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A novel adaptive fuzzy min-max neural network classifier called AFMN is proposed in this paper.
Combined with principle component analysis and adaptive genetic algorithm, this integrated
system can serve as a supervised and real-time classification technique. Considering the loophole
in the expansion-contraction process of FMNN and GFMN and the overcomplex network
architecture of FMCN, AFMN maintains the simple architecture of FMNN for fast learning and
testing while rewriting the membership function, the expansion and contraction rules for hyperbox
generation to solve the confusion problems in the hyperbox overlap region. Meanwhile, principle
component analysis is adopted to finish dataset dimensionality reduction for increasing learning
efficiency. After training, the confidence coefficient of each hyperbox is calculated based on the
distribution of samples. During classifying procedure, utilizing adaptive genetic algorithm to
complete parameter optimization for AFMN can also fasten the entire procedure than traversal
method. For conditions where training samples are insufficient, data core weight updating is
indispensible to enhance the robustness of classifier and the modified membership function can
adjust itself according to the input varieties. The paper demonstrates the performance of AFMN
through substantial examples in terms of classification accuracy and operating speed by comparing
it with FMNN, GFMN, and FMCN.

1. Introduction

The merge of fuzzy set theory [1-6] stimulates its development on pattern recognition
and classification. The capacity for fuzzy logic to divide the complex class boundaries has
generated a lot of achievements in neuro-fuzzy pattern recognition systems [7-23]. The
fuzzy min-max neural network (FMNN) which is proposed in [24] puts a solid foundation
for further research in this field. The FMNN utilizes hyperbox fuzzy sets to represent a
region of the n-dimensional pattern space; input samples which fall in a hyperbox have full
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memberships. An n-dimensional hyperbox can be defined by stating its min and max vertices.
This algorithm is to find suitable hyperboxes for each input patterns with a three-step process:
expansion, overlap, and contraction. But the contraction of hyperboxes of different classes
may lead to classification error which is demonstrated in [25], and its performance highly
depends on the initialization of the sequence of the training data and the expansion coefficient
which controls the size of hyperbox.

The proposed GFMN [26] is also an online classifier based on hyperbox fuzzy set
concept. Its improvement lies in proposing a new membership function which monotonically
decreases with a growing distance from a cluster prototype, thus eliminating the likely
confusion between cases of equally likely and unknown inputs [26]. But the contraction
process problem remains. This situation is the same with the proposal of a modified
fuzzy min-max neural network with a genetic-algorithm-based rule extractor for pattern
classification even though it is creative to use genetic algorithm to minimize the numbers
of features of input dataset [27]. In FMCN [25], a new learning algorithm called fuzzy min-
max neural network classifier with compensatory neuron architecture (FMCN) architecture
has been reported. This method introduces compensatory neurons to handle the confusion
in overlap regions and disposal of the contraction process. However, the FMCN does not
allow hyperboxes of different class to be overlapped which results in the increasing number
of neurons in the middle layer of network, thus consuming much more time during training
and testing. And the algorithm distinguishes the simple overlap and containment. In fact,
even though FMCN performs better than FMNN and GFMN in most cases, its structural
complexity increases and consumes more time during training and testing. Meanwhile, it
omits a kind of overlap [28] which results in classification error. Another improved network
based on data core is called data-core-based fuzzy min-max neural network (DCFMN).
DCEMN [28] can adjust the membership function according to samples distribution in a
hyperbox to get a higher classification accuracy, and its structural is simpler than FMCN.
However, all these four networks cannot perform well with relatively insufficient training
samples. A weighted fuzzy min-max neural network (WFMM) is proposed in [29]. The
membership function of WFEMM is designed to take the frequency of input patterns into
consideration.

The proposed AFMN owns its advantages in several aspects. First, the proposed
AFMN maintains the simple architecture of FMNN and adds preprocessing for input
patterns, and its technique is principle component analysis (PCA) [30]. This kind of data
dimensionality reduction technique can reduce the number of features of input patterns and
extract the useful information. It is known that without preprocessing of training dataset, it is
hard to practically implement the classifier due to the high dimensionality, the redundancy,
and even noise inherent in input patterns.

Second, considering that there are nodes of more than one class in a hyperbox, it is not
reasonable to allocate full membership for any input pattern that falls in the hyperbox. So the
confidence coefficient for each hyperbox is introduced for resolving this confusion to achieve
a higher classification accuracy.

