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Finite-horizon optimal control problems for discrete-time switched linear control systems are
investigated in this paper. Two kinds of quadratic cost functions are considered. The weight
matrices are different. One is subsystem dependent; the other is time dependent. For a switched
linear control system, not only the control input but also the switching signals are control factors
and are needed to be designed in order to minimize cost function. As a result, optimal design for
switched linear control systems is more complicated than that of non-switched ones. By using the
principle of dynamic programming, the optimal control laws including both the optimal switching
signal and the optimal control inputs are obtained for the two problems. Two examples are given
to verify the theory results in this paper.

1. Introduction

A switched system usually consists of a family of subsystems described by differential or
difference equations and a logical rule that dominates the switching among them. Such
systems arise in many engineering fields, such as power electronics, embedded systems,
manufacturing, and communication networks. In the past decade or so, the analysis and
synthesis of switched linear control systems have been extensively studied [1–28]. Compared
with the traditional optimal control problems, not only the control input but also the
switching signals needed to be designed to minimize the cost function.

The first focus of this paper is on the finite-horizon optimal regulation for discrete-
time switched linear systems. The goal of this paper is to develop a set of optimal control
strategies that minimizes the given quadratic cost function. The problem is of fundamental
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importance in both theory and practice and has challenged researchers for many years. The
bottleneck is mostly on the determination of the optimal switching strategy. Many methods
have been proposed to tackle this problem. Algorithms for optimizing the switching instants
with a fixed mode sequence have been derived for general switched systems in [29] and for
autonomous switched systems in [30].

The finite-horizon optimal control problems for discrete-time switched linear control
systems are investigated in [31]. Motivated by this work, two kinds of quadratic cost
functions are considered in this paper. The former is introduced in [31], where the state
and input weight matrices are subsystem dependent. We form the later by ourselves, where
the weight matrices are time dependent. According to these two kinds of cost functions,
we formulate two finite-horizon optimal control problems. As a result, two novel Riccati
mappings are built up. They are equivalent to that in [31]. Actually, the optimal quadratic
regulation for discrete-time switched linear systems has been discussed in [31]. However,
there are at least one difference between this paper and [31]. That is to say the control
strategies proposed in this paper are not the same as that of [31].

This paper is organized into six sections including the introduction. Section 2 presents
the problem formulation. Section 3 presents the optimal control of discrete-time switched
linear system. Two examples are given in Section 4. Section 5 summaries this paper.

Notations. Notations in this paper are quite standard. The superscript “T” stands for the
transpose of a matrix. Rn and Rn×m denote the n dimensional Euclidean space and the set
of all n × m real matrices, respectively. The notation X > 0(X ≥ 0) means the matrix X is
positive definite (X is semipositive definite).

2. Problem Formulation

Consider the discrete-time switched linear system defined as

x(k + 1) = Ar(k)x(k) + Br(k)u(k), k = 0, 1, . . .N − 1, (2.1)

where x(k) ∈ Rn is the state, u(k) ∈ Rp is the control input, and r(k) ∈ M = {1, 2, . . . , d}
is the switching signal to be designed. For each i ∈ M,Ai and Bi are constant matrices of
appropriate dimension, and the pair (Ai, Bi) is called a subsystem of (2.1). This switched
linear system is time invariant in the sense that the set of available subsystems {(Ai, Bi)}di=1
is independent of time k. We assume that there is no internal forced switching, that is, the
system can stay at or switch to any mode at any time instant. It is assumed that the initial
state of the system x(0) = x0 is a constant.

Due to the switching signal, different from the traditional optimal control problem for
linear time-invariant systems, two kinds of cost function for finite-horizon optimal control of
discrete-time switched linear systems are introduced. The first one is

J1(u, r) = x(N)TQfx(N) +
N−1∑

j=0

[
x
(
j
)T
Qr(j)x

(
j
)
+ u

(
j
)T
Rr(j)u

(
j
)]
, (2.2)

where Qf = QT
f ≥ 0 is the terminal state weight matrix, Qi = QT

i > 0 and Ri = RT
i > 0 are

running weight matrices for the state and the input for subsystem i ∈ M.
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The second one is

J2(u, r) = x(N)TQfx(N) +
N−1∑

j=0

[
x
(
j
)T
Qjx

(
j
)
+ u

(
j
)T
Rju

(
j
)]
, (2.3)

where Qf = QT
f
≥ 0 is the terminal state weight matrix, Qi = QT

i > 0 and Ri = RT
i > 0 are

running weight matrices for the state and the input at the time instant j ∈ {0, 1, . . . ,N − 1}.

Remark 2.1. The cost function J1, is introduced in [31]. In J1 the weight matrices are subsystem
dependent. The cost function J2 is introduced by us. In this case, the weight matrices are time
dependent.

