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This paper discusses efficient numerical methods for the Steklov eigenvalue problem and
establishes a new multiscale discretization scheme and an adaptive algorithm based on the
Rayleigh quotient iterative method. The efficiency of these schemes is analyzed theoretically, and
the constants appeared in the error estimates are also analyzed elaborately. Finally, numerical
experiments are provided to support the theory.

1. Introduction

Steklov eigenvalue problems have several deep applications both in physical and mechanical
fields. For instance, they are found in the study of surface waves (see [1]), in the analysis of
stability of mechanical oscillators immersed in a viscous fluid (see [2]), and in the study of
the vibration modes of a structure in contact with an incompressible fluid (see, e.g. [3]). Thus,
numerical methods for Steklov eigenvalue problems have attracted more and more scholars’
attention in recent years, for example, see [4–12].

However, in practical applications, it is a challenging task to adopt efficient numerical
methods to reduce the computational costs, such as the CPU time and the storage
requirement, without any loss of the accuracy of numerical approximation. A two-grid finite
element discretization scheme is considered one of these efficient methods. This discretization
technique was first introduced by Xu [13, 14] for nonsymmetric and nonlinear elliptic
problems, and due to its outstanding performance in computation, it has been successfully
applied and further investigated for many other problems, for example, Poisson eigenvalue
equations and integral equations in [15], nonlinear eigenvalue problems in [16], Schrödinger
equation in [17, 18], Stokes equations in [19], and so forth. As for the Steklov eigenvalue
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problem, Li and Yang [20], Bi and Yang [21] established conforming and nonconforming
finite element two-grid discretization scheme, respectively, and obtained satisfactory results.
So far, to the best of our knowledge, there have been developed two kinds of two-grid
discretization scheme for eigenvalue problems. The first type is contributed by Xu and
Zhou [15], as just mentioned, and the other is proposed by Yang and Bi in [22], which has
been applied to elliptic eigenvalue problems [22] and eigenvalue problem of electric field
[23]. Compared with the first type, the second one is based on the shifted-inverse power
method which makes itself more efficient, and starting from it, one can construct multiscale
discretization scheme and parallel algorithm. So, this paper aims to establish a multi-scale
discretization scheme based on the shifted-inverse power method, and an adaptive algorithm
for the Steklov eigenvalue problem. The special work of this paper is as follows.

(1) It is well known that the Rayleigh quotient iteration method is a basic approach
for solving matrix eigenvalue problems (see Algorithm 27.3 in [24]). The multi-scale
discretization scheme established in this paper is a combination of the finite element method
and the Rayleigh quotient iteration method. We prove that this scheme is efficient, and
analyze elaborately that the constants appeared in the error estimates are independent of
mesh size and the iterative time. It can be seen easily that a two-grid discretization scheme is a
special case of the multi-scale algorithm by taking the iterative time equal to 2 (see Scheme 2).
From the theoretical analysis (see Theorem 3.2) we know that when taking H = O( 3

√
h), the

resulted solution can maintain an asymptotically optimal accuracy, while with the schemes
in [20, 21], the resulted solution maintains an asymptotically optimal accuracy by taking
H = O(

√
h).

(2) The multi-scale discretization scheme is actually an iterative process. Since the
approximate eigenvalue sequence obtained by the scheme converges to the exact eigenvalue
(see Theorem 3.1, Corollary 3.4) and the constants appeared in its error estimates are
independent of the mesh size and the iterative time, we can stop the iteration when the error
between two neighboring approximate eigenvalues is less or equal to a given error tolerance.
Thus, we establish an adaptive algorithm (see Scheme 3). With this adaptive scheme, first we
solve an eigenvalue problem on a coarse grid, in each step after that we only need to solve
a linear algebraic system on a fine grid. Compared with the existing adaptive method (e.g.,
see Algorithm 1 in [11]) which computes an eigenvalue problem in each step, our approach
reduces the computational complexity.

The rest of this paper is organized as follows. In the subsequent section, some
preliminaries needed in this paper are presented. In Section 3, a multi-scale and a two-grid
discretization scheme are proposed, and the error estimates are also given. In Section 4, an
adaptive algorithm is established. Finally, numerical experiments are provided to support
our theoretical analysis.

2. Preliminaries

Let Hs(Ω) and Hs(∂Ω) denote Sobolev spaces on Ω and ∂Ω with real order s, respectively.
The norms in Hs(Ω) and Hs(∂Ω) are denoted by ‖ · ‖s and ‖ · ‖s,∂Ω, respectively.

Consider the model problem

−Δu + u = 0 inΩ,
∂u

∂n
= λu on ∂Ω, (2.1)

where Ω ⊂ R2 is a polygonal domain and ∂u/∂n is the outward normal derivative on ∂Ω.
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The weak form of (2.1) is given by the following: find λ ∈ R, 0/=u ∈ H1(Ω), such that

a(u, v) = λb(u, v), ∀v ∈ H1(Ω), (2.2)

where

a(u, v) =
∫
Ω
∇u∇v + uvdx, b(u, v) =

∫
∂Ω

uv ds. (2.3)

It is easy to know that a(·, ·) is a symmetric, continuous, and H1(Ω)-elliptic bilinear form on
H1(Ω) ×H1(Ω). So, we use a(·, ·) and ‖ · ‖a =

√
a(·, ·) = ‖ · ‖1 as the inner product and norm

on H1(Ω), respectively. We use b(·, ·) and ‖ · ‖b =
√
b(·, ·) as the inner product and norm on

L2(∂Ω), respectively.
From [25], we know that (2.2) has a countable sequence of positive eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · −→ +∞ (2.4)

(here each eigenvalue occurs as many times as given by its multiplicity), and the
corresponding eigenfunctions uk ∈ H1+r(Ω)(k = 1, 2, . . .), where r = 1 if Ω is convex, and
r < (π/ω)which can be arbitrarily close to π/ωwhenΩ is concave (with ω being the largest
inner angle of Ω, ω < 2π).