Third, membership function is modified according to the inspiration of data core from
DCFMN. The concept of data core which can update itself during testing aids to adjust
the membership based on the training samples distribution. And loopholes that existed in
FMNN, GFMN, and FMCN overlap test cases are found out and resolved by rewriting
the rules. Meanwhile, adaptive genetic algorithm (AGA) [31-33] is utilized in classifying
algorithm for parameters optimization instead of traversal method to improve the speed and
accuracy of the entire neural network classifier.
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Finally, the proposal of this new classifier is not only a original attempt of theory, but
also an important initial step for its application on the running pipeline for working condition
recognition which is a typical nonlinear control system [34-39].

The rest of the paper is organized as follows. Section 2 analyzes the traditional fuzzy
neural network classifier. Section 3 introduces the AFMN classifier system in detail. Section 4
provides abundant examples to demonstrate the performance of AFMN. Section 5 concludes
with summary.

2. Analysis of Precedent Fuzzy Min-Max Neural Network Classifier

FMNN learning algorithm consists of three procedures: (1) expansion, (2) overlap test, and
(3) contraction. Its rule is to find a suitable hyperbox for each input pattern. If the appropriate
hyperbox exists (even after expansion), its size cannot exceed the minimum and maximum
limits. After expansion, all hyperboxes that belong to different classes have to be checked
by overlap test to determine if any overlap exists. So a dimension by dimension comparison
between hyperboxes of different class is performed. FMNN designs four test cases, at least
one of the four cases is satisfied, then overlap exists between the two hyperboxes. Otherwise,
a new hyperbox needs to be added to the network. If no overlaps occur, the hyperboxes
are isolated and no contraction is required. Otherwise, a contraction process is needed to
eliminate the confusion in overlapped areas.

GFMN focuses on the disadvantages of the membership function proposed in FMNN
and proposes an improved membership function that the membership value can decrease
steadily when input patterns get far away from the hyperbox.

FMCN distinguishes the simple overlap and containment and introduces overlapped
compensation neurons (OCNs) and containment compensation neurons (CCNs) to solve the
confusion in the overlap region.

However, there exists two cases in the overlap area that FMNN, GFMN, and FMCN
cannot operate properly on the hyperbox adjustment. Figure 1 depicts the two hyperboxes
overlap cases. The positions of minimum and maximum points are described below:

Uk1 = Uj1 < Wj1 < Wk,
(2.1)
VK1 = Uj1 < Wj1 = Wk1-

When input data that satisfies this condition is trained according to the overlap test
rules designed in FMNN, GFEMN, and FMCN, overlap cannot be checked because they do
not satisfy any one of the four cases in overlap test. However, obviously the two hyperboxes
are partly overlapped in Figure 1(a), and the other two hyperboxes are fully overlapped in
Figure 1(b). This case shows that the loophole exists in the overlap test case of the three
algorithms. Especially in the case depicted in Figure 1(b), the network cannot cancel one of
the two identical hyperboxes, which means creating the same hyperbox twice. Meanwhile,
the number of nodes will increase if overlap occurs between two hyperboxes of the same
class and increase the computation complexity. Figure 2 emphasizes this situation again,
there should be four hyperboxes after training, but the overlap test regards the number
of hyperboxes as five. Just as precedent discussion shows, the cases in the overlap are not
complete and need revising.
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Wi = {wi, wia}
Wj = {wj]/ij}

Wi = {wi, wia}

Hyperbox k
Wj = {wjl,wjz}
Hyperbox k
Vi = {vr1, vk} s
Hyperbox j
Vi ={vj1,v2}
Vi = {vj1,v2) Vi = {vk1, U2}
(a) (b)
Figure 1: Two overlap cases.
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Figure 2: A confusing hyperbox generation.

Another disadvantage of the traditional classifier and the same with DCFMN is that
they do not take verifying the efficiency of a hyperbox into consideration.

The idea of testing the efficiency of a hyperbox is inspired by the situation that in a
hyperbox there are input patterns of more than one class. For the convenience of explanation
here we name input patterns of the certain class that its hyperbox belongs to as primary
patterns (PPs) and those of any other class as subordinate patterns (SPs). Figure 3 shows the
hyperboxes generated according to the learning algorithm of FMNN and DCFMN. Among
them, hyperboxes 1-3 belong to class 1 and hyperbox 4 belongs to class 2. We can notice
that in hyperbox1 of class 1, there are more SPs than PPs which shows that the creation of
hyperbox is not appropriate and may insert a negative impact in classification.

