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The paper presents conditions suitable in design giving quadratic performances to stabilizing
controllers for given class of continuous-time nonlinear systems, represented by Takagi-Sugeno
models. Based on extended Lyapunov function and slack matrices, the design conditions are
outlined in the terms of linear matrix inequalities to possess a stable structure closest to
LQ performance, if premise variables are measurable. Simulation results illustrate the design
procedure and demonstrate the performances of the proposed control design method.

1. Introduction

Since a generic method for design of a controller valid for all types of nonlinear systems
has not been developed yet, an alternative seems to be fuzzy approach which benefits
from the advantages of the approximation techniques approximating nonlinear system
model equations. Using the Takagi-Sugeno (TS) fuzzy model [1], the nonlinear system is
represented as a collection of fuzzy rules, where each rule utilizes the local dynamics by a
linear system model. Since TS fuzzy models can well approximate a large class of nonlinear
systems, and the TS-model-based approach can apprehend the nonlinear behavior of a
system while keeping the simplicity of the linear models, by employing TS fuzzy models a
control design methodology exploits fully advantage of the modern control theory, especially
in the state space optimal and robust control.

The main idea of the TS-model-based controller design is to derive control rules so
as to compensate each rule of a fuzzy system, determining the local feedback gains. It is
known that the separate stabilization of these local modes does not ensure the stability of the
overall system, and global design conditions have to be used to guarantee the global stability
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and control performance. Therefore, a range of stability conditions have been developed for
TS fuzzy systems (see e.g., [2–5]), most of them relying on the feasibility of an associated
system of linear matrix inequalities (LMIs) [6]. Therefore, the state control based on fuzzy TS
system model gives control structures which can be designed using technique derived from
equivalent LMIs (some principles and results are reported e.g., in [7–10]).

The problem of controlling a system in such way to optimize a performance index that
represents the actual operating performance of a system has been an area of study for several
decades [11–14]. In particular, if the attention is restricted to linear quadratic (LQ) control,
several works following this approach over the years have been reported in the literature,
where some new ones being for example, in [15]. Specifically, this approach has been often
made in diverse practical problems for finite-time interval with time-varying feedback gains
and full state measurable variables, to bring dynamical systems to a desired final states, as
special interest in aircraft, spacecraft, and robots control and diagnosis [16, 17].

Following the given ideas in LQ control [18], the main contribution of the paper is to
present new conditions for designing the stabilizing fuzzy state control with LQ performance
for nonlinear MIMO systems approximated by a TS model and exploiting measurable
premise variables. The proposed design method prefers methodology given in [7, 10] but is
constructed on the extended form of quadratic Lyapunov function and enhanced evaluation
of its time derivative [19, 20]. Because the Lyapunov synthesis approach is exploited to
express global stability conditions in the form of a set of LMIs, resulting conservativeness of
stability conditions is reduced, since while a common symmetric positive definite Lyapunov
matrix verifying all inequalities is required, this approach eliminates products of this matrix
with system model matrix parameters and extensive exploits affine properties of TS models.

The remainder of this paper is organized as follows. In Section 2 the general structure
of TS models and LQ control is briefly described, and in Section 3 basic preliminaries are
presented. The control design problem for systems with measurable premise variables is
given in Sections 4 and 5, where especially new design conditions are derived and proven.
Section 6 gives a numerical example to illustrate the effectiveness of the proposed approach
and to confirm the validity of the control scheme. The last section draws conclusion remarks.

Throughout the paper, the following notations are used: xT , XT denotes the transpose
of the vector x andmatrix X, respectively, diag[·] denotes a block diagonal matrix, for a square
matrixX > 0 (resp.X < 0)means thatX is a symmetric positive definite matrix (resp., negative
definite matrix), the symbol In represents the nth order unit matrix, R denotes the set of real
numbers and R

n×r the set of all n × r real matrices.

2. General Methodologies

2.1. Takagi-Sugeno Fuzzy Models

The systems under consideration is one class of multiinput and multioutput nonlinear
(MIMO) dynamic systems, which in the state-space form is represented as

q̇(t) = a(q(t)) + Bu(t), (2.1)

y(t) = Cq(t), (2.2)
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where q(t) ∈ R
n, u(t) ∈ R

r , y(t) ∈ R
m are vectors of the state, input, and output variables,

respectively, and B ∈ R
n×r and C ∈ R

m×n are real finite values matrices. It is assumed that
a(0) = 0, and that a(q(t)) is bounded in associated sectors, that is, in the regions within the
system will operate.

It is considered that the number of the nonlinear terms in the nonlinear part of model
a(q(t)) is p, and that there exists a set of nonlinear sector functions of this properties

wlj(θ(t)), j = 1, 2, . . . , k, l = 1, 2, . . . , p,

wlj(θ(t)) = wlj

(
θj(t)

)
,

wl1(θ(t)) = 1 −
k∑

j=2

wlj(θ(t)),

(2.3)

where k is the number of sector functions, and

θ(t) =
[
θ1(t) θ2(t) · · · θq(t)

]
(2.4)

is the vector of premise variables. A premise variable represents any measurable variable and
can be in a simple case a state variable.

Using a TS model, the conclusion part of a single rule consists no longer of a fuzzy set
but determines a function with state variables as arguments, and the corresponding function
is a local function for the fuzzy region that is described by the premise part of the rule [21].
Thus, using linear functions, a system state is described locally (in fuzzy regions) by linear
models, and at the boundaries between regions a suitable interpolation is used between the
corresponding local models. Thus, given a pair of (q(t),u(t)), the final state of the systems is
inferred as follows

q̇(t) =

∑k
h=1 · · ·

∑k
j=1 w1h(θi(t)) · · ·wpj

(
θj(t)

)
Ωi···j

∑k
h=1 · · ·

∑k
j=1 w1h(θi(t)) · · ·wpj

(
θj(t)

) ,

Ωh···j = Ah···jq(t) + Bu(t),

(2.5)

where Ωh···j is the linear model associated with the (h · · · j) combination of sector function
indexes. Constructing the aggregated function set {wi(θ(t)), i = 1, 2, . . . , s, s = 2k} from all
combinations of the sector functions, for example, ordered as follows,

w1(θ(t)) = w11(θ1(t)) · · ·wp1(θ1(t))

...

ws(θ(t)) = w1k(θk(t)) · · ·wpk(θk(t))

(2.6)
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implies that

q̇(t) =
∑s

i=1 wi(θ(t))Ωi(t)
∑s

i=1 wi(θ(t))
=

s∑

i=1

hi(θ(t))Ωi(t), (2.7)

Ωi = Aiq(t) + Bu(t), (2.8)

where

hi(θ(t)) =
wi(θ(t))∑s
i=1 wi(θ(t))

(2.9)

is the ith aggregated normalized membership function satisfying conditions:

0 ≤ hi(θ(t)) ≤ 1,
s∑

i=1

hi(θ(t)) = 1, ∀i ∈ {1, . . . , s}, (2.10)

and linear consequent equation represented by (2.8) is called a linear subsystem.
Therefore, the TS fuzzy approximation of (2.1) leads to (2.7), (2.8) where the matrix

Ai ∈ R
n×n is Jacobian matrix of a(q(t)) with respect to q(t) = qi, and qi is the center of the ith

sector (fuzzy region).
Now, the TS fuzzy model for (2.1), (2.2) takes the form

q̇(t) =
s∑

i=1

hi(θ(t))(Aiq(t) + Bu(t)), (2.11)

y(t) = Cq(t). (2.12)

Assumption 2.1. The matrices B, C are the same for all local models.