Let πh be a regular triangulation of Ω with the mesh diameter h, and let Sh be a
piecewise polynomial space of degree m (m ≥ 1) defined on πh.

The conforming finite element approximation of (2.2) is the following: find λh ∈ R,
0/=uh ∈ Sh ⊂ H1(Ω), such that

a(uh, v) = λhb(uh, v), ∀v ∈ Sh. (2.5)

It is well known that (2.5) has a finite sequence of eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · ·λNh,h

(
Nh = dimSh

)
, (2.6)

and their corresponding eigenfunctions are uk,h(k = 1, 2, · · · ,Nh).
Consider the following source problem (2.7) associatedwith (2.2) and the approximate

source problem (2.8) associated with (2.5), respectively.
Find u ∈ H1(Ω), such that

a(u, v) = b
(
f, v
)
, ∀v ∈ H1(Ω). (2.7)

Find uh ∈ Sh, such that

a(uh, v) = b
(
f, v
)
, ∀v ∈ Sh. (2.8)

Several regular estimates of the Steklov eigenvalue problem are presented in the
following lemma, which will be used in the sequel.
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Lemma 2.1. If f ∈ L2(∂Ω), then there exists a unique solution u ∈ H1+(r/2)(Ω) to (2.7) and

‖u‖1+(r/2) ≤ Cp‖f‖0,∂Ω. (2.9)

If f ∈ H1/2(∂Ω), then there exists a unique solution u ∈ H1+r(Ω) to (2.7) and

‖u‖1+r ≤ Cp‖f‖1/2,∂Ω. (2.10)

If f ∈ L2(∂Ω), then there exists a unique solution u ∈ H1(Ω) to (2.7) and

‖u‖a ≤ Cp‖f‖0,∂Ω, (2.11)

where Cp appeared in (2.9), (2.10), and (2.11) stands for a positive constant but may take different
values.

Proof. As regards the proof of (2.9) and (2.10), see [26]. Since a(·, ·) is H1(Ω)-elliptic, from
(2.7), it is easy to know that (2.11) is valid.

Thus, from (2.7), we can define the operator A : L2(∂Ω) → H1(Ω) by

a
(
Af, v

)
= b
(
f, v
)
, ∀v ∈ H1(Ω). (2.12)

Similarly, from (2.8), we define the operator Ah : L2(∂Ω) → Sh ⊂ H1(Ω) by

a
(
Ahf, v

)
= b
(
f, v
)
, ∀v ∈ Sh. (2.13)

It is obvious thatA : H1(Ω) → H1(Ω) is a self-adjoint operator. In fact, for any u, v ∈ H1(Ω),
a(Au, v) = b(u, v) = b(v, u) = a(Av, u) = a(u,Av). Analogously, Ah is also a self-adjoint
operator. Observe that Af and Ahf are the exact solution and the finite element solution
of (2.7), respectively, and a(Af − Ahf, v) = 0, ∀v ∈ Sh ⊂ H1(Ω). Define the Ritz-Galerkin
projection operator Ph : H1(Ω) → Sh by

a(u − Phu, v) = 0, ∀u ∈ H1(Ω), ∀v ∈ Sh. (2.14)

Thus, ∀f ∈ H1(Ω),

a
(
Ahf − Ph

(
Af
)
, v
)

= a
(
Ahf −Af +Af − Ph

(
Af
)
, v
)
= 0, ∀v ∈ Sh. (2.15)
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Therefore, Ahf = PhAf, ∀f ∈ H1(Ω), then Ah = PhA. From Lemma 2.1 and the interpolation
error estimate, we have

‖Ah −A‖a = sup
g∈H1(Ω)

‖(Ah −A)g‖a
‖g‖a

= sup
g∈H1(Ω)

‖PhAg −Ag‖a
‖g‖a

≤ sup
g∈H1(Ω)

CIh
r‖Ag‖1+r
‖g‖a

≤ sup
g∈H1(Ω)

CIh
r‖g‖a

‖g‖a
= CIh

r → 0(h → 0),

(2.16)

where CI is the interpolation constant. It is clear that Ah is a finite rank operator, then A
is a completely continuous operator. From [25, 27], we know that (2.2) and (2.5) have the
following equivalent operator forms, respectively:

Au = μu,

Ahuh = μhuh,
(2.17)

where μ = 1/λ, μh = 1/λh. In this paper, μk, and μk,h, λk and λk,h are all called eigenvalues.
Suppose that the algebraic multiplicity of μk is equal to q, μk = μk+1 = · · · = μk+q−1. Let

M(μk) be the space spanned by all eigenfunctions corresponding to μk of A, and let Mh(μk)
be the direct sum of eigenspaces corresponding to all eigenvalues of Ah that converge to μk.
Let M̂(μk) = {v : v ∈ M(μk), ‖v‖a = 1}, M̂h(μk) = {v : v ∈ Mh(μk), ‖v‖a = 1}. We also write
M(λk) = M(μk),Mh(λk) = Mh(μk), M̂(λk) = M̂(μk), and M̂h(λk) = M̂h(μk).