The goal of this paper is to solve the following two finite-horizon optimal control
problems for switched linear systems.

Problem 1. Find the u(j) and r(j) that minimize J1(u, r) subject to the system (2.1).

Problem 2. Find the u(j) and r(j) that minimize J2(u, r) subject to the system (2.1).

3. Optimal Solutions

3.1. Solutions to Problem 1

To drive the minimum value of the cost function J1 subject to system (2.1), we define the
Riccati mapping fi : Y → Y for each subsystem (Ai, Bi) and weight matrices Qi and Ri,
i ∈ M

fi(P) = (Ai − BiKi(P))TP(Ai − BiKi(P)) +KT
i (P)RiKi(P) +Qi, (3.1)

where

Ki(P) =
(
Ri + BT

i PBi

)−1
BT
i PAi. (3.2)

Let HN = {Qf} be a set consisting of only one matrix Qf . Define the set Hk for 0 ≤ k < N
iteratively as

Hk =
{
X | X = fi(P), ∀i ∈ M,P ∈ Hk+1

}
(3.3)

Now we give the main result of this paper.

Theorem 3.1. The minimum value of the cost function J1 in Problem 1 is

J∗1(u, r) = min
P∈H0

xT
0Px0. (3.4)



4 Mathematical Problems in Engineering

Furthermore, for k ≥ 0, if one defines

(
P ∗
k , i

∗
k

)
= arg min

P∈Hk

x(k)TPx(k) (3.5)

then the optimal switching signal and the optimal control input at time instant k are

r∗(k) = i∗k, (3.6)

u∗(k) = −Ki∗
k

(
P ∗
k

)
x(k), (3.7)

where Ki∗
k
(P ∗

k) is defined by (3.2).

Proof. For the cost function J1, by applying the principle of dynamic programming, we obtain
the following Bellman equation when k = 0, 1, . . . ,N − 1:

J1,k(u, r) = min
i∈M,u∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k) + J1,k+1(u, r)

}
(3.8)

and the terminal condition

J1,N = xT (N)Qsx(N). (3.9)

Now we will prove that the solution of the Bellman equation (3.8) and (3.9) may be written
as

J1,k = min
P∈Hk

xT (k)Px(k). (3.10)

We use mathematical induction to prove that (3.10) holds for k = 0, 1, . . . ,N.

(i) It is easy to see that (3.10) holds for N.

(ii) We assume that (3.10) holds for k + 1, that is,

J1,k+1 = min
P∈Hk+1

xT (k + 1)Px(k + 1). (3.11)
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By (3.8), we have

J1,k(u, r) = min
i∈M,u(k)∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k) + min

P∈Hk+1

xT (k + 1)Px(k + 1)
}

= min
i∈M,u(k)∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k) + xT (k + 1)P ∗

k+1x(k + 1)
}

= min
i∈M,u(k)∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k)

+[Aix(k) + Biu(k)]
TP ∗

k+1[Aix(k) + Biu(k)]
}

= min
i∈M,u(k)∈Rp

{
xT (k)

[
Qi +AT

i P
∗
k+1Ai

]
x(k) + uT (k)

[
Ri + BT

i P
∗
k+1Bi

]
u(k)

+2xT (k)AT
i P

∗
k+1Biu(k)

}
.

(3.12)

Let

Hi(u) = uT
(
Ri + BT

i P
∗
k+1Bi

)
u + 2xT (k)AT

i P
∗
k+1Biu. (3.13)

By simple calculation, we have

∂Hi(u)
∂u

= 2
(
Ri + BT

i P
∗
k+1Bi

)
u + 2BT

i P
∗
k+1Aix(k). (3.14)

Since u(k) is unconstrained, its optimal value u∗
i (k)must satisfy ∂Hi(u)/∂u = 0.

It follows that

u∗
i (k) = −

(
Ri + BT

i P
∗
k+1Bi

)−1
BT
i P

∗
k+1Aix(k) = −Ki

(
P ∗
k+1

)
x(k) (3.15)

It follows that

J1,k = min
i∈M,u(k)∈Rp

{
xT (k)

[
Qi +AT

i P
∗
k+1Ai

]
x(k) + u∗

i
T (k)

[
Ri + BT

i P
∗
k+1Bi

]
u∗
i (k)

+2xT (k)AT
i P

∗
k+1Biu

∗
i (k)

}

= min
i∈M

{
xT (k)

[
Qi +AT

i P
∗
k+1Ai

]
x(k) + xT (k)KT

i

(
P ∗
k+1

)[
Ri + BT

i P
∗
k+1Bi

]
Ki

(
P ∗
k+1

)
x(k)

−2xT (k)AT
i P

∗
k+1BiKi

(
P ∗
k+1

)
x(k)

}

= min
i∈M,P∈Hk+1

xT (k)fi(P)x(k)

= min
P∈Hk

xT (k)Px(k).