Assumption 2.2. The pair (a(q(t)),B) is locally controllable where

a(q(t)) =
s∑

i=1

hi(θ(t))Ai, (2.13)

and B is of full column rank.

2.2. Linear Quadratic Control Background

In order to build up the background of the proposed method, some basics on the continuous-
time LQ control are recalled. Considering the linear model (2.1), (2.2), that is, a(q(t)) =
Aq(t), the control design is possed as an optimal problem with certain combined quadratic
performance on q(t) and u(t), and the control task is formulated as follows: find the nonzero



Mathematical Problems in Engineering 5

control u(t) defined on 〈0, T〉 such that the state q(t) is driven to the state coordinate origin
at t = T , and the following performance index is minimized

JT = qT (T)Q•q(T) +
∫T

0
r(q(t),u(t)), (2.14)

r(q(t),u(t)) = qT (t)Qq(t) + uT (t)Ru(t) =
[
qT (t) uT (t)

]
JJ
[
q(t)
u(t)

]
, (2.15)

where JJ ∈ R
(n+r)×(n+r) takes the form:

JJ = diag
[
Q R

]
> 0, (2.16)

T > 0 is finite, Q > 0, Q ∈ R
n×n, R > 0, R ∈ R

m×m, andQ• > 0, Q• ∈ R
n×n.

Proposition 2.3 (equivalent performance index). If the linear system from (2.1), (2.2) is
controllable, then the LQ control design task is optimized with respect to the equivalent quadratic
cost function (performance index):

JT = qT (0)P(0)q(0) +
∫T

0
p(q(t),u(t)), (2.17)

p(q(t),u(t)) =
[
qT (t) uT (t)

]
J(t)
[
q(t)
u(t)

]
, (2.18)

where

J(t) =
[
P(t)A +ATP(t) + Ṗ(t) +Q P(t)B

BTP(t) R

]
, (2.19)

P(t) > 0, P(t) ∈ R
n×n, J(t) > 0, J(t) ∈ R

(n+r)×(n+r), respectively.

Proof (compare e.g. [18]). Since now the system (2.1), (2.2) is linear in q(t), the quadratic
Lyapunov function candidate can be chosen as

v(q(t)) = qT (t)P(t)q(t), (2.20)

and the derivative of the Lyapunov function candidate takes the form:

v̇(q(t),u(t)) = q̇T (t)P(t)q(t) + qT (t)P(t)q̇(t) + qT (t)Ṗ(t)q(t),

v̇(q(t),u(t)) =
[
qT (t) uT (t)

]
JV (t)

[
q(t)
u(t)

]
,

(2.21)
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respectively, where

JV (t) =
[
P(t)A +ATP(t) + Ṗ(t) P(t)B

BTP(t) 0

]
. (2.22)

Defining, at the time instant T , the cumulative function VT as

VT =
∫T

0
v̇(q(t),u(t))dt, (2.23)

which, in turn, is equivalent to

VT = qT (T)P(T)q(T) − qT (0)P(0)q(0), (2.24)

then adding (2.23) to (2.14), subtracting (2.24) from (2.14), and setting P(T) = Q•, the
performance index (2.14) is brought to the form (2.17), where

p(q(t),u(i)) = r(q(i),u(i)) + v̇(q(t),u(t)). (2.25)

It is evident that with J(t) = JJ + JV (t) then (2.16), (2.22) imply (2.19).

Proposition 2.4 (infinite horizon LQ control). LQ control that the control law gain has become
constant value is given by

u(t) = −Kq(t), (2.26)

K = R−1BTP, (2.27)

where P > 0 is a solution of the algebraic Riccati equation (ARE)

0 = PA +ATP +Q − PBR−1BTP. (2.28)

Proof (see e.g., [18]). Considering P(t) = P, J(t) = J, Ṗ(t) = 0, then (2.18), (2.19) imply

∂p(q(t),u(t))
∂uT (t)

=
[
0 Im

]
J
[
q(t)
u(t)

]
=
[
BTP R

]
[
q(t)
u(t)

]
= 0, (2.29)

∂p(q(t),u(t))
∂qT (t)

=
[
In 0
]
J
[
q(t)
u(t)

]
=
(
PA +ATP +Q

)
q(t) + PBu(t) = 0, (2.30)

respectively. It is obvious that (2.29) implies (2.27), and by substituting (2.26), (2.27) into
(2.30), (2.28) is obtained.

Note, it makes no practical sense to have a terminal cost termwith terminal time being
infinite in the performance index.
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Summarizing, (2.25) specifies the form of derivative of generalized Lyapunov function
to formulate the infinite horizon LQ control design conditions using LMI.

3. Basic Preliminaries

The main concern of this section is to present basic concepts of nonlinear fuzzy control design
for systems represented by TS model. Presented structure is partly motivated by minimizing
the number of LMIs with respect to LMI solvers limitations.