Let

δh(λk) = sup
w∈M̂(λk)

inf
v∈Sh

‖w − v‖a. (2.18)

From Lemma 2.1, we know that M̂(λk) ⊂ H1+r(Ω), then by the interpolation error estimate,
we have

δh(λk) ≤ CIh
r sup
w∈M̂(λk)

‖w‖1+r . (2.19)

Lemma 2.2. Let λk,h and λk be the kth eigenvalue of (2.5) and (2.2), respectively. Then

λk ≤ λk,h ≤ λk + C1δ
2
h(λk), (2.20)
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for any eigenfunction uk,h corresponding to λk,h, satisfying ‖uk,h‖a = 1, there exists uk ∈ M̂(λk)
such that

‖uk,h − uk‖a ≤ C2δh(λk), (2.21)

and for any uk ∈ M̂(λk), there exists uh ∈ Mh(λk) such that

‖uh − uk‖a ≤ C3δh(λk), (2.22)

where Ci, i = 1, 2, 3 are constants independent of h.

Proof. By the argument in [25, 27], we can obtain the desired results.

The following lemma states a crucial property (but straightforward) of eigenvalue and
eigenfunction approximation.

Lemma 2.3. Let (λ, u) be an eigenpair of (2.2), then for any w ∈ H1(Ω), ‖w‖b /= 0, the Rayleigh
quotient a(w,w)/‖w‖2b satisfies

a(w,w)

‖w‖2b
− λ =

‖w − u‖2a
‖w‖2b

− λ
‖w − u‖2b
‖w‖2b

. (2.23)

Proof. See, for instance, Lemma 9.1 in [27] for details.

We also need the following basic estimate of shifted-inverse power method (see
Theorem 3.2 in [22]).

Lemma 2.4. Let (μ0, u0) be an approximation for (μk, uk), where μ0 is not an eigenvalue of Ah,
and u0 ∈ Sh with ‖u0‖a = 1. Suppose that maxk≤j≤k+q−1|(μj,h − μk,h)/(μ0 − μj,h)| ≤ 1/2,
dist(u0,Mh(μk)) ≤ 1/2, |μ0 − μj,h| ≥ ρ/2 for j /= k, k + 1, . . . , k + q − 1, and u ∈ Sh, uh

k
∈ Sh

satisfy

(
μ0 −Ah

)
u = u0, u

h
k =

u

‖u‖a
. (2.24)

Then

dist
(
uh
k, M̂h

(
μk

)) ≤ 16
ρ

∣∣μ0 − μk,h

∣∣dist(u0,Mh

(
μk

))
, (2.25)

where ρ = minμj /=μk |μj − μk| be the separation constant of the eigenvalue μk.
For the multi-scale discretization scheme established in this paper, the conditions of

Lemma 2.4 are satisfied which will be verified in the proof of Theorem 3.1.
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3. Multi-Scale Discretization Scheme

In this section, we combine the finite element method with the Rayleigh quotient iteration
method and establish a multi-scale discretization scheme. Let {πhi}l1 be a family of regular
meshes, hi−1 � hi, and let {Shi}l1 be the conforming finite element spaces defined on {πhi}l1,
and let πH = πh1 , S

H = Sh1 , πh = πhl , and Sh = Shl .

Scheme 1 (multi-scale discretization scheme).

Step 1. Solve (2.2) on the πH : find λk,H ∈ R, uk,H ∈ SH such that ‖uk,H‖a = 1 and

a(uk,H, v) = λk,Hb(uk,H, v), ∀v ∈ SH. (3.1)

Step 2. Execute the assignments: uh1
k

⇐ uk,H , λh1
k

⇐ λk,H , i ⇐ 2.

Step 3. Solve a linear system on the πhi : find ũ ∈ Shi such that

a(ũ, v) − λhi−1
k

b(ũ, v) = b
(
uhi−1
k

, v
)
, ∀v ∈ Shi . (3.2)

And set uhi

k = ũ/(‖ũ‖a).

Step 4. Compute the Rayleigh quotient

λhi

k =
a
(
uhi

k , u
hi

k

)

b
(
uhi

k
, uhi

k

) . (3.3)

Step 5. If i = l, then output (λhl

k , u
hl

k ), that is, (λ
h
k, u

h
k), stop. Else, i ⇐ i + 1, and return to Step 3.

Theorem 3.1. Let (λhl

k
, uhl

k
) be obtained by Scheme 1. Assume that (λhl−1

k
, uhl−1

k
) approximate an

eigenpair, (λk, u), of (2.2), u ∈ M̂(λk), and λ
hl−1
k −λk is a small quantity of lower order than λk,hl −λk.

