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This paper presents a new and fast multiphase image segmentation model for color images. We
propose our model by incorporating the globally convex image segmentation method and the split
Bregman method into the piecewise constant multiphase Vese-Chan model for color images. We
have applied our model to many synthetic and real color images. Numerical results show that our
model can segment color images with multiple regions and represent boundaries with complex
topologies, including triple junctions. Comparison with the Vese-Chan model demonstrates the
efficiency of our model. Besides, our model does not require a priori denoising step and is robust
with respect to noise.

1. Introduction

Image segmentation [1–8] is an important technique for detecting objects and analyzing
images in computer vision and image processing. Image segmentation is concerned with the
task of partitioning a given image into different classes or regions corresponding to different
objects and the background in the image.

Mumford and Shah [9] formulated the image segmentation problem and proposed the
famousMumford-Shahmodel. For a special case of theMumford-Shahmodel, Chan and Vese
[1] proposed the famous Chan-Vese model without using the image gradient. Chan and Vese
gave the two-phase level set formulation for gray images in [1]. Then, the authors extended
their scalar Chan-Vese algorithm to the vector-valued case in [2]. There are many other image
segmentation models for color images, and we mention the works in [10, 11].

Either the scalar Chan-Vese algorithm in [1] or the Chan-Vese model for vector-valued
images in [2] is mainly for images with two phases. To deal with images with multiple
regions, Vese and Chan extended their original two-phase Chan-Vese model [1, 2] to a mul-
tiphase model by using a multiphase level set formulation in [3]. In their multiphase Vese-
Chanmodel [3], multiple regions can be represented bymultiple level set functions. Vese and
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Chan described their model in two cases: piecewise constant case and piecewise smooth case.
In this paper, we mainly focus on the piecewise constant multiphase Vese-Chan model.

In fact, Zhao et al. [12], Samson et al. [13], and Paragios and Deriche [14] have already
proposed several multiphase image segmentation models to segment images with multiple
regions before the multiphase Vese-Chan model. However, these models have the natural
problems of vacuum and overlap. Compared with these models, the multiphase Vese-Chan
model has several advantages. Firstly, it automatically avoids the problems of vacuum and
overlap by construction. Secondly, it needs fewer level set functions to represent the same
number of phases in the piecewise constant case. Finally it can represent boundaries with
complex topologies, including triple junctions.

Recently, the split Bregman method has been applied to solve image segmentation
problem more efficiently. The efficiency of the split Bregman method for image segmentation
has been demonstrated in [15–18].

In this paper, we propose a fast multiphase image segmentation model in a variational
level set formulation for color images. Our model is an extension of our previous model for
gray images proposed in [19]. Our model has been applied to many synthetic and real color
images. Numerical results show that our model has the advantages of the original Vese-Chan
model [3] for multiphase image segmentation, but our model is much more efficient. The
robustness of our model to noise has also been demonstrated by the numerical results.

The outline of the paper is as follows. We review our improved multiphase image
segmentation model for gray images in Section 2.1. In Section 2.2, we extend our model to
work for color images. Then, we apply the split Bregman method to solve our proposed
minimization problem more efficiently in Section 2.3. Section 3 gives the algorithm and
numerical results of our model. We conclude this paper in Section 4.

2. Our Model

2.1. Our Model for Gray Images

In our previous work [19], we have proposed an improved active contour model for
multiphase image segmentation based on the piecewise constant multiphase Vese-Chan
model [3], the globally convex image segmentation method [20] and the split Bregman
method [15–17]. The model we proposed in [19] is mainly for gray images. For simplicity,
we only review the four-phase model in this section.

Let Ω ⊂ �2 be the image domain and u0 : Ω → � be a given gray level image. Our
proposed model is given in the following level set formulation:

min
0≤φ1,φ2≤1

E
(
φ1, φ2

)
= min

0≤φ1,φ2≤1

(∣∣∇φ1
∣∣
g +
∣∣∇φ2

∣∣
g + μ

〈
φ1, r1

〉
+ μ
〈
φ2, r2

〉)
, (2.1)

where φ1 and φ2 are two level set functions, and μ is a positive constant. |∇φi|g and 〈φi, ri〉
are defined as

∣∣∇φi

∣∣
g =
∫
g(|∇u0(x)|)