Definition 3.1. Considering the general form of (2.11):

q̇(t) =
s∑

i=1

hi(θ(t))(Aiq(t) + Biu(t)) (3.1)

and using the same set of membership function, the nonlinear fuzzy state controller is defined
as

u(t) = −
s∑

j=1

hj(θ(t))Kjq(t). (3.2)

Proposition 3.2. If the set of aggregated normalized membership functions (2.9) satisfies (2.10) then

s∑

j=1

hj(θ(t))KT
j R

s∑

k=1

hk(θ(t))Kk <
s∑

l=1

KT
l RKl. (3.3)

Proof . Considering s = 1 the conditions (2.10) imply

h1(θ(t))KT
1R h1(θ(t))K1 = h2

1(θ(t))K
T
1RK1 < KT

1RK1. (3.4)

Providing the base of mathematical induction principle the number of functions is chosen as
s = 2. Thus, left-hand side of (3.3) implies

(
h1(θ(t))KT

1 +h2(θ(t))KT
2

)
R(h1(θ(t))K1+h2(θ(t))K2)=

[
KT

1R
1/2 KT

2R
1/2]H2(θ(t))

[
R1/2K1

R1/2K2

]
,

H2(θ(t)) =
[

h2
1(θ(t)) h1(θ(t))h2(θ(t))

h2(θ(t))h1(θ(t)) h2
2(θ(t))

]
,

(3.5)

and right-hand side of (3.3) specifies

KT
1RK1 +KT

2RK2 =
[
KT

1R
1/2 KT

2R
1/2]I2

[
R1/2K1

R1/2K2

]
. (3.6)
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Applying the Schur complement property toH2(θ(t)) and I2 it is obvious that

1 > h2
2(θ(t)),

1 > 0 = h2
1(θ(t)) − h2(θ(t))h1(θ(t))h−22 (θ(t))h1(θ(t))h2(θ(t)),

(3.7)

and the condition is satisfied in the sense of the proposition.
Since the statement holds true for at least one value, it is assumed that it holds true for

an arbitrary fixed value s − 1

Is−1 > Hs−1(θ(t)) =

⎡

⎢
⎣

h1(θ(t))
...

hs−1(θ(t))

⎤

⎥
⎦
[
h1(θ(t)) · · · hs−1(θ(t))

]
. (3.8)

To prove that the induction hypothesis holds true for all s let the sth membership function is
included in prescribed way, that is,

Hs(θ(t)) =

⎡

⎢⎢⎢
⎣
Hs−1(θ(t))

⎡

⎢
⎣

h1(θ(t))
...

hs−1(θ(t))

⎤

⎥
⎦hs(θ(t))

∗ h2
s(θ(t))

⎤

⎥⎥⎥
⎦
, (3.9)

where here, and hereafter, ∗ denotes the symmetric item in a symmetric matrix.
Now, comparing the Schur complements of Is and Hs(θ(t)), the first complement is

satisfied since

1 > h2
s(θ(t)), (3.10)

and the second gives

Is−1 > Hs−1(θ(t)) − h2
s(θ(t))Hs−1(θ(t))h−2s (θ(t)) = Hs−1(θ(t)) −Hs−1(θ(t)) = 0. (3.11)

Thus, (3.10), (3.11) imply (3.3).

Proposition 3.3. The equilibrium of the system (3.1) under control (3.2) is globally quadratic stable
if there exists a positive definite symmetric matrix P ∈ R

n×n such that

HT
iiP + PHii < 0, (3.12)

HT
ij +HT

ji

2
P + P

Hij +Hji

2
< 0, (3.13)

for for all i ∈ 〈1, 2, . . . s〉, i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉 and hi(θ(t))hj(θ(t))/= 0, respectively, where

Hij = Ai − BiKj . (3.14)



Mathematical Problems in Engineering 9

Proof . Substituting (3.2) into (3.1) results in

q̇(t) =
s∑

i=1

hi(θ(t))

⎛

⎝Aiq(t) −
s∑

j=1

hj(θ(t))BiKjq(t)

⎞

⎠. (3.15)

Since
∑s

i=1 hi(θ(t)) = 1 for all i ∈ {1, . . . , s}, it yields

q̇(t) =
s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))
(
Ai − BiKj

)
q(t) (3.16)

and also, owing to the symmetry in summations:

q̇(t) =
s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))
(
Aj − BjKi

)
q(t). (3.17)

Thus, adding (3.16), (3.17) gives

2q̇(t) =
s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))
(
Hij +Hji

)
q(t). (3.18)

Rearranging the computation, (3.18) can be written as

2q̇(t) =
s∑

i=1

hi(θ(t))hi(θ(t))(Hii +Hii)q(t) + 2
s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))
(
Hij +Hji

)
q(t),

q̇(t) =
s∑

i=1

hi(θ(t))hi(θ(t))Hiiq(t) + 2
s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))
Hij +Hji

2
q(t),

(3.19)

respectively. Defining Lyapunov function candidate of the form:

v(q(t)) = qT (t)Pq(t) > 0, (3.20)
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where P ∈ R
n×n is a positive definite symmetric matrix, then after evaluation the derivative

of (3.20) with respect to t on a system trajectory it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)Pq̇(t) < 0 (3.21)

v̇(q(t)) = qT (t)
s∑

i=1

hi(θ(t))hi(θ(t))HT
iiPq(t)

+ qT (t)P
s∑

i=1

hi(θ(t))hi(θ(t))Hiiq(t)

+ 2qT (t)
s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))
HT

ij +HT
ji

2
Pq(t)

+ 2qT (t)P
s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))
Hij +Hji

2
q(t) < 0,

(3.22)

respectively. Then (3.21) can be compactly written as

qT (t)
s∑

i=1

hi(θ(t))hi(θ(t))P∗iiq(t) + 2qT (t)
s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))P∗ijq(t) < 0, (3.23)

where

P∗ii = HT
iiP + PHii < 0,

P∗ij =
HT

ij +HT
ji

2
P + P

Hij +Hji

2
< 0.

(3.24)

Thus, (3.24) implies (3.12), (3.13). This concludes the proof.

Remark 3.4. If Bi = B for all i ∈ 〈1, 2, . . . , s〉 then

Hij +Hji = Ai − BKj +Aj − BKi = Hii +Hjj , (3.25)

and (3.13) for i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉 takes the form

HT
ii +HT

jj

2
P + P

Hii +Hjj

2
< 0, (3.26)

which implies

HT
iiP + PHii < 0, HT

jjP + PHjj < 0. (3.27)

It is evident that withHii,Hjj satisfying (3.12) also (3.27) is satisfied.
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Proposition 3.5. The equilibrium of the system (3.1) under control (3.2) is globally asymptotically
stable if there exist a positive definite symmetric matrix X ∈ R

n×n and matrices Yj ∈ R
r×n such that

X = XT > 0, Tii = TT
ii < 0, Tij = TT

ij < 0, (3.28)

for all i ∈ 〈1, 2, . . . , s〉 and i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉 and hi(θ(t))hj(θ(t))/= 0, respectively, where

Tii = XAT
i +AiX − YT

i B
T
i − BiYi,

Tij =

(
XAT

i − YT
j B

T
i

)
+
(
XAT

j − YT
i B

T
j

)

2
+

(
AiX − BiYj

)
+
(
AjX − BjYi

)

2
.