Then there exists uk ∈ M(λk) such that

‖uhl

k
− uk‖a ≤ 48

ρ
C4C5λk

∣∣∣λhl−1
k

− λk
∣∣∣dist(uhl−1

k
, M̂(λk)

)
+ 3C2qδhl(λk), (3.4)

∣∣∣λhl

k
− λk

∣∣∣ ≤ 2λk(1 + C6λk)
∥∥∥uhl

k
− uk

∥∥∥2
a
, l ≥ 2, (3.5)

where the constants C4, C5, and C6 are stated in (3.6), (3.11), and (3.29), respectively.

Proof. We use Lemma 2.4 to complete the proof. First, we will verify that the conditions of
Lemma 2.4 are satisfied.

Select μ0 = 1/λhl−1
k , and u0 = λhl−1

k Ahlu
hl−1
k /‖λhl−1

k Ahlu
hl−1
k ‖a. From (2.16), we know that

‖Ahl −A‖a → 0(hl → 0), then there exists a constant C4 independent of hl and l such that

∥∥Ahlf
∥∥
a ≤ C4

∥∥f∥∥a, ∀f ∈ H1(Ω). (3.6)
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Thus, by the assumption, we deduce that

∥∥∥λhl−1
k Ahlu

hl−1
k − u

∥∥∥
a
≤
∥∥∥λhl−1

k Ahlu
hl−1
k − λhl−1

k Ahlu + λhl−1
k Ahlu − λkAhlu + λkAhlu − λkAu

∥∥∥
a

≤ C4λ
hl−1
k

∥∥∥uhl−1
k

− u
∥∥∥
a
+ C4

∣∣∣λhl−1
k

− λk
∣∣∣ · ‖u‖a + λk‖(Ahl −A)u‖a.

(3.7)

Note that in any normed space, for any nonzero u, v ∈ Sh, there holds

∥∥∥∥ u

‖u‖ − v

‖v‖
∥∥∥∥ ≤ 2

‖u − v‖
‖u‖ ,

∥∥∥∥ u

‖u‖ − v

‖v‖
∥∥∥∥ ≤ 2

‖u − v‖
‖v‖ . (3.8)

Hence, we have

dist
(
u0, M̂(λk)

)
≤
∥∥∥∥u0 − u

‖u‖a

∥∥∥∥
a

≤ 2‖λhl−1
k

Ahlu
hl−1
k

− u‖
a

≤ 2
{
C4λ

hl−1
k ‖uhl−1

k − u‖
a
+ C4

∣∣∣λhl−1
k − λk

∣∣∣ · ‖u‖a + λk‖(Ahl −A)u‖a
}
.

(3.9)

Using the triangle inequality and (2.22), we get

dist(u0,Mhl(λk)) ≤ dist
(
u0, M̂(λk)

)
+ C3δhl(λk). (3.10)

It follows from (2.20) that λk,hl → λk(hl → 0), then by the assumption, we have

∣∣μ0 − μk,hl

∣∣ =
∣∣∣∣∣
λhl−1
k − λk + λk − λk,hl

λk,hlλ
hl−1
k

∣∣∣∣∣ ≤ C5

∣∣∣λhl−1
k

− λk
∣∣∣, (3.11)

where C5 is a constant independent of hl. By (2.13), we see that Step 3 in Scheme 1 is
equivalent to the following:

a(ũ, v) − λhl−1
k

a(Ahl ũ, v) = a
(
Ahlu

hl−1
k

, v
)
, ∀v ∈ Sh, (3.12)

uhl

k
= ũ/‖ũ‖a, that is,

(
1

λhl−1
k

−Ahl

)
ũ =

1

λhl−1
k

Ahlu
hl−1
k , uhl

k =
ũ

‖ũ‖a
. (3.13)

Notice that (1/λhl−1
k )Ahlu

hl−1
k = ‖

(
1/λhl−1

k

)
Ahlu

hl−1
k ‖au0 differs from u0 by only a constant,

then Step 3 is equivalent to

(
1

λhl−1
k

−Ahl

)
ũ = u0, uhl

k
=

ũ

‖ũ‖a
. (3.14)
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In fact, it is obvious that uhl

k obtained by the above two formulae are the same. When hl−1 is
small enough, noting that hl � hl−1, from (3.10) and (3.9), we get

dist
(
u0,Mhl

(
μk

)) ≤ 1
2
. (3.15)

From (2.20), having in mind that λk = λk+1 = · · · = λk+q−1, we know that

λj,hl − λk ≤ C1δ
2
hl
(λk)

(
j = k, k + 1, . . . , k + q − 1

)
, (3.16)

then

∣∣μj,hl − μk,hl

∣∣ =
∣∣∣∣∣
λk,hl − λj,hl

λk,hlλj,hl

∣∣∣∣∣ =
∣∣∣∣∣
λk,hl − λk + λj − λj,hl

λk,hlλj,hl

∣∣∣∣∣. (3.17)

Combining (3.17) with (3.11) and noting that the quantity on the right-hand side of (3.17) is
an infinitesimal of higher order comparing with λhl−1

k
− λk, we derive

max
k≤j≤k+q−1

∣∣∣∣∣
μj,hl − μk,hl

μ0 − μj,hl

∣∣∣∣∣ ≤
1
2
. (3.18)

Since ρ is the separation constant, hl−1 is small enough, and hl � hl−1, there holds