∣∣∇φi(x)
∣∣dx,

〈
φi, ri

〉
=
∫
φi(x)ri(x)dx,

(2.2)
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where

g(ξ) =
1

1 + β|ξ|2 (2.3)

is an edge detector function [17, 18, 21], and β is a parameter that determines the detail level
of the segmentation. r1 and r2 are defined as

r1 =
(
(u0 − c11)2 − (u0 − c01)2

)
φ2 +

(
(u0 − c10)2 − (u0 − c00)2

)(
1 − φ2

)
,

r2 =
(
(u0 − c11)2 − (u0 − c10)2

)
φ1 +

(
(u0 − c01)2 − (u0 − c00)2

)(
1 − φ1

)
,

(2.4)

where c = (c11, c10, c01, c00) is a constant vector of averages in the four phases.
Given φ1(0, x) = φ1,0(x), φ2(0, x) = φ2,0(x), once the minimization problem (2.1)

is solved, the image domain Ω can be partitioned into four regions Ωi (i = 1, 2, 3, 4) by
thresholding the level set functions as follows:

Ω1 =
{
x : φ1(x) > α, φ2(x) > α

}
,

Ω2 =
{
x : φ1(x) > α, φ2(x) < α

}
,

Ω3 =
{
x : φ1(x) < α, φ2(x) > α

}
,

Ω4 =
{
x : φ1(x) < α, φ2(x) < α

}
,

(2.5)

for some α ∈ (0, 1), we choose α = 0.5 in this paper. This is different from [3] where the zero
level set is used to identify the boundary. We use the α = 0.5 level set to identify the boundary
because in our paper we have restricted 0 ≤ φi ≤ 1. The average vector c = (c11, c10, c01, c00)
can be obtained by

c11 = mean (u0) in Ω1,

c10 = mean (u0) in Ω2,

c01 = mean (u0) in Ω3,

c00 = mean (u0) in Ω4.

(2.6)

2.2. Our Model for Color Images

In this section, we extend our model in Section 2.1 from gray images to color images. Let
u0 : Ω → �3 be a given color image and u0i (i = 1, 2, 3) the three channels of u0. Let ci =
(c1i, c2i, c3i, c4i) (i = 1, 2, 3) be the average vector of the ith channel.

The extension of our model to color images is still in the same formulation as (2.1):

min
0≤φ1,φ2≤1

E
(
φ1, φ2

)
= min

0≤φ1,φ2≤1

(∣∣∇φ1
∣∣
g +
∣∣∇φ2

∣∣
g + μ

〈
φ1, r1

〉
+ μ
〈
φ2, r2

〉)
. (2.7)
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The difference between (2.7) and (2.1) lies in the definition of r1 and r2. In our model
for color images (2.7), r1 and r2 are defined differently from (2.4):

r1 =

(
3∑

i=1

(u0i − c1i)2 −
3∑

i=1

(u0i − c3i)2
)

φ2 +

(
3∑

i=1

(u0i − c2i)2 −
3∑

i=1

(u0i − c4i)2
)
(
1 − φ2

)
,

r2 =

(
3∑

i=1

(u0i − c1i)2 −
3∑

i=1

(u0i − c2i)2
)

φ1 +

(
3∑

i=1

(u0i − c3i)2 −
3∑

i=1

(u0i − c4i)2
)
(
1 − φ1

)
.

(2.8)

Besides, another difference is the computing of the edge detector function g(|∇u0(x)|).
According to the definition of g in (2.3), we need to compute |∇u0(x)|2 when computing g.

When u0 is a gray image, for each pixel x = (x, y), |∇u0(x)|2 is defined as

|∇u0(x)|2 =
[(

∂u0

∂x

)2

+
(
∂u0

∂y

)2
]

(x). (2.9)

When u0 is a color image, |∇u0(x)|2 is defined as

|∇u0(x)|2 =
{[(

∂u01

∂x

)2

+
(
∂u02

∂x

)2

+
(
∂u03

∂x

)2
]

+

[(
∂u01

∂y

)2

+
(
∂u02

∂y

)2

+
(
∂u03

∂y

)2
]}

(x).