(3.16)
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Then the optimal switching signal and the optimal control input at time k are γ∗(k) = i∗k and
u∗(k) = −Ki∗

k
(P ∗

k
)x(k), respectively. It means that (3.10) still holds for k. This completes the

proof.

Remark 3.2. In [31], the optimal control input at time k is u∗(k) = −Ki∗
k
(P ∗

k)x(0), which is
different with our result in (3.7).

Remark 3.3. In [31], another Riccati mapping is given by

fi(P) = Qi +AT
i PAi −AT

i PBi

(
Ri + BT

i PBi

)−1
BT
i PAi. (3.17)

It is easy to verify that (3.17) and (3.1) are equivalent to each other. It should be strengthen
that there is a matrix inverse operation in (3.17), while, in (3.1) is not. Thus, our result is more
convenient for real application.

Remark 3.4. When M = {1}, the switched system (2.1) becomes a constant linear system
(A1, B1) = (A,B). In this case, the cost function J1 becomes

J1(u) = xT (N)Qfx(N) +
N−1∑

j=0

[
xT(j

)
Qx

(
j
)
+ uT(j

)
Ru

(
j
)]
. (3.18)

The Riccati mapping reduces to a discrete-time Riccati equation

P ∗
k =

(
A − BK∗

k

)T
P ∗
k+1

(
A − BK∗

k

)
+
(
K∗

k

)T
RK∗

k +Q, (3.19)

where

K∗
k =

(
R + BTP ∗

k+1B
)−1

BTP ∗
k+1A. (3.20)

It is easy to verify that this novel discrete-time Riccati equation (3.20) is also equivalent to the
traditional ones, such as

P ∗
k = Q +ATP ∗

k+1A −ATP ∗
k+1B

(
R + BTP ∗

k+1B
)−1

BTP ∗
k+1A,

P ∗
k = Q +AT

((
P ∗
k+1

)−1 + BTR−1B
)−1

A,

P ∗
k = Q +ATP ∗

k+1A
(
I + BTR−1P ∗

k+1

)−1
A.

(3.21)
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3.2. Solutions to Problem 2

To drive the minimum value of the cost function J2 subject to system (2.1), we define the
Riccati mapping fi,k : P → P for each subsystem (Ai, Bi) and weight matrices Qk and Rk,
i ∈ M,k = 0, 1, . . . ,N − 1 :

fi,k(P) = (Ai − BiKi(P))TP(Ai − BiKi(P)) +KT
i (P)RkKi(P) +Qk, (3.22)

where

Ki(P) =
(
Rk + BT

i PBi

)−1
BT
i PAi. (3.23)

Let JN = {Qf} be a set consisting of only one matrix Qf . Define the set Lk for 0 ≤ k ≤ N
iteratively as

Lk =
{
X | X = fi,k(P), ∀i ∈ M,P ∈ Lk+1

}
. (3.24)

Then we give the following theorem.

Theorem 3.5. The minimum value of the cost function J2 in Problem 2 is

J∗2(u, r) = min
P∈L0

xT
0Px0. (3.25)

Furthermore, for k ≥ 0, if one defines

(
P ∗
k , i

∗
k

)
= argmin

P∈Lk

x(k)TPx(k), (3.26)

then the optimal switching signal and the optimal control input at time instant k are

r∗(k) = i∗k, (3.27)

u∗(k) = −Ki∗
k

(
P ∗
k

)
x(k), (3.28)

where Ki∗
k
(P ∗

k) is defined by (3.23).

The proof is similar to that of Theorem 3.1.

Proof. For the cost function J2, by applying the principle of dynamic programming, we obtain
the following Bellman equation:

J2,k(u, r) = min
i∈M,u∈Rp

{
xT (k)Qkx(k) + uT (k)Rku(k) + J2,k+1(u, r)

}
, k = 0, 1, . . . ,N − 1 (3.29)

and the terminal condition

J2,N = xT (N)Qsx(N). (3.30)
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Now we will prove that the solution of the Bellman equation (3.29) (3.30) may be written as

J2,k(u, r) = min
P∈Lk

xT (k)Px(k). (3.31)

We use mathematical induction to prove that (3.31) holds for k = 0, 1, . . . ,N.

(i) It is easy to verify (3.31) holds for k = N.