∣∣μ0 − μj,hl

∣∣ ≥ ρ

2
, j /= k, k + 1, . . . , k + q − 1. (3.19)

From the above arguments, we see that the conditions of Lemma 2.4 hold.
Next, we will prove that (3.4) and (3.5) are valid.
Substituting (3.10) and (3.11) into (2.25), we obtain

dist
(
uhl

k
, M̂hl

(
μk

)) ≤ 16
ρ
C5

∣∣∣λhl−1
k

− λk
∣∣∣(dist(u0, M̂(λk)

)
+ C3δhl(λk)

)
. (3.20)

Let the eigenvectors {uj,hl}k+q−1k be an orthonormal basis of Mhl(λk). Note that

dist
(
uhl

k
,Mhl(λk)

)
=

∥∥∥∥∥∥u
hl

k
−

k+q−1∑
j=k

a
(
uhl

k
, uj,hl

)
uj,hl

∥∥∥∥∥∥
a

. (3.21)

Let

u∗ =
k+q−1∑
j=k

a
(
uhl

k , uj,hl

)
uj,hl , (3.22)
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it follows directly from (3.20) that

‖uhl

k − u∗‖
a
≤ 16

ρ
C5

∣∣∣λhl−1
k − λk

∣∣∣(dist(u0, M̂(λk)
)
+ C3δhl(λk)

)
. (3.23)

By Lemma 2.2, there exists {u0
j }

k+q−1
k

⊂ M̂(λk) making uj,hl − u0
j satisfy (2.21). Let

uk =
k+q−1∑
j=k

a
(
uhl

k
, uj,hl

)
u0
j , (3.24)

then uk ∈ M(λk). Using (2.21), we deduce that

‖u∗ − uk‖a =

∥∥∥∥∥∥
k+q−1∑
j=k

a
(
uhl

k
, uj,hl

)(
uj,hl − u0

j

)∥∥∥∥∥∥
a

≤
⎛
⎝k+q−1∑

j=k

∥∥∥uj,hl − u0
j

∥∥∥2
a

⎞
⎠

1/2

≤ C2

k+q−1∑
j=k

δhl

(
λj
) ≤ C2qδhl(λk).

(3.25)

Combining (3.23) with the above inequality, we have

‖uhl

k
− uk‖a ≤ 16

ρ
C5

∣∣∣λhl−1
k

− λk
∣∣∣(dist(u0, M̂(λk)

)
+ C3δhl(λk)

)
+ C2qδhl(λk)

≤ 16
ρ
C5

∣∣∣λhl−1
k

− λk
∣∣∣dist(u0, M̂(λk)

)
+ 2C2qδhl(λk).

(3.26)

It is obvious that there exists u′
k
∈ M̂(λk) such that

‖uhl−1
k − u′

k‖a = dist
(
uhl−1
k , M̂(λk)

)
, (3.27)

λkAu′
k = u′

k ∈ M̂(λk), and ‖(Ahl −A)u′
k‖a ≤ 1/λkδhl(λk).
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Since u0 = λhl−1
k Ahlu

hl−1
k /‖λhl−1

k Ahlu
hl−1
k ‖

a
, from (2.23) and (3.8), we derive

dist
(
u0, M̂(λk)

)
≤ 2dist

(
λhl−1
k

Ahlu
hl−1
k

, M̂(λk)
)

≤ 2‖λhl−1
k Ahlu

hl−1
k − λkAu′

k‖a
≤ 2‖

(
λhl−1
k − λk

)
Ahlu

hl−1
k ‖

a
+ 2‖λkAhl

(
uhl−1
k − u′

k

)
‖
a

+ 2‖λk(Ahl −A)u′
k‖a

≤ 2C4

∣∣∣λhl−1
k

− λk
∣∣∣ + 2C4λk dist

(
uhl−1
k

, M̂(λk)
)
+ 2δhl(λk)

≤ 3C4λk dist
(
uhl−1
k

, M̂(λk)
)
+ 2δhl(λk).

(3.28)

Substituting (3.28) into (3.26), we obtain (3.4). Equation (3.4) indicates that uhl

k converges to
uk in the sense of norm ‖·‖a, then from the trace theorem, we know that uhl

k
converges to uk in

the sense of norm ‖ · ‖b; thus, 1/‖uhl

k ‖2b → 1/‖uk‖2b = λk. Therefore, when hl is small enough,
we have 1/‖uhl

k ‖2b ≤ 2λk. Picking w = uhl

k in (2.23), we get

∣∣∣λhl

k − λk
∣∣∣ ≤ ‖uhl

k
− uk‖

2

a

‖uhl

k ‖
2

b

+ λk
‖uhl

k
− uk‖

2

b

‖uhl

k ‖
2

b

≤ 2λk‖uhl

k − uk‖
2

a
+ 2λ2k‖uhl

k − uk‖
2

b

≤ 2λk(1 + C6λk)‖uhl

k
− uk‖

2

a
,

(3.29)

where the last inequality in the above holds due to the trace theorem, and the constant C6 is
independent of hl.

Set l = 2 and denote H = h1, h = h2, then we immediately get the following two-grid
discretization scheme based on the shifted-inverse power method.

Scheme 2 (two-grid discretization scheme).