(2.10)

Similarly to the case of gray images, once the minimization problem (2.7) is solved,
the image domain Ω can also be partitioned into four regions Ωi (i = 1, 2, 3, 4) by (2.5). Then,
the average vector ci = (c1i, c2i, c3i, c4i) (i = 1, 2, 3) for each channel can be updated by

c1i = mean (u0i) in Ω1,

c2i = mean (u0i) in Ω2,

c3i = mean (u0i) in Ω3,

c4i = mean (u0i) in Ω4,

(i = 1, 2, 3). (2.11)

Let u be the fitting image of the given color image u0 and ui (i = 1, 2, 3) the three
channels of u. Then, each channel ui of the fitting image u can be expressed as

ui = c1iφ1φ2 + c2iφ1
(
1 − φ2

)
+ c3i

(
1 − φ1

)
φ2 + c4i

(
1 − φ1

)(
1 − φ2

)
. (2.12)

Thus, we can obtain the fitting image u by

u(:, :, 1) = u1,

u(:, :, 2) = u2,

u(:, :, 3) = u3.

(2.13)
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We denote the four segmented phases of u as phase1, phase2, phase3, and phase4, then
the four phases can be given as

phase1(:, :, i) = c1iφ1φ2,

phase2(:, :, i) = c2iφ1
(
1 − φ2

)
,

phase3(:, :, i) = c3i
(
1 − φ1

)
φ2,

phase4(:, :, i) = c4i
(
1 − φ1

)(
1 − φ2

)
,

(2.14)

where i = 1, 2, 3 denotes the three channels.
In fact, u can also be obtained by

u = phase1 + phase2 + phase3 + phase4. (2.15)

Remark 2.1. The multiphase image segmentation model we proposed is different from the
piecewise constant multiphase Vese-Chan model in [3] for the following reasons. First, our
energy functional E(φ1, φ2) in (2.1) or (2.7) is different from [3]. Second, we incorporate
information from the edge into the energy functional by using a nonnegative edge detector
function g to detect boundaries more easily. Third, we apply the split Bregman method, and
our model is much more efficient than the model in [3]. Last, we do not need the procedure
to reinitialize φi to the signed distance function to its zero-level curve as [1–3], we simply
initialize φi as a binary step function which takes 1 inside a region and 0 outside. We have
restricted φi to [0, 1], thus we do not need the Heaviside function H or its smooth versions
Hε as [3].

2.3. Application of the Split Bregman Method to Update φ1 and φ2

To minimize the energy functional E(φ1, φ2) in (2.1) or (2.7) with respect to φ1 and φ2, one
traditional method is using the standard gradient descent method directly [1–3]. In this
section, we apply the split Bregman method to solve our proposed minimization problem
(2.7) more efficiently. First, we introduce two auxiliary variables:

−→
d1 ← ∇φ1 and

−→
d2 ← ∇φ2.

Then, we add two quadratic penalty functions to weakly enforce the resulting equality
constraints and get the unconstrained problem as follows:

(
φ∗1, φ

∗
2,
−→
d1
∗
,
−→
d2
∗)

= arg min
0≤φ1 ,φ2≤1
�d1 , �d2

(∣∣∣
−→
d1

∣∣∣
g
+
∣∣∣
−→
d2

∣∣∣
g
+ μ
〈
φ1, r1

〉
+ μ
〈
φ2, r2

〉
+
λ

2

∥∥∥
−→
d1 − ∇φ1

∥∥∥
2
+
λ

2

∥∥∥
−→
d2 − ∇φ2

∥∥∥
2
)
,

(2.16)

where λ is a positive constant.
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We then strictly enforce the constraints by applying the Bregman iteration, and this
results in the following optimization problem:

(
φk+1
1 , φk+1

2 ,
−→
d1

k+1
,
−→
d2

k+1
)

=arg min
0≤φ1 ,φ2≤1
�d1 , �d2

(∣
∣
∣
−→
d1

∣
∣
∣
g
+
∣
∣
∣
−→
d2

∣
∣
∣
g
+μ
〈
φ1, r1

〉
+μ
〈
φ2, r2

〉
+
λ

2

∥
∥
∥
∥
−→
d1−∇φ1−

−→
b1

k
∥
∥
∥
∥

2

+
λ

2

∥
∥
∥
∥
−→
d2−∇φ2−

−→
b2

k
∥
∥
∥
∥

2
)

,

−→
b1

k+1
=
−→
b1

k
+∇φk+1

1 − −→d1
k+1

,

−→
b2

k+1
=
−→
b2

k
+∇φk+1

2 − −→d2
k+1

.