(3.29)

Then, the set of control law gain matrices are given as follows:

Kj = YjX−1, j = 1, 2, . . . , s. (3.30)

Proof. Since P is considered to be a positive definite matrix, it is obvious that P−1 is also
positive definite, and premultiplying left-hand and right-hand side of (3.12), as well as (3.13)
by P−1 leads to the inequalities:

P−1(Ai − BiKi)T + (Ai − BiKi)P−1 < 0,

P−1
(
Ai − BiKj

)T +
(
Aj − BjKi

)T

2
+

(
Ai − BiKj

)
+
(
Aj − BjKi

)

2
P−1 < 0.

(3.31)

Thus, with the notation

X = P−1, Yj = KjX, (3.32)

(3.31) implies (3.29), respectively. This concludes the proof.

Proposition 3.6. The equilibrium of the fuzzy system (2.11) controlled by the fuzzy controller (3.2) is
globally asymptotically stable if there exists a positive definite matrixX ∈ R

n×n and matricesYj ∈ R
r×n

such that

X = XT > 0, T �ij = T �Tij < 0, (3.33)

for hi(θ(t))hj(θ(t))/= 0, i, j = 1, 2, . . . , s, where

T �ij = XAT
i +AiX − YT

j B
T − BYj . (3.34)

The set of control law gain matrices is given by (3.30).

Proof. It Implies directly from Remark 3.4 and Proposition 3.5.
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4. Fuzzy Controller with Quadratic Performances

The controller design is accomplished using the concept of asymptotic stability by analyzing
the existence of an extended Lyapunov function. The fuzzy static output controller is
designed using the concept of parallel distributed compensation, in which the fuzzy
controller shares the same sets of normalized membership functions like the TS fuzzy system
model. The goal is to achieve a certain level of performance using a guaranteed-cost approach
results known from LQ control theory.

Theorem 4.1. The equilibrium of the system (3.1), controlled by the fuzzy controller (3.2), is globally
asymptotically stable if there exist positive definite symmetric matrices X ∈ R

n×n, Q � ∈ R
n×n, R � ∈

R
r×r , and matrices Yj ∈ R

r×n, such that with (3.29)

X = XT > 0, Q� = Q�T > 0, R� = R�T > 0,
⎡

⎢⎢⎢⎢⎢⎢
⎣

Tii X YT
1 · · · YT

s

∗ −Q� 0 · · · 0
∗ ∗ −R� · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −R�

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0,

⎡

⎢⎢⎢⎢⎢⎢
⎣

Tij X YT
1 · · · YT

s

∗ −Q� 0 · · · 0
∗ ∗ −R� · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −R�

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0,
(4.1)

for all i ∈ 〈1, 2, . . . , s〉, i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉, and hi(θ(t))hj(θ(t))/= 0, respectively. The set
of control law gain matrices can be found directly as

Kj = YjX−1, j = 1, 2, . . . , s. (4.2)

Proof. Considering (3.16) and defining with respect to (2.15), (2.25), then the quadratic
positive Lyapunov function is as follows

v(q(t)) = qT (t)Pq(t) +
∫ t

0
r(q(r),u(r))dr > 0, (4.3)

where P is a positive definite symmetric matrix, then it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)Pq̇(t) + r(q(r),u(r)) < 0. (4.4)

Substituting (2.15), (3.1) and (3.2) into (4.4) gives

v̇(q(t)) =
s∑

i=1

hi(θ(t))q•Tj (t)Πiq•k(t) < 0, (4.5)
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where

Πi =
[
Q +AT

i P + PAi PBi

BT
i P R

]
< 0,

q•Tj (t) =

[

qT (t) −qT (t)
s∑

j=1

hj(θ(t))KT
j

]

,

(4.6)

and after straightforward computation it can be obtained

v̇(q(t)) =
s∑

i=1

hi(θ(t))qT (t)Υijk(θ(t))q(t) < 0, (4.7)

with

Υijk(θ(t)) = Q +AT
i P + PAi +

s∑

j=1

hj(θ(t))KT
j R

s∑

k=1

hk(θ(t))Kk

− PBi

s∑

k=1

hk(θ(t))Kk −
s∑

j=1

hj(θ(t))KT
j B

T
i P.

(4.8)

Now, exploiting (3.3), then (4.7), (4.8) can be rewritten as

v̇(q(t)) < qT (t)
s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))Φijq(t) < 0, (4.9)

where

Φij =
(
Ai − BiKj

)TP + P
(
Ai − BiKj

)
+Q +

s∑

l=1

KT
l RKl < 0. (4.10)

Analogously to (3.23) then (4.10) can be written as

v̇(q(t)) < qT (t)
s∑

i=1

hi(θ(t))hi(θ(t))Φ �
ii q(t) + 2qT (t)

s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))Φ �
ijq(t) < 0, (4.11)
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where, with Hij defined in (3.14), it is

Φ �
ii = HT

iiP + PHii +Q +
s∑

l=1

KT
l RKl < 0,

Φ �
ij =

HT
ij +HT

ji

2
P + P

Hij +Hji

2
+Q +

s∑

l=1

KT
l RKl < 0,

(4.12)

for all i ∈ 〈1, 2, . . . , s〉, i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉 and hi(θ(t))hj(θ(t))/= 0, respectively.
Since P is a regular positive definite square matrix, then premultiplying left-hand side

and right-hand side of (4.12) by P−1 give

P−1HT
ii +HiiP−1 + P−1QP−1 +

s∑

l=1

P−1KT
l RKlP−1 < 0,

P−1
HT

ij +HT
ji

2
+
Hij +Hji

2
P−1 + P−1QP−1 +

s∑

l=1

P−1KT
l RKlP−1 < 0.

(4.13)

Thus, using (3.29) and the notations

X = P−1, Yj = KjX, Q� = Q−1, R� = R−1, (4.14)

it yields

Tii + X(Q�)−1X +
s∑

l=1

YT
l (R

�)−1Yl < 0, (4.15)

Tij + X(Q�)−1X +
s∑

l=1

YT
l (R

�)−1Yl < 0, (4.16)

for all i ∈ 〈1, 2, . . . , s〉, i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉, hi(θ(t))hj(θ(t))/= 0, respectively. It is
evident that (4.15) implies (4.2), and (4.16) implies (4.2).

Theorem 4.2. The equilibrium of the fuzzy system (2.11) controlled by the fuzzy controller (3.2) is
globally asymptotically stable if there exist positive definite matrices X ∈ R

n×n,Q� ∈ R
n×n, R� ∈ R

r×r ,
and matrices Yj ∈ R

r×n such that

X = XT > 0, Q� = Q�T > 0, R� = R�T > 0, (4.17)
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⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

XAT
i +AiX − YT

j B
T − BYj X YT

1 · · · YT
s

∗ −Q� 0 · · · 0
∗ ∗ −R� · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −R�

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

< 0, (4.18)

for all i, j ∈ 〈1, 2, . . . , s〉, hi(θ(t))hj(θ(t))/= 0. The set of control law gain matrices is given by (4.7).