Meanwhile, in other traditional fuzzy min-max neural network classifiers, input data
is not preprocessed before training. The redundancy and noise of data can undermine
the performance of classification and consume more time during training and testing.
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Figure 3: Two inappropriate hyperbox creation.

In AFMN, the problem is solved by using principle component analysis (PCA) to reduce
the dimensionality of input data and adopting genetic algorithm to fast select the optimal
parameters combination during test procedure instead of traversal method.

3. AFMN Architecture
3.1. Basic Definitions
3.1.1. Confidence Coefficient

The hyperboxes generated during training are in different sizes and the input patterns
included a hyperbox may belong to different classes which means the hyperbox cannot
guarantee that an input pattern that falls within it fully belongs to its class. Figure 4 shows
a hyperbox creation result in which there are input patterns of three classes A, B, and C.
Obviously it is not rational to regard the membership of all input patterns that fall in the
hyperbox B as 1 because there are PPs and OPs at the same time in the same hyperbox. This
problem can be removed by accounting for the proportion of PPs patterns to total patterns
in the same hyperbox. By calculating the proportion of the PPs of total patterns in the same
box, the confidence coefficient of each hyperbox can be gotten. Let H = {1, 1, ...}, 7k be the
confidence coefficient of kth hyperbox.
Two possibilities have to be considered when designing H.

(1) Just like the discussion before, we name input patterns of the certain class that
its hyperbox belongs to as primary patterns (PPs) and those of any other class as
subordinate patterns (SPs), we should should consider the portion of PPs to total
patterns and that of PP and SP patterns.

(2) If the amount of training data of different classes is different, for eliminating
the training error caused by this imbalance inherent in the samples, normalizing
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Figure 4: The Meaning of Confidence Coefficient.

initially the patterns by introducing parameter ¢ is necessary which means distri-
buting a weight value for each class.

And the resolution consists of two steps.
Step 1. Compute Weight Value ¢ for Each Class.

For there are p classes, the number of input patterns for each class is relatively ¢,
®2,...,p; the function that decides weight value ¢k for each class is given by

& = Pk , k=12...p. (3.1)
max (g, ¢z, ..., ¢p)

Step 2. Compute Confidence Coefficient for Each Hyperbox.

For the jth hyperbox b; and b; € cx, the corresponding 7; is given by.

- Pik/ ok
L (Pin/&1+p/lo+ -+ i/ ++Pjn/&p)

(3.2)

where ¢pjk(k = 1,2,...,p) represents the number of input patterns of class k in hyperbox b;,
j =1,2,...m; mis the number of hyperboxes. And the value of 7; is decided by

. . > ,
0 nj<p,

where f ranges from 0.1 to 1.

3.1.2. AFMN Architecture Quverview

The architecture of AFMN is shown in Figure 5. The connections between input and middle
layer are stored in matrices V and W. The connections between middle and the output layer
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Figure 5: AFMN architecture overview.

are binary valued and stored in U. The equation for assigning the values from b; to the output
layer node ¢; is as follows:

s 1, if b, €c;, (3 4)
I 0, otherwise. ’
3.2. Fuzzy Hyperbox Membership Function
The membership function b;(X}) for an input X, is given by
bj(Xn) =1 - max(max(f (ari, i), f (a2, 1)),
a1i = Xnpi — Wi, (3.5)

Qi = Vji = Xhi,

pi=y(1-dji)d;,

where dj; = cji — ((vji + wji)/2); cji is the geometrical core that is known as data core. It is
given by

Cji = — Z xZi vji < ¢ji S wji, (3.6)

where jy is the number of patterns belonging to its hyperbox’s class. xzi is the patterns
belonging to its hyperbox’s class.
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A is given by

max ¢
Aj= P

j=1,...,m, (3.7)

where ¢; indicates the number of PPs in the hyperbox j. f is a two-parameter ramp threshold
function as follows

1/ aoi,ﬁi > 1/
flaoi, i) = aifi, 1>anfi >0, 0=1,2, (3.8)
0, aoiﬁi <0.