(2.17)

Keep
−→
d1,
−→
d2, and φ2 fixed, the Euler-Lagrange equation of the optimization problem

(2.17)with respect to φ1 is

Δφ1 =
μ

λ
r1 +∇ ·

(−→
d1 −

−→
b1
)
, whenever 0 ≤ φ1 ≤ 1. (2.18)

Note here that from the definition of r2 in (2.8), r2 is a function of φ1. Here, when we
minimize (2.17) with respect to φ1, we just consider r2 as a constant. From the numerical
results in the next section, we can see that this consideration does not affect the performance
our model. Similarly, when we minimize (2.17)with respect to φ2 for fixed

−→
d1,
−→
d2, and φ1, we

also consider r1 as a constant and get the following Euler-Lagrange equation:

Δφ2 =
μ

λ
r2 +∇ ·

(−→
d2 −

−→
b2
)
, whenever 0 ≤ φ2 ≤ 1. (2.19)

For (2.18) and (2.19), the central difference and the backward difference are used for
the Laplace operator and the divergence operator, respectively. Then the resulting numerical
scheme is

αl,i,j = dx
l,i−1,j − dx

l,i,j + d
y

l,i,j−1 − d
y

l,i,j
−
(
bxl,i−1,j − bxl,i,j + b

y

l,i,j−1 − b
y

l,i,j

)
,

βl,i,j =
1
4

(
φl,i−1,j + φl,i+1,j + φl,i,j−1 + φl,i,j+1 −

μ

λ
rl + αl,i,j

)
,

φl,i,j = max
{
min
{
βl,i,j , 1

}
, 0
}
,

(2.20)

where l = 1 or 2 denotes the two schemes for (2.18) and (2.19).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Results for a synthetic image with our model. (a)–(c): The active contour evolving process from
the initial contour to the final contour; (e)–(g): The corresponding fitting images u at different iterations;
(d) and (h): The α level sets of the final φ1 and φ2; (i)–(l): The final four phases; size = 256 × 256.

Then we minimize (2.17)with respect to
−→
d1 (
−→
d2) for fixed φ1, φ2, and

−→
d2 (φ1, φ2 and

−→
d2)

and obtain

−→
d1

k+1
= shrinkg

(−→
b1

k
+∇φk+1

1 ,
1
λ

)
= shrink

(−→
b1

k
+∇φk+1

1 ,
g

λ

)
,

−→
d2

k+1
= shrinkg

(−→
b2

k
+∇φk+1

2 ,
1
λ

)
= shrink

(−→
b2

k
+∇φk+1

2 ,
g

λ

)
,

(2.21)

where

shrink
(
x, γ
)
=

⎧
⎨

⎩

x
|x| max

(|x| − γ, 0), x/= 0,

0, x = 0.
(2.22)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Results for a synthetic image with different initial conditions; (a)–(c): The original image with
three different initial contours; (d)–(f): The corresponding final contours; (g)–(i): The corresponding final
fitting images; size = 256 × 256.

3. The Algorithm and Numerical Results

3.1. The Algorithm

The split Bregman algorithm for the proposed minimization problem (2.7) in Section 2.3 can
be summarized as in Algorithm 1.

3.2. Numerical Results

Our model has been applied to synthetic and real color images with multiple regions in
this section. When working with the level set function φi, we simply initialize the level
set function φi as a binary step function which takes 1 inside a region and 0 outside. The
advantage of using binary step functions as the initial level set functions is that new contours
can emerge easily and the curve evolution is significantly faster than the evolution from
initial functions as signed distance maps. In this paper, λ = 1 and β = 0 are used for all
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3: Application of our model to the noisy version of the image from Figure 2. (a)–(c): The curve
evolution process; (e)–(g): The corresponding fitting images u; (d) and (h): The α level sets of the final φ1
and φ2; (i)–(l): The final four phases.

1: Input u0 and φ0
1, φ

0
2

2: Compute initial Ωi and c by (2.5) and (2.11)
3: while ‖φk+1

1 − φk
1‖ > ε or ‖φk+1

2 − φk
2‖ > ε do

4: Define rk1 , r
k
2 by (2.8)

5: Update φk+1
1 , φk+1

2 and
−→
d1

k+1
,
−→
d1

k+1
by (2.20) and (2.21)

6: Update
−→
bl

k+1
=
−→
bl

k
+∇φk+1

l
− −→dl

k+1
(l = 1, 2)

7: Update Ωi and c by (2.5) and (2.11)
8: end while

Algorithm 1

images. Unless otherwise specified, we choose μ = 50/2552 for all synthetic color images and
μ = 30/2552 for all real images. The size of each image is specified in each figure.