Proof. Since Bi = B for all i ∈ 〈1, 2, . . . , s〉, then (4.10) implies

Φij =
(
Ai − BKj

)TP + P
(
Ai − BKj

)
+Q +

s∑

l=1

KT
l RKl < 0. (4.19)

Thus, premultiplying the both side of (4.19) by P−1 gives

P−1
(
Ai − BKj

)T +
(
Ai − BKj

)
P−1 + P−1QP−1 +

s∑

l=1

P−1KT
l RKlP−1 < 0. (4.20)

and with (3.34) and the notations (4.14) then (4.20) implies (4.18).

5. Enhanced Controller with Quadratic Performance

The previous section was detailed how to find the fuzzy controller with quadratic
performance ensuring the global asymptotic stability of the system. To extend the affine TS
model principle by introducing the slack matrix variables into the LMIs, the system matrices
are now decoupled from the equivalent Lyapunov matrix.

5.1. Stability Conditions

Theorem 5.1. The equilibrium of the system (3.1) under control (3.2) is globally asymptotically
stable if there exist positive definite symmetric matrices R ∈ R

r×r , P, Q, S1, S2 ∈ R
n×n, such that

P = PT > 0, Q = QT > 0, R = RT > 0, S1 = ST
1 > 0, S2 = ST

2 > 0, (5.1)

[
Wii P + S1 −HT

iiS2

∗ 2S2

]
< 0,

⎡

⎣Wij P + S1 −
HT

ij +HT
ji

2
S2

∗ 2S2

⎤

⎦ < 0, (5.2)
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for all i ∈ 〈1, 2, . . . , s〉, i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉 and hi(θ(t))hj(θ(t))/= 0, respectively, where
withHij defined in (3.14) it is

Wii = Q −HT
iiS1 − S1Hii +

s∑

l=1

KT
l RKl,

Wij = Q −
HT

ij +HT
ji

2
S1 − S1

Hij +Hji

2
+

s∑

l=1

KT
l RKl.

(5.3)

Proof. Since (3.1) implies

q̇(t) −
s∑

i=1

hi(θ(t))(Aiq(t) + Biu(t)) = 0, (5.4)

using arbitrary regular symmetric square matrices S1,S2 ∈ R
n×n it yields

(
qT (t)S1 + q̇T (t)S2

)(

q̇(t) −
s∑

i=1

hi(θ(t))(Aiq(t) + Biu(t))

)

= 0. (5.5)

Adding (5.5), and transposition of (5.5) to (4.4), and then inserting (3.2) give

v̇(q(t)) = qT (t)Qq(t) + qT (t)
s∑

j=1

hj(θ(t))KT
j R

s∑

k=1

hk(θ(t))Kkq(t)

+ qT (t)S1q̇(t) + q̇T (t)S1q(t) + 2q̇T (t)S2q̇(t) + qT (t)Pq̇(t) + q̇T (t)Pq(t)

− qT (t)S1

s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))
(
Ai − BiKj

)
q(t)

− q̇T (t)S2

s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))
(
Ai − BiKj

)
q(t)

− qT (t)
s∑

i=1

s∑

j=1

hi(θ(t))hi(θ(t))
(
Ai − BiKj

)TS1q(t)

− qT (t)
s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))
(
Ai − BiKj

)TS2q̇(t) < 0.

(5.6)

Then, using the notation:

q◦T (t) =
[
qT (t) q̇T (t)

]
(5.7)
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after straightforward computation it can be obtained

v̇(q(t)) =
s∑

i=1

hi(θ(t))q◦T (t)Φ ◦
i (θ(t))q

◦(t) < 0, (5.8)

where

Φ ◦
i (θ(t)) =

[
Λ ◦

i (θ(t)) Γi(θ(t))
∗ 2S2

]
, (5.9)

Λ ◦
i (θ(t)) = Q −AT

i S1 − S1Ai +
s∑

j=1

hj(θ(t))KT
j R

s∑

k=1

hk(θ(t))Kk

+ S1Bi

s∑

j=1

hj(θ(t))Kj +
s∑

j=1

hj(θ(t))KT
j B

T
i S1,

(5.10)

Γ ◦i (θ(t)) = P + S1 −AT
i S2 +

s∑

j=1

hj(θ(t))KT
j B

T
i S2. (5.11)

Exploiting (3.3), then (5.10) can be rewritten as

Λ ◦
i (θ(t)) < Λi(θ(t)) = Q −AT

i S1 − S1Ai +
s∑

l=1

KT
l RKl + S1Bi

s∑

j=1

hj(θ(t))Kj +
s∑

j=1

hj(θ(t))KT
j B

T
i S1,

(5.12)

and using (5.12) it yields

v̇(q(t)) < q◦T (t)
s∑

i=1

s∑

j=1

hi(θ(t))hj(θ(t))P ◦ijq
◦(t) < 0, (5.13)

where

P ◦ij =

[
Wij P + S1 −

(
Ai − BiKj

)TS2

∗ 2S2

]

< 0. (5.14)

Analogously to (3.23) and (4.11) now (5.13) can be written as

v̇(q(t)) < q◦T (t)
s∑

i=1

hi(θ(t))hi(θ(t))P ◦ii q
◦(t) + 2q◦T (t)

s−1∑

i=1

s∑

j=i+1

hi(θ(t))hj(θ(t))P ◦ijq
◦(t) < 0,

(5.15)
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withWii,Wij defined in (5.3), respectively, and

P ◦ii =
[
Wii P + S1 −HT

iiS2

∗ 2S2

]
< 0, P ◦ij =

⎡

⎣Wij P + S1 −
HT

ij +HT
ji

2
S2

∗ 2S2

⎤

⎦ < 0. (5.16)

Since (5.16) implies (5.1), this concludes the proof.

Corollary 5.2. If Bi = B for all i ∈ 〈1, 2, . . . , s〉 then (5.14) implies that the equilibrium of the system
(2.11) under control (3.2) is globally asymptotically stable if there exist positive definite symmetric
matrices R ∈ R

r×r , P, Q, S1, S2 ∈ R
n×n, such that

P = PT > 0, Q = QT > 0, R = RT > 0, S1 = ST
1 > 0, S2 = ST

2 > 0, (5.17)
⎡

⎣Q −H
◦T
ij S1 − S1H ◦

ij +
s∑

l=1
KT

l
RKl P + S1 −H ◦T

ij S2

∗ 2S2

⎤

⎦ < 0, (5.18)

for all i, j ∈ 〈1, 2, . . . , s〉, hi(θ(t))hj(θ(t))/= 0, where

H ◦
ij = Ai − BKj , ∀i, j ∈ 〈1, 2, . . . , s〉. (5.19)

The importance of Theorem 5.1 is that it separates P from system matrices Ai, Bi, that
is, there are no terms containing product of P and any of them. This enables to derive design
conditions with respect to natural affine properties of TS models.