3.3. Learning Algorithm
3.3.1. Data Preprocessing by Principle Component Analysis (PCA)

Principle analysis is chosen as a data dimensionality reduction technique that removes
redundant features from the input data. The input data after dimensionality reduction can
accelerate the training and testing procedure meanwhile improving the network performance
because PCA picks up primary features from original dataset to avoid affecting by the
redundancy and noise within it. In this paper, the number of features we choose depends
on the how many dimensions can include 80% of the total information.

3.3.2. Hyperbox Expansion
This procedure decides the number and min-max points of hyperboxes, its rule is as follows.
If the following criterion is satisfied
no > Z(max(wji, xhi) —min(vﬁ, xhi)), (39)
i=1

where 6 controls the size of a hyperbox 0 <0 < 1.
If the expansion criterion has been met, the minimum and maximum points of the
hyper box are adjusted using the following equation

new

Ui = min<v;)ildrxhi>/ i=1,2,...,n,
(3.10)
w;_liew = max(w?ild,xm>l i=1,2,...,n
Otherwise, create a new hyperbox and its min and max points are adjusted as below:
’U?iew = Xhi, i= 1/ , ,n,
(3.11)

Repeat the procedure until all the input patterns finish training.
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3.4. Hyperbox Overlap Test

As previously stated, new cases have to resolve the problem existed in FMNN; so first for
testing if two hyperboxes are fully overlapped, we design the case as bellow:

Vji = Uki < Wji = Wk;i- (312)

If the case can be satisfied, that means two hyperboxes of the same class fully overlap, then
one of them will be removed from the network.

Here assuming a® = 1, A = 1 initially, for hyperbox j and hyperbox k, the four overlap
cases and the corresponding overlap value for the ith dimension are given as follows.

Case 1 (’Uj,' <ok < Wiji < wk,-). One has

A = min(wji - Uki,a"ld). (3.13)

Case 2 (vxi < vji < wki < wj;). One has
a™"W = min (wki - Vji, 0!01d>. (3.14)

Case 3 (vji < vk < Wk < wj;). One has
new __ : 3 R .. I . old 315
a"" = min( min(wy; - vji, wji - Vki), 2% ). (3.15)

Case 4 (vxi < vji < wj; < Wk;). One has
a™v = min<min(w]~,~ — Ui, Wki — Vji), a°1d>. (3.16)

If a°d — g"eW > 0, then A = i,. If any dimension cannot satisfy any of the four cases, then
A = 0. Otherwise if A #0, then there is overlap between hyperbox j and hyperbox k.

3.5. Hyperbox Contraction

If overlap exists between hyperboxes of different classes, the network will allocate 1 for the
overlap region, thus generating the classification confusion. And only one of the n dimension
needs to be adjusted to keep the hyperbox as large as possible. For A = i, then Ath dimension
is that we should select. The adjustment should be made as follows.

Case 1 (vja < vka < wja < wia). One has

old old
(% + W-
new _ _ new _ KA jA

3.17
o = g = 22 (3.17)
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Case 2 (vxa < vja < wka < wja). One has

1d old
008 + w
W = gonew ja kA (3.18)
jA kA 2
Case 3 (vja < vka < wka < wja). One has
if WA — Vja < Wi — Uka
then o' = ol 3.19
iA kA (3.19)
otherwise —w"V = p°ld
in T Yka-
Case 4 (vka < vjp <wja < Wwia). One has
If WA — Vja < WjA — Vka
then w"eW = pod
ko = Uja (3.20)

. new __ old
otherwise vV = w iA -

Through all the precedent procedures, parameters V and W are determined. The entire learn-
ing procedure can be summarized in Figure 6.

3.6. Classifying Algorithm
3.6.1. Genetic Algorithm in Network Classifying Procedure

GA is bestowed the task of finding the best parameter combination instead of the traversal
method. Compared with the traditional traversal method to search for appropriate parame-
ters for the network to achieve its best performance, genetic algorithm has two advantages.

(a) For traversal method, choosing an appropriate step is an obstacle. Setting too small
step size can achieve a better classification performance at the cost of more time
consuming. Otherwise, testing procedure will be fast at the cost of a relatively low
accuracy.

(b) For high classification accuracy that means setting the step short. Genetic algorithm
completes this task faster than traversal.