Figure 1 shows the application of our model to a synthetic color image with a triple
junction. Most of the models [12, 13] need three level set functions to represent the triple
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4: Results for a synthetic image with two different initial conditions. (a) and (g): The two different
initial contours; (b) and (h): The corresponding final contours; (c) and (i): The corresponding final fitting
images; (d) and (j): The α level sets of the final φ1 and φ2 with the initial condition (a); (i)–(l): The final
four phases with the initial condition (a); size = 240 × 110.

junction. Here, we need only two level set functions. The α = 0.5 level sets of the final φ1 and
φ2 are shown in (d) and (h), which have to overlap on a segment of the triple junction.

We then apply our model to another synthetic image in Figures 2 and 3. In Figure 2,
we show the results for the clean image with three different initial conditions. When we seed
with small initials in (a) and (b), our model can work well, both the final contours and the
final fitting images are correct. However, whenwe use two disjoint circles as the initial curves,
our model will be trapped in a local minimum, and the pink object will be missed as shown
in (f) and (i). Then we add random noises with standard deviation 30.0 to the clean image.
Figure 3 shows the results for the noisy version. We can observe that our model works well
even if the noise level is high. In the following experiments, the noises we added are all
random noise with standard deviation 30.0.

The results for another synthetic color image without or with noise are shown in
Figures 4 and 5. The results for the clean imagewith two different initial conditions are shown
in Figure 4. When we use two disjoint initial curves as shown in (a), both the final contour
and the final fitting image are good. When using two joint initial curves as shown in (g), we
can get the right final contour shown in (h), but the final fitting image is incorrect shown in
(i). The two bottom objects are considered to have the same average value. The results for the
noisy version are shown in Figure 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Application of our model to the noisy version of the image from Figure 4. (a)–(d): The curve
evolution process; (e)–(h): The corresponding fitting images u.

Figures 6, 7, and 8 show the applications of our model to two synthetic images and
their noisy versions. Both the two images have three objects with different shapes, which
may be difficult to detect. However, our model can identify the objects correctly for both
clean images and noisy versions.

We have declared that the standard deviation of the random noise added to the above
synthetic images is 30.0. Now, we increase the noise level and give the results with our
model in Figures 9 and 10. For the above five synthetic images, when we increase the noise
level to 50.0, our model can give the correct final contours and final fittings, which can be
clearly seen from Figure 9. Even the noise is increased to a much higher level 80.0, our model
can still detect the object boundaries of the synthetic images and give good fitting images. The
corresponding initial contours, final contours and final fitting images are shown in Figure 10.
Here, we only need to choose μ = 1/2552 to avoid detecting the high-level noise for the noisy
versions in Figures 9 and 10. This demonstrates the robustness of our model to noise.

We then apply our model to three real color images, and the results are shown in
Figures 11, 12, 13, 14, and 15. We seed with small initial curves for all of these real images.
Figures 11 and 12 show the results for an image of flowers, while Figures 13 and 14 give the
results for a 4-colors image. We can observe that our model can segment these color images
well. In Figure 15 we apply our model to an image with contours without gradient (cognitive
contours). From the final fitting image shown in (d), it can be seen that our model can also
detect “contours without edges”.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Results for a synthetic image without noise and with noise. (a)–(c) and (e)–(g): The initial
contour, final contour and final fitting image for the clean and noisy images; (d), (h) and (i)–(l): The α
level sets of the final φ1, φ2 and the final four phases for the noisy version; size = 200 × 200.

Figures 16 and 17 show the results of our model for two real color images from the
Berkeley image set. In Figures 16 and 17, we give the curve evolution process in Row 1 and
the corresponding fitting images in Row 2, while the final four phases are shown in Row 3. It
can be observed that our model can handle these two real color images very well.

Our model can be applied to segment real medical MRI images. We apply our model
to two real brain MRI images in Figures 18 and 19. Similarly, the curve evolution process,
corresponding fitting images and final four phases are shown in Row 1, Row 2 and Row 3,
respectively. We can see that our model can identify quite well the gray matter, the white
matter, and so forth.