5.2. Control Parameter Design

In the next theorems, a scalar δ > 0, δ ∈ R is involved in the set of LMIs. The tuning parameter
δ was added in the LMIs in an attempt to obtain less conservative stability conditions than
Theorems 4.1 and 4.2, respectively. This procedure of adding scalar in LMIs has been widely
explored in literature (see e.g., [19]).

Theorem 5.3. The equilibrium of the system (3.1) controlled by the fuzzy controller (3.2) is globally
asymptotically stable if for given δ > 0, δ ∈ R there exist positive definite symmetric matrices X, Z,
Q• ∈ R

n×n, R• ∈ R
r×r , and matrices Yj ∈ R

r×n, such that

X = XT > 0, Z = ZT > 0, Q• = Q•T > 0, R• = R•T > 0, (5.20)
⎡

⎢⎢⎢⎢⎢⎢
⎣

Vii Uii YT
1 · · · YT

s

∗ −2δX 0 · · · 0
∗ ∗ −R• · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −R•

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0,

⎡

⎢⎢⎢⎢⎢⎢
⎣

Vij Uij YT
1 · · · YT

s

∗ −2δX 0 · · · 0
∗ ∗ −R• · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −R•

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (5.21)
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where

Vii = Tii +Q•, Vij = Tij +Q•, (5.22)

Uii = Z − δX + XAT
i − YT

i B
T
i , (5.23)

Uij = Z − δX +
1
2
X
(
AT

i +AT
j

)
− 1
2

(
YT
j B

T
i + YT

i B
T
j

)
, (5.24)

for all i ∈ 〈1, 2, . . . , s〉, i < j ≤ s, i, j ∈ 〈1, 2, . . . , s〉, hi(θ(t))hj(θ(t))/= 0, respectively. The set of
control law gain matrices is given as in (3.30).

Proof. Since S1,S2 are considered to be symmetric positive definite, introducing the
congruence transform matrix:

T = diag
[
S−11 S−12

]
(5.25)

and premultiplying left-hand as well as right-hand sides of (5.16) by (5.25) gives

TP ◦ii T =
[
W ◦

ii S−11 PS−12 + S−12 − S−11 HT
ii

∗ 2S−12

]
< 0,

TP ◦ijT =

⎡

⎣W ◦
ij S−11 PS−12 + S−12 − S−11

HT
ij +HT

ji

2
∗ 2S−12

⎤

⎦ < 0,

W ◦
ii = S−11 WiiS−11 = −S−11 HT

ii −HiiS−11 + S−11 QS−11 +
s∑

l=1

S−11 KT
l RKlS−11 ,

W ◦
ij = S−11 WijS−11 =

s∑

l=1

S−11 KT
l RKlS−11 + S−11 QS−11 − S−11

HT
ij +HT

ji

2
− Hij +Hji

2
S−11 .

(5.26)

Thus, with δ > 0, δ ∈ R and with the notations

X = −S−11 , δX = −S−12 , Yj = KjX,

Z = S−11 PS−12 , Q• = S−11 QS−11 , R• = R−1,
(5.27)

it yields

W ◦
ii = Tii +Q• +

s∑

l=1

YT
l (R

•)−1Yl, W ◦
ij = Tij +Q• +

s∑

l=1

YT
l (R

•)−1Yl, (5.28)
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and considering (5.22), we have

⎡

⎢
⎣
Vii +

s∑

l=1

YT
l (R

•)−1Yl Z − δX + XAT
i − YT

i B
T
i

∗ −2δX

⎤

⎥
⎦ < 0,

⎡

⎢
⎣
Vij +

s∑

l=1

YT
l (R

•)−1Yl Z − δX +
1
2
X
(
AT

i +AT
j

)
− 1
2

(
YT
j B

T
i + YT

i B
T
j

)

∗ −2δX

⎤

⎥
⎦ < 0.

(5.29)

Using Schur complement property, then (5.29) implies (5.21)–(5.24).

Theorem 5.4. The equilibrium of the system (2.11) controlled by the fuzzy controller (3.2) is globally
asymptotically stable if for given δ > 0, δ ∈ R there exist positive definite symmetric matrices
X,Z,Q• ∈ R

n×n, R• ∈ R
r×r , and matrices Yj ∈ R

r×n, such that

X = XT > 0, Z = ZT > 0, Q• = Q•T > 0, R• = R•T > 0, (5.30)
⎡

⎢⎢⎢⎢⎢⎢
⎣

T �ij +Q• Z − δX + XAT
i − YT

j B
T YT

1 · · · YT
s

∗ −2δX 0 · · · 0
∗ ∗ −R• · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −R•

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (5.31)

for all i, j ∈ 〈1, 2, . . . , s〉. Then, the set of control law gain matrices is given as in (3.30).

Proof. If Bi = B for all i ∈ 〈1, 2, . . . , s〉 then (5.18) implies

[
W �

ij P + S1 −
(
Ai − BKj

)TS2

∗ 2S2

]

< 0, (5.32)

W �
ij = Q − (Ai − BKj

)TS1 − S1
(
Ai − BKj

)
+

s∑

l=1

KT
l RKl. (5.33)

Premultiplying left-hand side and right-hand side of (5.32) by (5.25) gives

[
W •

ij S−11 PS−12 + S−12 − S−11 AT
i + S−11 KT

j B
T

∗ 2S−12

]

< 0,

W •
ij = −S−11

(
Ai − BKj

)T − (Ai − BKj

)
S−11 + S−11 QS−11 +

s∑

l=1

S−11 KT
l RKlS−11 ,

(5.34)

and with the notations (5.27), (5.32) then (5.34) implies (5.31).

Note, the forms (5.2), (5.18) are suitable to optimize a solution with respect to LMI
variables in an LMI structure. Conversely, the forms (5.21), (5.31) behave LMI structure only
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if δ is a prescribed constant design parameter. In the opposite case, the design task has to be
formulated as BMI problem.

6. Illustrative Examples

The nonlinear dynamics of the hydrostatic transmissionwere taken from [22], and thisMIMO
model was used at first in control design and simulation.