Step 1. Solve (2.2) on a coarse grid πH : find λk,H ∈ R, uk,H ∈ SH , such that ‖uk,H‖a = 1 and

a(uk,H, v) = λk,Hb(uk,H, v), ∀v ∈ SH. (3.30)

Step 2. Solve a linear system on a fine grid πh: find ũ ∈ Sh, such that

a(ũ, v) − λk,Hb(ũ, v) = b(uk,H, v), ∀v ∈ Sh. (3.31)

Set uh
k
= ũ/‖ũ‖a.
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Step 3. Compute the Rayleigh quotient

λhk =
a
(
uh
k, u

h
k

)

b
(
uh
k
, uh

k

) . (3.32)

Then from Theorem 3.1, we have the following error estimates for Scheme 2.

Theorem 3.2. Let (λhk, u
h
k) be obtained by Scheme 2. Then when H is properly small and h � H,

there exists uk ∈ M(λk) such that

‖uh
k − uk‖a ≤ 48

ρ
C4C5λk(λk,H − λk)dist

(
uk,H, M̂(λk)

)
+ 3C2qδh(λk), (3.33)

∣∣∣λhk − λk
∣∣∣ ≤ 2λk(1 + C6λk)

∥∥∥uh
k − uk

∥∥∥2
a
. (3.34)

Proof. Since (λk,H, uk,H) is obtained by Step 1 in Scheme 2, that is, (λk,H, uk,H) is a solution of
(2.5) on the coarse grid πH , it certainly approximates an eigenpair, (λk, u), of (2.2), u ∈ M̂(λk).
Note that λk,h is an eigenvalue of (2.5) on the fine grid πh, so when H is properly small and
h � H, it is valid that λk,H − λk is a small quantity of lower order than λk,h − λk. The above
arguments imply that the conditions of Theorem 3.1 hold for l = 2. Therefore, the desired
results follow from Theorem 3.1.

Remark 3.3. It follows directly from (2.20) that

λk,H − λk ≤ C1δ
2
H(λk). (3.35)

And from (2.21), we know that dist(uk,H, M̂(λk)) ≤ C2δH(λk), then from Theorem 3.2, we get

‖uh
k − uk‖a ≤ 48

ρ
C1C2C4C5λkδ

3
H(λk) + 3C2qδh(λk). (3.36)

Substituting (2.19) into (3.36), we obtain

‖uh
k − uk‖a ≤ 48

ρ
C2C4C5λkC1C

3
IH

3r( sup
w∈M̂(λk)

‖w‖1+r)3

+ 3C2qCIh
r sup
w∈M̂(λk)

‖w‖1+r .
(3.37)

From (3.37) and (3.34), we can see that when we take H = O( 3
√
h), the resulted solution,

(λh
k
, uh

k
), can maintain an asymptotically optimal accuracy.
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Corollary 3.4. Suppose that hi = hti
i−1, ti ∈ (1, 3), i = 2, 3, . . . , supi ti < 3. By using the triangle

linear conforming element with regular meshes, when h1, that is, H is properly small, there exists
uk ∈ M(λk) such that the following error estimates for Scheme 1 hold:

‖uhl

k − uk‖a ≤ 6qC2CIh
r
l sup
w∈M̂(λk)

‖w‖1+r , (3.38)

∣∣∣λhl

k
− λk

∣∣∣ ≤ 2λk(1 + C6λk)‖uhl

k
− uk‖

2

a
, l ≥ 2. (3.39)

Proof. We prove the results by using induction.
For l = 2, we estimate λk,H − λk and dist(uk,H, M̂(λk)) in (3.33), respectively.
Combining (3.35) and (2.19) yields

λk,H − λk ≤ C1C
2
IH

2r( sup
w∈M̂(λk)

‖w‖1+r)2. (3.40)

From Lemma 2.2, and (3.8) we have

dist
(
uk,H, M̂(λk)

)
≤ C2δH(λk) ≤ C2CIH

r sup
w∈M̂(λk)

‖w‖1+r . (3.41)

Substituting the above estimates into (3.33), we get

‖uh
k − uk‖a ≤ 48

ρ
C1C2C4C5λkC

3
IH

3r( sup
w∈M̂(λk)

‖w‖1+r)3

+ 3qC2CIh
r sup
w∈M̂(λk)

‖w‖1+r .
(3.42)

By the assumption, h = Ht2 , t2 ∈ (1, 3), we can see that the first term on the right-hand side of
(3.42) is a small quantity of higher order than the second term, hence,

‖uh
k − uk‖a ≤ 6qC2CIh

r sup
w∈M̂(λk)

‖w‖1+r . (3.43)

Suppose that (3.38), (3.39) hold for l − 1, that is, there holds

‖uhl−1
k − uk‖a ≤ 6qC2CIh

r
l−1 sup

w∈M̂(λk)

‖w‖1+r , (3.44)

∣∣∣λhl−1
k − λk

∣∣∣ ≤ 2λk(1 + C6λk)‖uhl−1
k − uk‖

2

a
, l ≥ 2. (3.45)

By (3.8), we get

dist
(
uhl−1
k , M̂(λk)

)
≤ 2‖uhl−1

k − uk‖a. (3.46)
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Substituting (3.45) and (3.46) into (3.4), and noting (3.44), we deduce,

‖uhl

k
− uk‖a ≤ 192

ρ
C4C5λ

2
k(1 + C6λk)

⎛
⎝6qC2CI sup

w∈M̂(λk)

‖w‖1+r

⎞
⎠

3

h3r
l−1 + 3C2qδhl(λk)

≤ 192
ρ

C4C5λ
2
k(1 + C6λk)(6qC2CI sup

w∈M̂(λk)

‖w‖1+r)3h3r
l−1 + 3qC2CIh

r
l sup
w∈M̂(λk)

‖w‖1+r

≤ 6qC2CIh
r
l sup
w∈M̂(λk)

‖w‖1+r ,

(3.47)

that is, (3.38) holds. The inequality (3.39) follows directly from (3.29).