To demonstrate the efficiency of our model, we compare the computation (CPU) time
for the above five synthetic images with the Vese-Chan model from [3] and our model in
Tables 1 and 2. In Table 1, we test the CPU time for all the clean synthetic images used in
this paper. Except the image from Figure 1, we use the noisy versions for other four synthetic
images for Table 2. From Tables 1 and 2, we can see that our model is muchmore efficient than
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Results for a clean synthetic image with our model. (a)–(c): The curve evolution process; (e)–(g):
The corresponding fitting images u; (d) and (h): The α level sets of the final φ1 and φ2; (i)–(l): The final
four phases; size = 256 × 256.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Application of our model to the noisy version of the image from Figure 7. (a)–(d): The curve
evolution process; (e)–(h): The corresponding fitting images u.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 9: Results for the synthetic images added by random noise with standard deviation 50.0. (a)–(e):
The initial contours; (f)–(j): The final contours; (k)–(o): The final fitting images.

Table 1: The CPU time (in second) for the Vese-Chan model and our model for the clean synthetic images
from Figures 1, 2, 4, 6, and 7. The sizes of images are 256 × 256, 256 × 256, 240 × 110, 200 × 200, and 256 ×
256, respectively.

Figure 1 Figure 2 Figure 4 Figure 6 Figure 7

The Vese-Chan model 107.0692 106.8941 60.4858 61.9038 108.2529

Our model 0.488706 0.487907 0.198382 0.203033 0.494109

Table 2: The CPU time (in second) for the Vese-Chan model and our model for the noisy synthetic images
from Figures 3, 5, 6, and 8. The sizes of images are 256 × 256, 240 × 110, 200 × 200, and 256 × 256, respectively.

Figure 3 Figure 5 Figure 6 Figure 8

The Vese-Chan model 228.9331 131.9350 74.3890 198.9657

Our model 1.044941 0.432722 0.243982 0.908158
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 10: Results for the synthetic images added by random noise with standard deviation 80.0. (a)–(d):
The initial contours; (e)–(h): The final contours; (i)–(l): The final fitting images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Application of our model to a real color image of flowers. (a)–(d): The curve evolution process.
(e)–(h): The corresponding fitting images u; size = 160 × 240.
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(a) (b) (c) (d)

Figure 12: Final four phases of the flowers image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Application of our model to a 4-color image. (a)–(d): The curve evolution process; (e)–(h): The
corresponding fitting images u; size = 185 × 136.

(a) (b) (c) (d)

Figure 14: Final four phases of the 4-colors image.

(a) (b) (c) (d)

Figure 15: Application of our model to a real color image. (a): The original image; (b): The initial contour;
(c): The final contour; (d): The final fitting image; size = 160 × 240.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 16: Results for a real color image with our model. (a)–(d): The curve evolution process; (e)–(h): The
corresponding fitting images u; (i)–(l): The final four phases; size = 160 × 240.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 17: Results for a real color image with our model. (a)–(d): The curve evolution process; (e)–(h): The
corresponding fitting images u; (i)–(l): The final four phases; size = 160 × 240.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 18: Results for a brain MRI image with our model. (a)–(d): The curve evolution process; (e)–(h):
The corresponding fitting images u; (i)–(l): The final four phases; size = 120 × 117.

the Vese-Chan model by applying the split Bregman method. We record the CPU time from
our experiments with Matlab codes run on an ACPI Multiprocessor PC, Intel(R) Core(TM)2
Quad CPU Q8200, 2.33GHz, 2GB RAM, with Matlab R2010a on Windows XP.

4. Conclusion

In this paper, we propose a new and fast multiphase image segmentation model for color
images. Our model is an extension of the model for gray images we proposed in [19]. We
have tested our model with many synthetic and real color images. Numerical results show
that our model has all the benefits of the Vese-Chan model [3], including robustness even
with noisy data and automatic detection of interior contours. However, our model is much
more efficient by applying the split Bregman method. Of course, our model has its limitation.
Our model is a piecewise constant multiphase segmentation model, and it mainly focuses
on homogeneous multiphase images. It only considers the global information of the given
image, thus it cannot deal with images with inhomogeneity. In future work, we will extend
our model to handle inhomogeneous multiphase images by taking both local and global
information into consideration.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 19: Results for a brain MRI image with our model. (a)–(d): The curve evolution process; (e)–(h):
The corresponding fitting images u; (i)–(l): The final four phases; size = 125 × 160.
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