The GA fitness function used is defined as

f= . (3.21)

The genetic operation implemented consists of the following six steps.
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Expand the
hyperbox

If overlap?

Hyperbox
contraction

samples finish
verlap test?

Figure 6: AFMN learning algorithm.

Step 1 (initialization). Set the range for each parameter and initialize the population string in
each generation. Here 0 ranges from 0 to 1,  ranges from 0.1 to 1, and y ranges from 1 to 10.

Step 2 (selection). Select the certain numbers of pairs of strings from the current population
according to the rule known as roulette wheel selection.
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Figure 7: AFMN classifying algorithm.

Step 3 (crossover). For each selected pair, choose the bit position for crossover. The rule is
specified as bellow:

f' = favg
08 - Vi ! avgrs
P. = frax — f' f'> favg (3.22)
0.8, f'< favgs

where f’ indicates the lager fitness value in the pair, fiax is the maximum fitness value, and
favg is the average fitness value of the current population.

Step 4 (mutation). For each bit value of the strings, apply the following mutation operation
according to the possibility defined as below:

01 ff max ff f N favg/
Pm — max fan f (3'23)
01+02% ——— fmax fwst f < favg/

where f is the fitness value of the mutation individual.

Step 5 (elitist strategy). Select a string with maximum fitness and pass it to the next genera-
tion directly.

Step 6 (termination test). Here we use the number of generations as a condition for genetic
algorithm termination.

3.6.2. The Entire Classifier System

The learning and classification algorithm can be summarized in the flowchart in Figure 7.

4. Results

4.1. Examples to Demonstrate the Effectiveness of Overlap Test and
Contraction Cases

Just as the previous discussion about the cases represented in Figures 1(a) and 1(b). When
overlap occurs in such case, the overlap and contraction algorithm of FMNN, GFMN,
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Wy = {wi1, Wiz } Wy = {wi, wi2 }

Hyperbox k

Hyperbox k
Vi = {vk1, vk2} P Vi = {vk1,vk2}

Wj = {wj rij}
W = {wj1,wjp}

Hyperbox j
Hyperbox j
Vi ={vj1,vp2} Vi = {vj1,vp2}
(a) (b)
Figure 8: The correct hyperbox division by AFMN.
Table 1: The effectiveness of PCA process.
Training dataset (%) 20% 40% 60% 80% 100%

Error numbers without PCA /time consumed (s) 35/2045 25/29.16 20/39.78 21/60.78 9/80.49
Error numbers with PCA /time consumed (s) 33/18.15 26/24.78 20/30.46 18/50.01 11/69.48

and FMCN will create misclassification error. This problem is solved by the revised overlap
test cases. The hyperbox generation result is shown in Figures 8(a) and 8(b).

4.2, The Working of PCA and Genetic Algorithm
4.2.1. Principle Component Analysis

To understand the effect of PCA in improving classification efficiency by implementing data
dimensionality reduction, we use AFMN to classify five groups of complete GLASS dataset
[40], and one is preprocessed by PCA to get a simplified input pattern and guarantee the
remaining formation is not less than 80%. The number of classification error is showen in
Table 1. The training dataset ranges from 20% to 100%. The training dataset is selected ran-
domly each time, and the entire glass dataset is used for testing. The experiment is conducted
100 times. The result is represented in Table 1.

From the results in the table, it is demonstrated that principle analysis can complete
the task of dimensionality reduction, and it is important to notice that adding PCA is not
bound to increase the classification accuracy which is verified in 40% and 100% training set.
But thanks to its ability of reducing the dimensionality of the raw dataset, the consuming
time has been shorten rapidly.

4.2.2. Genetic Algorithm for Parameter Optimization

The task of genetic algorithm is to find the appropriate combination of three parameters
for best classification performance faster. And the result with genetic algorithm should be
no worse than without it. Here Iris dataset is chosen for demonstration, 10% of the given
dataset is for training and the rest for testing. The experiment is repeated 100 times to get
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Table 2: Parameter optimization using GA.

With GA Without GA
Minimum error number 5 6
Average consuming time (s) 0.9832 1.4976

Table 3: Iris data (0 = 0.2).