(ii) We assume (3.31) holds for k + 1, that is,

J1,k+1(u, r) = min
P∈Lk+1

xT (k + 1)Px(k + 1). (3.32)

By (3.29), we have

J2,k(u, r) = min
i∈M,u(k)∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k) + min

P∈Lk+1

xT (k + 1)Px(k + 1)
}

= min
i∈M,u(k)∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k) + xT (k + 1)P ∗

k+1x(k + 1)
}

= min
i∈M,u(k)∈Rp

{
xT (k)Qix(k) + uT (k)Riu(k) + [Aix(k) + Biu(k)]

TP ∗
k+1[Aix(k) + Biu(k)]

}

= min
i∈M,u(k)∈Rp

{
xT (k)

[
Qi +AT

i P
∗
k+1Ai

]
x(k) + uT (k)

[
Ri + BT

i P
∗
k+1Bi

]
u(k)

+2xT (k)AT
i P

∗
k+1Biu(k)

}
.

(3.33)

Let

Si(u) = uT
(
Ri + BT

i P
∗
k+1Bi

)
u + 2xT (k)AT

i P
∗
k+1Biu. (3.34)

By simple calculation, we have

∂Si(u)
∂u

= 2
(
Ri + BT

i P
∗
k+1Bi

)
u + 2BT

i P
∗
k+1Aix(k). (3.35)

Since u(k) is unconstrained, its optimal value u∗
i (k)must satisfy ∂Si(u)/∂u = 0.

It follows that

u∗
i (k) = −

(
Ri + BT

i P
∗
k+1Bi

)−1
BT
i P

∗
k+1Aix(k) = −Ki

(
P ∗
k+1

)
x(k). (3.36)
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It follows that

J2,k(u, r) = min
i∈M,u(k)∈Rp

{
xT (k)

[
Qi +AT

i P
∗
k+1Ai

]
x(k) + u∗

i
T (k)

[
Ri + BT

i P
∗
k+1Bi

]
u∗
i (k)

+2xT (k)AT
i P

∗
k+1Biu

∗
i (k)

}

= min
i∈M

{
xT (k)

[
Qi +AT

i P
∗
k+1Ai

]
x(k) + xT (k)KT

i

(
P ∗
k+1

)[
Ri + BT

i P
∗
k+1Bi

]
Ki

(
P ∗
k+1

)
x(k)

−2xT (k)AT
i P

∗
k+1BiKi

(
P ∗
k+1

)
x(k)

}

= min
i∈M,P∈Lk+1

xT (k)fi(P)x(k)

= min
P∈Lk

xT (k)Px(k).

(3.37)

Then the optimal switching signal and the optimal control input at time k are γ∗(k) = i∗k and
u∗(k) = −Ki∗

k
(P ∗

k
)x(k), respectively. It means that (3.31) still holds for k. This completes the

proof.

4. Examples

Example 4.1. Let us consider the following discrete-time switched linear system:

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k), k = 0, 1, . . . ,N − 1, σ(k) ∈ M = {1, 2}, (4.1)

where

A1 = diag(−1,−2), A2 = diag(10, 10), B1 =
[
1
1

]
, B1 =

[
1
2

]
. (4.2)

The parameters in simulations are as follows:

Q1 = diag(0.1, 0.1), Q2 = (0.2, 0.2), R1 = 1, R2 = 0.1, Qf = diag(1, 1), N = 400.
(4.3)

We design the controllers with the approach in Theorem 3.1, at the initial state x0 = [1 − 1]T

of the system; the state response of closed-loop discrete-time switched linear system is as in
Figure 1.

Example 4.2. Let us consider the following discrete-time switched linear system borrowed
from [32]:

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k), k = 0, 1, . . . ,N − 1, σ(k) ∈ M = {1, 2}, (4.4)
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Figure 1: The state response of closed-loop system.
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Figure 2: The state response of closed-loop system.

where

A1 =
[
0.545 −0.430
0.185 −0.610

]
, A2 =

[−0.555 −0.37
0.215 −0.590

]
, B1 =

[
1
0.5

]
, B1 =

[
1
3

]
. (4.5)
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The parameters in simulations are as follows:

Q1 = diag(1, 1), Q2 = diag(2, 2), R1 = 0.1, R2 = 0.1, Qf = diag(10, 10), N = 50.
(4.6)

We design the controller in with the approach in Theorem 3.1, at the initial state x0 = [ 1 −2 ]Tof
the system; the closed-loop state response of discrete-time switched linear system is as in
Figure 2.

5. Conclusions

Based on dynamic programming, finite-horizon optimal quadratic regulations are studied for
discrete-time switched linear systems. The finite-horizon optimal quadratic control strategies
minimizing the cost function are given for discrete-time switched linear systems, including
optimal continuous controller and discrete-time controller. The infinite-horizon optimal
quadratic regulations of discrete-time switched linear system will be investigated in the
future.
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