = 1.00 cm, r6 = 0.45 cm, r7 = 1.50 cm, r8 = 1.00 cm, r9 = 6.00 cm,
and α9 = 30◦. Among them, r1, r2, r3, and r4 are random variables, which are normally and
independently distributed, and the variation coefficient of the random variables are supposed
to be c = 0.001. All other variables are deterministic parameters. According to the working
condition, the maximum allowable values of the kinematic performance errors vector are
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ε = [0.015 rad, 0.8mm, 0.6mm]T . The double-rocker four-bar linkage can work normally,
only if all the kinematic performance quality requirements are satisfied (i.e., the linkage
system is series). It is required to solve the system reliability of the double-rocker four-bar
linkage in its working range (α6 = 150◦ ∼270◦).

As shown in Figure 1, in the double-rocker four-bar linkage with driving crank,
the effective dimension variable vector is L = [r1, r2, r3, r4, r5, r6, r7, r8, r9, α9]

T , the
input (independent) and output (dependent) variable vectors are V = [α6] and U =
[α2, α3, α4, α7]

T , respectively, the performance parameter vector is Q = [α3, Mx, My]
T ,

then the closure equations of the planar linkage are

F =

⎡
⎢⎢⎢⎢⎢⎣

r6 cosα6 + r7 cosα7 − r8 cosα2 − r5

r6 sinα6 + r7 sinα7 − r8 sinα2

r2 cosα2 + r3 cosα3 − r4 cosα4 − r1

r2 sinα2 + r3 sinα3 − r4 sinα4

⎤
⎥⎥⎥⎥⎥⎦
. (4.1)

The kinematic performance functions of the linkage are

Q =

⎡
⎢⎢⎣

α3 + α9

r2 cosα2 + r9 cos(α3 + α9)

r2 sinα2 + r9 sin(α3 + α9)

⎤
⎥⎥⎦, (4.2)

Suppose that X = [r1, r2, r3, r4]
T is the random variable vector, then the Jacobian matrices are

derived as:

∂F

∂XT
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−1 cosα2 cosα3 − cosα4

0 sinα2 sinα3 − sinα4

⎤
⎥⎥⎥⎥⎥⎦
,

∂F

∂UT
=

⎡
⎢⎢⎢⎢⎢⎣

r8 sinα2 0 0 −r7 sinα7

−r8 cosα2 0 0 r7 cosα7

−r2 sinα2 −r3 sinα3 r4 sinα4 0

r2 cosα2 r3 cosα3 −r4 cosα4 0

⎤
⎥⎥⎥⎥⎥⎦
,

∂Q

∂XT
=

⎡
⎢⎢⎣
0 0 0 0

0 cosα2 0 0

0 sinα2 0 0

⎤
⎥⎥⎦,

∂Q

∂UT
=

⎡
⎢⎢⎣

0 1 0 0

−r2 sinα2 −r9 sin(α3 + α9) 0 0

r2 cosα2 −r9 cos(α3 + α9) 0 0

⎤
⎥⎥⎦.

(4.3)
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Figure 3: System reliability of the double-rocker four-bar linkage with driving crank.

By substituting (4.3) into (2.3), the kinematic performance error vector, ΔQ, of the linkage
can be obtained. Then (2.12) can be used to obtain the reliability corresponding to each failure
mode. The covariance matrix of the limit sate functions of the planar linkage can be derived
from (3.5), and then the joint reliability between each two failure modes can also be derived
from (2.15).

The upper and lower bounds of the system reliability of the double-rocker four-bar
linkage can be obtained by solving the linear program (3.1), and the results are, respectively,
shown as the pan dash line and triangle dash dot line in Figure 3. Besides the system
reliability of the manipulator using Monte-Carlo simulation with 106 samples is shown as
the point solid line. What needs to be specially notified is that, in order to demonstrate the
proposed mechanism system reliability analysis method, the truncation errors caused by the
first-order Taylor expansion are omitted in the Monte-Carlo simulation. Comparing with the
results of numerical simulation, the kinematic performance system reliability of the double-
rocker four-bar linkage obtained by the proposed method is of high accuracy.

5. Conclusions

Using the mechanism accuracy theory and (system) reliability analysis method, this paper
proposes a general method for system reliability analysis of planar linkages with correlated
failure modes. The proposed method is applicable to any system defined as a logical
expression of kinematic failure modes of planar linkages. This includes series and parallel
systems, as well as general systems. Utilization of the first-order Taylor expansion technique
in error estimation of kinematic performance of mechanisms must result in a certain degree
of truncation errors. And these errors will increase with the increase of sensitivity of
performance functions to design parameters. The accuracy of system reliability analysis can
be improved by increasing of the order of Taylor expansion. However, in this process, the
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complexity of calculation will greatly increase. Further studies are needed to provide a more
precise and robust method for reliability analysis of kinematic accuracy of mechanisms.
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