Data (%) AFMN FMCN GFMN FMNN

LE TE LE TE LE TE LE TE
35 1.92 5.10 3.84 7.14 7.69 9.18 11.53 14.29
45 0 3.61 2.98 6.02 8.96 8.43 10.45 12.05
50 0 2.67 0 4.0 1.33 5.33 6.67 12
60 0 1.67 0 3.33 3.33 5 4.44 10
70 0 0 0 2.22 1.9 4.44 4.76 8.89

LE: learning error; TE: testing error.

the minimum misclassification numbers and the average consuming time. The result is
shown in Table 2.

Table 2 demonstrates that GA can find better combination of parameters and its speed
is faster. Its ability is important for application in real world.

4.3. Performance on the General Dataset
4.3.1. Various Dataset for Training and Testing with Complete Dataset

Here for the given iris dataset, 35%, 45%, 50%, 60%, and 70% of the dataset were selected
randomly for training purpose and the complete dataset for testing. The performance of
learning and testing is shown in Table 3. It is obvious that AFMN has a better performance
with fewer misclassifications.

4.3.2. Different Dataset for Training and Testing

In this section, datasets such as wine, thyroid, and ionosphere are selected for comparing the
abilities of several network classifier (Table 4). 50% of each dataset is randomly selected for
training and the entire dataset for testing. We conduct 100 times experiment for each dataset.
Results show, in terms of classification accuracy, that the FMCN and AFMN have the very
approximate performance, but from the consuming time and stability of these two classifiers,
obviously AFMN is better than FMCN which demonstrates its advantage (Table 5).

4.4. Test the Robustness of AFMN with Noise-Contaminated Dataset

The robustness of a network classifier is important especially in application. 50% of Iris
data was randomly chosen for training, and the entire Iris dataset was used for testing. For
the purpose of checking robustness of AFMN, FNCN, FMNN, and GFMN, We added the
random noise to the Iris data set. The amplitude of noise added in the Iris data set is 1%,
5%, and 10%. The expansion coefficient varies from 0.01 to 0.4 in step of 0.02. One hundred
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Table 4: AFMN performance on different datasets.

AFMN FMCN GFMN FMNN
Dataset misclassification (%) misclassification (%) misclassification (%) misclassification (%)
Min Max Ave Std Min Max Ave Std Min Max Ave Std Min Max Ave Std
Thyroid 047 419 228 0.35 047 419 232 0.39 047 4.19 227 0.60 093 4.19 241 047
Wine 0 293 167 041 0 281 1.65 049 0 337 152 0.89 0.56 5.06 2.05 0.80

Ionosphere 9.97 12.54 12.49 1.15 9.97 13.68 13.26 1.24 9.69 13.96 12.08 1.88 6.27 8.26 7.39 1.44

Table 5: Classification consuming time of FMCN and AFMN.

Consuming time/per trial FMCN/s AFMN/s
Thyroid 25.312 4.145
Wine 18.145 7.461
Ionosphere 265.28 43.19

experiments were performed for getting accuracy result. The result is shown in Table 6,
when the amplitude of noise is 1%, the maximum and minimum misclassification of four
methods is the same with the numbers of experiment with precise data. It proves that all
the methods have robustness. But as the amplitude of noise increases, the performance of
four methods becomes worse. Although the performance becomes worse, from Table 6, the
average misclassification in AFMN increases more slowly than others, and the AFMN has
better robustness.

4.5. Fixed Training Dataset Size (60% of Iris Dataset)

In this simulation, the effect of expansion coefficient is studied on the performance of AFMN,
FMCN, GFEMN, and FMNN. 60% of iris data is chosen for training and the entire iris data for
testing. The expansion coefficient varies form 1.0 to 1 in step of 0.1. The results of training
and testing are shown in Figures 9 and 10, respectively.

From the result we can conclude, that FMCN is vulnerable to the fluctuation of
expansion coefficient, and GFMN and FMNN have a relatively higher classification error.
Compared with them, AFMN performs better.

4.6. Test on Synthetic Image

The dataset consists of 950 samples belonging to two nested classes which make the
classification more difficult. Figure 11 shows the synthetic image.

Figure 12 shows the performance of AFMN, FMCN, GFMN, and FMNN on this
specified data set. 60% of dataset is randomly selected for training. Expansion coefficient
varies from 0 to 0.2 in the step of 0.02. Obviously, AFMN works better than any other
algorithm both in training and testing.
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Figure 9: Recognition for 60% randomly selected training data.
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Figure 10: Recognition for entire Iris data.