The hydrostatic transmission dynamics is represented by a nonlinear fourth-order
state-space model:

q̇1(t) = −a11q1(t) + b11u1(t),

q̇2(t) = −a22q2(t) + b22u2(t),

q̇3(t) = a31q1(t)p(t) − a33q3(t) − a34q2(t)q4(t),

q̇4(t) = a43q2(t)q3(t) − a44q4(t),

(6.1)

where q1(t) is the normalized hydraulic pump angle, q2(t) is the normalized hydraulic motor
angle, q3(t) is the pressure difference [bar], q4(t) is the hydraulic motor speed [rad/s], p(t) is
the speed of hydraulic pump [rad/s], u1(t) is the normalized control signal of the hydraulic
pump, and u2(t) is the normalized control signal of the hydraulic motor. It is supposed that
the external variable p(t) as well as the second state variable q2(t) are measurable. In given
working points the parameters are

a11 = 7.6923 a22 = 4.5455 a33 = 7.6054.10−4,

a31 = 0.7877 a34 = 0.9235 b11 = 1.8590.103,

a43 = 12.1967 a44 = 0.4143 b22 = 1.2879.103.

(6.2)

Since the variables p(t) ∈ 〈105, 300〉 and q2(t) ∈ 〈0.001, 1〉 are bounded on the prescribed
sectors then vector of the premise variables can be chosen as follows:

θ(t) =
[
θ1(t) θ2(t)

]
=
[
q2(t) p(t)

]
. (6.3)

Thus, the set of nonlinear sector functions:

w11
(
q2(t)

)
=

b1 − q2(t)
b1 − b2 , w12

(
q2(t)

)
=

q2(t) − b2
b1 − b2 = 1 −w11

(
q2(t)

)
, b1 = 0.001, b2 = 1,

w21
(
p(t)
)
=

c1 − p(t)
c1 − c2 , w22

(
p(t)
)
=

p(t) − c2
c1 − c2 = 1 −w21

(
p(t)
)
, c1 = 105, c2 = 300,

(6.4)
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implies the next set of normalized membership functions:

h1
(
q2(t), p(t)

)
= w11

(
q2(t)

)
w21
(
p(t)
)
, h2

(
q2(t), p(t)

)
= w12

(
q2(t)

)
w21
(
p(t)
)
,

h3
(
q2(t), p(t)

)
= w11

(
q2(t)

)
w22
(
p(t)
)
, h4

(
q2(t), p(t)

)
= w12

(
q2(t)

)
w22
(
p(t)
)
.

(6.5)

The transformation of nonlinear differential equations of the system into a TS fuzzy system
in standard form gives

Ai =

⎡

⎢
⎢
⎣

−a11 0 0 0
0 −a22 0 0

a31ck 0 −a33 −a34bl
0 0 a43bl −a44

⎤

⎥
⎥
⎦, B =

⎡

⎢
⎢
⎣

b11 0
0 b22
0 0
0 0

⎤

⎥
⎥
⎦, CT =

⎡

⎢
⎢
⎣

0 0
1 0
0 1
0 0

⎤

⎥
⎥
⎦, (6.6)

with the associations

i = 1←− (l = 1, k = 1) i = 2←− (l = 2, k = 1),

i = 3←− (l = 1, k = 2) i = 4←− (l = 2, k = 2).
(6.7)

Thus, solving (5.30)-(5.31) for given δ = 20 with respect to the LMI matrix variables X, Z,Q•,
R•, and Yj , j = 1, 2, 3, 4 using Self-Dual-Minimization (SeDuMi) package for Matlab [23], the
feedback gain matrix design problem was feasible with the results:

X =

⎡

⎢⎢
⎣

0.0042 0.0000 −0.0042 0.0002
0.0000 0.0259 0.0000 0.0000
−0.0042 0.0000 0.0269 −0.0104
−0.0002 0.0000 −0.0104 0.0537

⎤

⎥⎥
⎦,

Z =

⎡

⎢⎢
⎣

1.6360 0.0000 −0.3994 −0.0349
0.0000 1.2977 0.0000 0.0000
−0.3994 0.0000 0.9726 −0.1850
−0.0349 0.0000 −0.1850 1.0982

⎤

⎥⎥
⎦,

Q• =

⎡

⎢⎢
⎣

1.8612 0.0000 −0.5123 −0.0126
0.0000 0.6409 0.0000 0.0000
−0.5123 0.0000 0.2197 0.0121
−0.0126 0.0000 0.0121 0.0314

⎤

⎥⎥
⎦, R• =

[
0.9920 0.0000
0.0000 0.9920

]
,

Kj =
[
0.2386 0.0000 0.0350 0.0075
0.0000 0.0207 0.0000 0.0000

]
, j = 1, 2, 3, 4,

(6.8)

which rise up a stable set of closed-loop subsystems.
Comparing with the standard approach, presented method tends to produce the same

control gain matrices if Bi = B for all i, which radically reduce the control structure, since the
result is stabilizing linear control law with quadratic performance for the nonlinear system.
Moreover, such control is robust with respect to a premise variable sensor fault.
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Figure 1: (a) Fault-free system state response, (b) faulty system state response.

Specifying simulation conditions for unforced (autonomous) regime and t ≥ 0 as
follows:

p(t) = c1, qT (0) =
[
0.1 0.5 0 0

]
, (6.9)

then Figure 1(a) shows the solution for constant external system signal p(t) and nonzero
initial condition.

If the second variable (premise) sensor fault was modeled as the step function, and
the system in unforced regime was controlled by the nominal state control before, and after
the sensor fault occurrence time instant tf = 0.07 s, then the state responses of the system are
shown in Figure 1(b). Evidently, closed-loop system stayed stable.

Using the decoupling control principe [24], also the forced regime was simulated with
the control policy:

u(t) =
s∑

j=1

hj(θ(t))
(−Kjq(t) +Wwjw(t)

)
, (6.10)

where w(t) ∈ R
r was the desired output vector, and Wwj ∈ R

r×r , j = 1, . . . , s was the set of
signal gain matrices. Using method given in [25], the signal gain matrices were computed as

Wwj =̇
1
4

4∑

i=1

(
C
(−(Aj − BKi

))−1B
)−1

,

Ww1 =
[
0.0000 0.1401
0.0970 0.0000

]
, Ww2 =

[
0.0000 0.1401
0.0970 0.0000

]
,
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Figure 2: (a) System state response, (b) system output response.

Ww3 =
[
0.0000 1.3434
0.0970 0.0000

]
, Ww4 =

[
0.0000 1.1360
0.0970 0.0000

]
,

wT (t) =
[
0.2000 0.9000

]
.

(6.11)

The simulation results for forced regime are shown in Figures 2(a) and 2(b), reflecting the
closed-loop system state, as well as system output responses.

