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In this work a two-valued state feedback control for a plant of second order with known
constant coefficients and an additive bounded disturbance is designed. In this controller the
control signal can take only two possible values. The controller design is based on Lyapunov-like
function method, achieving the convergence of the tracking error to a user-defined residual set. A
boundedness condition for the user-defined reference signal is defined, which is necessary to allow
out-put tracking. The developed scheme avoids large commutation rate of the control input. The
controller design and stability analysis have important contributions with respect to closely related
controllers based on the direct Lyapunov method, namely, (i) conditions to guarantee the expected
convergence of the tracking error are established. These conditions are imposed on the reference
signal and the extreme values of the control input. The stability analysis is developed by means
of the Lyapunov-like function method and the Barbalat’s Lemma and includes (ii) the bounded
nature of the Lyapunov function, (iii) the monotonic convergence of the Lyapunov function to a
residual set, and (iv) the asymptotic convergence of the tracking error to a residual set of user-
defined size.

1. Introduction

The design of two-valued feedback controllers has attracted important research [1–8]. It is
intended for two-valued actuators, which lead to a control input that takes only two possible
preassigned finite values. Thus, the control input is discontinuous with respect to time [1, 9].
The two-valued actuators have the following advantages with respect to proportional ones
[1, 10, 11]: they are simple, relatively cheaper, lead to fast output response, and overcomes
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the issue of actuator static gain. The electrical kiln [5], hydrogel valves [12], the compressor
[6, 13], the satellite antenna [2, page 25] are some systems with two-value actuators.

A basic method for two-valued control is the relay feedbackwith fixed hysteresis band.
The aim of the hysteresis is to avoid high commutation rate of the control input, what is
known as input chattering [10, 13] and may lead to high power consumption and wear of
mechanical components (cf. [5, 6]). The width of the hysteresis band determines the commu-
tation rate of the control signal and the size of the residual set to which the output error con-
verges. The width has to be chosen to obtain a trade-off between commutation rate and size
of the residual set, because one fact improves at the expense of the other [6]. An improper
designed relay feedback may lead to overshoot, large amplitude oscillation of the output, or
large settling time (cf. [10, 13]). These can be overcomed by two-valued control based on
the direct Lyapunov method, as shown in [1]. In that paper the authors consider a single in-
put single output (SISO) linear plant in controllable form, with time varying coefficients and
additive disturbances. They ensure the convergence of the tracking error to a residual set
whose size is user defined. They show that large commutation rate is avoided if the initial val-
ues of the tracking error and its time derivative are such that the initial value of the Lyapun-
ov function is inside a target region of user defined size.

In the case of input output stable plants with fixed preset values of the control in-
put extremes, a two-valued input implies the following: (i) the output remains inside some
bounded region, regardless the controller, (ii) a user defined trajectory with periodic behavior
and large frequency or large magnitude cannot be reached by the system output. The
suitability of the frequency and magnitude of the user defined trajectory depends on the
extreme values of the control input, and the plant model coefficients, as it will show in this
work. Nevertheless, as far as we know, there is not a condition that indicates such suita-
bility, in the literature on finite-valued control based on the direct Lyapunov method. In this
work such condition is established. The controller design and stability analysis have impor-
tant contributions with respect to closely related controllers based on the direct Lyapunov
method, namely, (i) conditions to guarantee the expected convergence of the tracking error
are established. These conditions are imposed on the reference signal and the extreme values
of the control input. The stability analysis is developed by means of the Lyapunov-like
function method and the Barbalat’s Lemma and includes (ii) the bounded nature of the
Lyapunov function, (iii) the monotonic convergence of the Lyapunov function to a residual
set, and (iv) the asymptotic convergence of the tracking error to a residual set of user defined
size.