From Theorem 3.1 and Corollary 3.4, we can see that the error is independent of the
mesh diameters and the iteration time, and Corollary 3.4 also shows that with Scheme 1, by
using the linear element, the approximate eigenvalue sequence {λhl

k
} converges to {λk} as

l → ∞, and the convergence is quick. Hence, we have the reason to believe that |λhl

k
− λhl+1

k
| <

|λhl

k − λhl−1
k |. A simple calculation shows that

∣∣∣λhl

k
− λk

∣∣∣ ≤
∣∣∣λhl

k
− λhl+1

k

∣∣∣ +
∣∣∣λhl+1

k
− λk

∣∣∣ ≤
∣∣∣λhl

k
− λhl−1

k

∣∣∣ +
∣∣∣λhl+1

k
− λk

∣∣∣. (3.48)

Note that in (3.48) |λhl+1
k

− λk| is a small quantity of higher order. So we can use |λhl

k
−

λhl−1
k | < ε (ε is a given tolerate error) as a criteria to stop the iteration. Scheme 1 is actually an

iterative process. It is natural to establish an adaptive algorithm based on Scheme 1.

Scheme 3 (adaptive algorithm). Give an error tolerance ε, an initial coarse grid πH , and a grid
πh2 derived from πH .

Step 1. Solve (2.2) on the πH : find λk,H ∈ R, uk,H ∈ SH , such that ‖uk,H‖a = 1 and

a(uk,H, v) = λk,Hb(uk,H, v), ∀v ∈ SH. (3.49)

Step 2. Execute the assignments: uh1
k

⇐ uk,H , λh1
k

⇐ λk,H , i ⇐ 2.

Step 3. Solve a linear system on the πhi : find ũ ∈ Shi , such that

a(ũ, v) − λhi−1
k

b(ũ, v) = b
(
uhi−1
k

, v
)
, ∀v ∈ Shi . (3.50)

And set uhi

k
= ũ/‖ũ‖a.
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Table 1: Numerical eigenvalues on the square domain [0, 1] × [0, 1] by Scheme 2: set h =
√
2/512, h =

O(Ht), t ∈ (1, 3].

H h λh1 λh2 λh3 λh4√
2/8

√
2/512 0.2400791223 1.4923055029 1.4923059934 2.0826626453√

2/16
√
2/512 0.2400791223 1.4923054995 1.4923059872 2.0826625905√

2/32
√
2/512 0.2400791223 1.4923054994 1.4923059871 2.0826625901

Step 4. Compute the Rayleigh quotient

λhi

k
=

a
(
uhi

k , u
hi

k

)

b
(
uhi

k , u
hi

k

) . (3.51)

Step 5. If |λhi

k − λhi−1
k | < ε, then output (λhi

k , u
hi

k ), stop. Else, return to Step 6.

Step 6. Determine ti+1 and hi+1 = hti+1
i , then refine πhi to get πhi+1 . Set i ⇐ i + 1, and return to

Step 3.

4. Numerical Experiments

Example 4.1. We compute the first four approximate eigenvalues of (2.1) with the triangle
linear finite element by using Scheme 2 on Ω = [0, 1] × [0, 1] and [0, 1] × [0, 1/2] ∪ [0, 1/2] ×
[1/2, 1], respectively, [9] and [28] have proved that the non-conforming EQrot

1 element can
provide the lower bound for the exact eigenvalues, and the minimum-maximum principle
ensures that conforming finite elements can give the upper bound for the exact eigenvalues.
So we compute the following ranges for the first four exact eigenvalues of (2.1) by the linear
triangle element and the EQrot

1 element.

When Ω = [0, 1] × [0, 1] the first four exact eigenvalues

λ1 ≈ 0.24007909, λ2 ≈ 1.492303, λ3 ≈ 1.492303, λ4 ≈ 2.08265; (4.1)

when Ω = [0, 1] × [0, 1/2] ∪ [0, 1/2] × [1/2, 1] the first four exact eigenvalues

λ1 ≈ 0.18296424, λ2 ≈ 0.8936, λ3 ≈ 1.68860, λ4 ≈ 3.2179. (4.2)

When compute with Scheme 2, we adopt a uniform isosceles right triangulation along three
directions to obtain the coarse grid πH , and refine the coarse grid in a uniform way (each
triangle is divided into four congruent subtriangles) repeatedly to obtain the fine grid πh.
Then we compute the approximate eigenvalues with MATLAB7.1. The numerical results are
shown in Tables 1 and 2.