Figure 11: Synthetic test image.



Mathematical Problems in Engineering 17

Table 6: Robustness test on different amplitudes of noise.

. AFMN FMCN GFMN FMNN
OAerlIEg[eu?)Z) misclassification (%) misclassification (%) misclassification (%) misclassification (%)
Min Max Ave Min Max Ave Min Max Ave Min Max Ave
0 133 1.12 0 333 1.42 0 333 1.55 0 4 2.09
0 267 1.30 0 333 1.85 0 333 191 0 4.67 2.24
10 0.67 2.67 1.70 067 4 2.09 0.67 4.67 2.38 1.33 5.33 2.68
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Figure 12: Performance on synthetic data.

4.7. Comparison with Other Traditional Classifier

In this section we can compare the performance of AFMN, FMCN, GFMN, and FMNN on
the iris dataset as Table 7 shows. The results show AFMN has no misclassification.

4.8. Comparison with Nodes Number (Hyperbox Number)

The complexity of the created network after training affects the speed and efficiency of
classification. 100% iris dataset is selected for training to see how many nodes created in
the middle layer after training by each classifier. The results are shown in Figure 13.

As the expansion coefficient increases, the number of nodes decreases. AFMN, GFMN,

and FMNN can generate a relatively simple structure network. In contrast, the architecture
of FMCN is much more complex.

5. Conclusion

This paper proposes a complete classification system based on a new neural algorithm
called AFMN, principle analysis algorithm, and genetic algorithm. The development of this
classifier derives from the modification and completion of the fuzzy min-max neural network
proposed by Simpson. Unlike the following neural algorithm for clustering and classification
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Table 7: Comparison with other traditional classifiers.

Technique Misclassification

Bayes classifier! 2
k-nearest neighborhood!
Fuzzy k-nn?

Fisher ratios!
Ho-kashyap!
Perceptron®

Fuzzy perceptron®
FMNN!

GFMN! 1/0
GFMN?
FMCN!
FMCN?
AFMN!
AFMN?®

!Training set is of 75 data points (25 from each class) and test set consists of remaining data points.

2Training data is of 36 data points (12 from each class) and test set consists of 36 data points; results are then scaled up for
150 points.

3Training and testing data are the same.

N N WO DN W

o O O O O
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50

Nodes number in the middle layer
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Expansion coefficient

—+— AFMN --- GFMN
FMCN — FMNN

Figure 13: Node numbers generated by algorithm.

such as GFMN and FMCN, our classifier system is more complete and practical. The
advantage of AFMN can be summarized as follows.

(1) AFMN adds preprocessing for input patterns and its technique is principle com-
ponent analysis (PCA). This kind of data dimensionality reduction technique can
reduce the number of features of input patterns and extract the useful information.
This means saving the training and testing consuming time, meanwhile making the
algorithm more suitable for application on real data for pattern classification.
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(2) The introduction of confidence coefficient is overlooked by precedent neural algo-
rithm for clustering and classification. Considering that there are nodes of more
than one class in a hyperbox, the confidence of hyperboxes must be different, thus
the operation that allocate 1 for any input pattern that falls in the hyperbox is
not reasonable. So in the AFMN we calculate the confidence coefficient of each
hyperbox for more precise classification.

(3) Adaptive genetic algorithm (AGA) is utilized in testing for parameters optimiza-
tion while disposing of the step-setting obstacle in traversal method for parameters
optimzation. GA can find the proper parameters combination more precisely and
faster.

(4) Modification to the membership function ensures the self-adjustment according to
the samples distribution and maintains the data core concept proposed in DCFMN.
The data core can update itself online during classifying procedure, which is an
indispensable ability to improve the classifier performance when training samples
are insulfficient.

(5) AFMN solves the problem existing in the overlap test of FMNN, GFMN, and
FMCN; thus it can generate hyperboxes properly and remove redundant ones. By
rewriting the contraction rules, AFMN maintains the simple architecture of FMNN,
and abundant simulations demonstrate its high recognition rate.

In conclusion, integrated with principle component analysis for dimensionality reduc-
tion and genetic algorithm for parameters optimization, AFMN is a fast fuzzy min-max
neural network classifier with high recognition rate and robustness. The use of AFMN
network will be explored out of the laboratory.
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