Example 6.1. Consider and give later the problem of balancing an inverted pendulum on a
cart adopted from [10, 26], where the objective is to control its state trajectories to the state
origin, the state equation of motion of this nonlinear SISO system is,

q̇1(t) = q2(t),

q̇2(t) =
g sin

(
q1(t)

) − cml q22(t) sin
(
2q1(t)

) − c cos(q1(t)
)
u(t)

(4/3)l − cml cos2
(
q1(t)

) ,
(6.12)

where q1(t) denotes the angle of the pendulum from the vertical axis [rad], q2(t) is the angular
velocity [rad/s], u(t) is the force applied to the cart [N],m is the mass of the pendulum [kg],
M is the mass of the cart [kg], l is the length from the center of mass of the pendulum to the
shaft axis [m], and g is the gravity constant [9.81m/s2]. In the design and simulation, the
pendulum parameters were set as

l = 0.5, m = 2, M = 8, c = (m +M)−1 = 0.1. (6.13)
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Since the premise variable q1(t) ∈ 〈−π/3, π/3〉 is bounded on this interval, the next
sectors

〈
−π
3
,−π

9

〉
,

〈
−2π

9
, 0
〉
,

〈
−π
9
,
π

9

〉
,

〈
0,

2π
9

〉
,

〈
π

9
,
π

3

〉
(6.14)

were chosen to approximate the system dynamics. The transformation of nonlinear
differential equations of the system into a TS fuzzy model gives

Ai =
[

0 1
a21i 0

]
, bi =

[
0
b2i

]
, cT =

[
1 0
]
, i = 1, 2, 3, 4,

a211 =
g

(4/3)l − cml
, a212 =

(9/π) sin(π/9)g
(4/3)l − cml cos2(π/9)

,

a213 =
(9/2π) sin(2π/9)g

(4/3)l − cml cos2(2π/9)
, a214 =

(3/π) sin(π/3)g
(4/3)l − cml cos2(π/3)

,

b21 =
−c

(4/3)l − cml
, b22 =

− cos(π/9)c
(4/3)l − cml cos2(π/9)

,

b23 =
− cos(2π/9)c

(4/3)l − cml cos2(2π/9)
, b24 =

− cos(π/3)c
(4/3)l − cml cos2(π/3)

.

(6.15)

Now, (3.1), (2.12) take the forms:

q̇(t) =
4∑

i=1

hi(θ(t))(Aiq(t) + biu(t)),

y(t) = cTq(t),

(6.16)

where

qT (t) =
[
q1(t) q2(t)

]T
, θ(t) =

[
θ1(t) θ2(t) θ3(t) θ4(t)

]T
,

θi(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ1(t) if q1(t) is about 0,

θ2(t) if q1(t) is about ± π

9
,

θ3(t) if q1(t) is about ± 2π
9
,

θ4(t) if q1(t) is about ± π

3
,

h1(θ1(t)) = 1 − 9
π
|θ1(t)|, h2(θ2(t)) = 1 − 9

π

∣∣∣∣θ2(t) −
π

9
sign(θ2(t))

∣∣∣∣,

h3(θ3(t)) = 1 − 9
2π

∣∣∣∣θ3(t) −
2π
9

sign(θ3(t))
∣∣∣∣, h4(θ4(t)) =

3
π

∣∣∣∣θ4(t) −
2π
9

sign(θ4(t))
∣∣∣∣.

(6.17)
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Figure 3: Responses of the pendulum angle q1(t) and angular velocity q2(t) of the inverted pendulum on
a cart with fuzzy control.

Thus, solving (5.20)–(5.24) for given δ = 20 with respect to the LMI matrix variables
X, Z, Q•, R•, and Yj , j = 1, 2, 3, 4 using SeDuMi, the feedback gain matrix design problem
was feasible with the results:

X =
[
0.0018 −0.0066
−0.0066 0.0244

]
, Z =

[
0.0446 −0.1647
−0.1647 0.6136

]
,

Q• =
[
0.0008 −0.0028
−0.0028 0.0101

]
, R• = 1.1301,

Kj =
[−725.0702 −195.4523], j = 1, 2, 3, 4,

(6.18)

which rise up a stable set of closed-loop subsystems.
Comparing with the standard approach, the method tends in this case also to produce

the same control law gain matrices although Bi /=B for all i. Note that the nonlinear controller
(3.2) does not apply for π/3 < |x1(t)| < π .

Define the simulation conditions for unforced regime as follows:

qT (0) =
[π
4

0
]
. (6.19)

Figure 3 shows the solution for control of the system with nonzero initial condition.
The second example was included into the paper to demonstrate more complexity of

design. Moreover, functionality properties of proposed method can be verified for example,
on the flexible-joint robot armmodel [27], Lorenz chaotic systemmodel [28], converter model
[29], and so forth.
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7. Concluding Remarks

New approach to design of the state control with quadratic performance for a class of
continuous-time TS fuzzy systems is presented in this paper. This is achieved by application
of TS fuzzy model relating to multimodel approximation structure, the extended Lyapunov
function, and its enhanced derivative. Presented version is derived in terms of optimization
over LMI constraints using standard LMI numerical optimization procedures to manipulate
the global stability of the system. The limitation of this approach is that some state variables
must be measurable to construct the fuzzy controller. This is a common limitation for control
system design on TS fuzzy approach.

The global quadratic stability of the closed-loop system, solved in the sense of
enhanced Lyapunov function derivative, was formulated considering measurable premise
variables. Since the stability conditions based on the standard form of the quadratic
Lyapunov function are very conservative as a common symmetric positive definite matrix
verifying all Lyapunov inequalities is required, the presented principle, naturally exploiting
the affine properties of TS fuzzy models and incorporating linear quadratic performance,
strictly decouples Lyapunov matrix and the system parameter matrices in the resulting LMIs
and significantly reduces the conservativeness in the fuzzy control design. Such LMI-based
fuzzy controller is to minimize an upper bound of the performance index.

Used technique denotes that the controller shares the same fuzzy sets with the
fuzzy system in the premise parts. As the presented sufficient stability condition did not
consider the membership functions of both the TS fuzzy model and the fuzzy controller,
the design conditions are valid for any arbitrary membership functions set. Since there
is generally no restriction on the design of the membership functions, only the structural
complexity of the fuzzy controller may be increased when the membership functions of
the TS fuzzy model are more complex. Thus, if it is possible to minimize the design effort
and complexity with respect to given system nonlinear sectors, a compromise between
complexity and error approximation criterion can be used. In opposite cases, for example,
if affine fuzzy system is highly nonlinear, shift operations or diffeomorphic transformations
have to be used to transform it to linear types, or staircase membership functions can be
employed to approximate the continuous membership functions of the TS fuzzy model and
fuzzy controller and to include the membership functions into the stability conditions [30].
However, since this kind of approach yields another structure of matrix inequality conditions,
it was not employed in the paper.
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