Remark 4.2. In Example 4.1, we set the diameter of fine grid h =
√
2/512 and H = O( t

√
h), t ∈

(1, 3]. From Table 1 we can see that the approximate eigenvalues obtain an asymptotically
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Table 2: Numerical eigenvalues on the L-shaped domain [0, 1] × [0, 1/2] ∪ [0, 1/2] × [1/2, 1] by Scheme 2:
set h =

√
2/512, h = O(Ht), t ∈ (1, 3].

H h λh1 λh2 λh3 λh4√
2/8

√
2/512 0.1829642799 0.8937364938 1.6886068115 3.2179250611√

2/16
√
2/512 0.1829642799 0.8937364004 1.6886067424 3.2179003466√

2/32
√
2/512 0.1829642799 0.8937363984 1.6886067421 3.2179002027

Table 3:Numerical eigenvalues on the square domainΩ = [0, 1]×[0, 1] by Scheme 3: set h1 = H = 1/8, h2 =
h2
1, hi = hi−1/2, i = 3, 4, . . ..

ε = 5 × 10−7 ε = 5 × 10−5 ε = 5 × 10−5 ε = 5 × 10−5

l λhl

1 λhl

2 λhl

3 λhl

4

1 0.2402262809 1.5014059516 1.5032096484 2.1452661239
2 0.2400814379 1.4924542699 1.4924853962 2.0836406391
3 0.2400796738 1.4923409581 1.4923487554 2.0828955752
4 0.2400792326 1.4923125932 1.4923145438 2.0827091950
5 — — — 2.0826625901
6 — — — —

optimal accuracy. While with the two-grid discretization scheme in [20], to achieve the same
accuracy the relationship between the diameter of coarse grid and that of fine grid should
satisfy H = O( 2

√
h). For example, we carry out the computation on the same grids with h =√

2/512 and H =
√
2/8, by our scheme the resulted solution λh1 = 0.2400791223 which has 7

significant digits, and by the scheme in [20] the resulted solution λ̃h1 = 0.2400791543 with 6
significant digits. Note that the computational complexities of these two methods are almost
the same which indicates that our method is also efficient.

Remark 4.3. We program by using the finite element package of Chen [29] to solve
Example 4.1. It costs 19.745s by using Scheme 2, with H =

√
2/8 and h =

√
2/512, to get

the first approximate eigenvalue λh1 = 0.2400791223 of (2.1) on the square [0, 1] × [0, 1].
To illustrate the efficiency of our scheme we compute the first approximate eigenvalue
on the fine grid with mesh diameter h =

√
2/512 directly, and it costs 75.267s to get the

same approximation. We also compare the computation times of our approach and direct
calculation on the L-shaped domain [0, 1] × [0, 1/2] ∪ [0, 1/2] × [1/2, 1]. By using Scheme 2
with H =

√
2/8 and h =

√
2/512, we spend 10.779s to obtain λh1 = 0.1829642799; while

computing on the fine grid with mesh size h =
√
2/512 directly it costs 31.986s. From these

comparisons we can see that our scheme is very efficient.

Example 4.4. We compute the first four approximate eigenvalues of (2.1) with the triangle
linear finite element by using Scheme 3 on [0, 1]×[0, 1] and [0, 1]×[0, 1/2]∪[0, 1/2]×[1/2, 1],
respectively. The results are listed in Tables 3 and 4, respectively. And in Tables 3 and 4,
the symbol “-” means that we have obtained the approximate eigenvalues which meet the
accuracy requirements and the iteration stops here.

Remark 4.5. In the research of numerical methods for Steklov eigenvalue problems, the
boundary element method and the finite element method have been studied. However, we
have not seen any literatures on the finite difference method, a major numerical method, for
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Table 4:Numerical eigenvalues on the L-shaped domainΩ = [0, 1]×[0, 1/2]∪[0, 1/2]×[1/2, 1] by Scheme 3:
set h1 = H = 1/8, h2 = h2

1, hi = hi−1/2, i = 3, 4, . . ..

ε = 5 × 10−7 ε = 5 × 10−4 ε = 5 × 10−5 ε = 5 × 10−4

l λhl

1 λhl

2 λhl

3 λhl

4

1 0.1831328879 0.9211580591 1.7114443522 3.3645126465
2 0.1829669801 0.8951626591 1.6889966003 3.2204599675
3 0.1829649244 0.8942351070 1.6887001313 3.2185057817
4 0.1829644089 0.8938763111 1.6886254813 3.2180214091
5 0.1829642799 — 1.6886067421 —
6 — — — —

Steklov eigenvalue problems. To apply the finite difference method to Steklov eigenvalue
problems would be a new and interesting issue which is our next work.

5. Concluding Remarks

This paper discusses the Steklov eigenvalue problem, and establishes a new multi-scale
discretization scheme and an adaptive algorithm. We prove that our approach is efficient.
With the adaptive scheme, first we solve an eigenvalue problem on a coarse grid, in each step
after that we only need to solve a linear algebraic system on a fine grid. Compared with the
existing adaptive method which computes an eigenvalue problem in each step, our approach
reduces the computational complexity. However, the a posteriori error indicator we used is a
global estimate, thus, to establish a local a posteriori error estimate and improve our adaptive
algorithm is our next goal.
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