The work is only valid for a second-order plant with constant coefficients and an
unknown external disturbance with known upper bounds. Upper bounds can be known from
previous modelling tasks. A controller for the plant is developed, the controller is based on
the direct Lyapunov method, ensuring the convergence of the tracking error to a residual
set whose size are user defined. The work is organized as follows. In Section 2 the plant
model and the goal of the control design is detailed. In Section 3 the condition that indicates
if the desired output is suitable to achieve tracking is established. In addition, a preliminary
rough control law, which achieves the convergence of the tracking error to a residual set
whose size is user defined is formulated. Nevertheless, it may lead to large commutation rate
of the control input. This will remedy in subsequent sections. In Section 4 the control law
to avoid large commutation rate of the control input is formulated. In Sections 5 and 6 the
boundedness of the closed loop signals and the convergence of the tracking error are proven.
In Section 7 numerical simulation is presented. Finally, in Sections 8 and 9 discussion and
conclusions are presented.
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2. Problem Statement

The plant, the reference model, and the state goal of the control design are detailed in this
section. Consider the following second-order plant (systems analyzed with this model can be
found in [14–16])

ÿ = −a1ẏ − aoy + bu + d, (2.1)

u ∈ {umn, umx}, umx > umn, (2.2)

where y(t) ∈ R is the system output, u(t) ∈ R is the input, ao, a1, b are plant coefficients,
being b the control gain, and d is an uncertain term that may result from modelling error or
an external disturbance. Let us consider the following assumptions.

(Ai) The coefficients ao, a1, b are constant, known, and positive. (Aii) The signals y,
ẏ are available for measurement. (Aiii) The values of umn, umx are constant, user defined,
satisfy umx > umn, and are not restricted to positive values. (Aiv) The uncertainty d is time
varying and satisfies either

(i) |d| ≤ μo, μo > 0, where μo is a known positive constant, or (ii) d = μo, μo = 0. (2.3)

Now, the control goal can be established. Let

e(t) = y(t) − yd(t), (2.4)

ÿd = −am1ẏd − amoyd + amor, (2.5)

Ωe = {e ∈ R : |e| ≤ Cbe}, (2.6)

where am1, amo are positive constant of the user choice, the command signal r is bounded
and user defined, yd is the desired output or reference signal, Cbe is a positive constant, user
defined. It is important that the initial conditions yd(to), ẏd(to) be chosen such that the initial
value of the Lyapunov function be inside the target set, to avoid large commutation rate (see
[1]). This requirement is included in the control scheme. The aim of the reference model (2.5)
is to provide an adequate nature of yd and ẏd, such that the control input can induce tracking
while large input commutation rate is avoided.

The objective of the control design is to formulate a control law for the control input
u, provided the plant model (2.1), subject to assumptions (Ai) to (Aiv), such that (Gi) the
tracking error e(t) converges asymptotically to the residual set Ωe, (Gii) large commutation
rate of the control input is avoided. Other goal of the control design is to develop a condition
that indicates if a given desired output is suitable to achieve tracking.

3. A Preliminary Rough Control Law

In this section, a preliminary control law for the control input u, provided by the plant (2.1),
subject to assumptions (Ai) to (Aiv) is developed. The main contribution is that the tracking
error asymptotically converges to Ωe, being Ωe defined in (2.6). The Lyapunov-like function
method, which is commonly used to design robust controllers for plants with continuous
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control inputs is used. A preliminary control law is developed. This control does not prevent
large commutation rate but will be improved in subsequent sections.

Subtracting ÿd from both sides of (2.1)

ÿ − ÿd = −a1ẏ − aoy + bu − ÿd + d,

ÿ − ÿd = −a1
(
ẏ − ẏd

) − ao

(
y − yd

)

− a1ẏd − aoyd + bu − ÿd + d,

(3.1)

since the first- and second-time derivatives of the tracking error are ė = ẏ − ẏd, ë = ÿ − ÿd, it
is obtained:

ë = −a1ė − aoe + bu − ÿd − a1ẏd − aoyd + d

= −a1ė − aoe + bv,
(3.2)

v = u − ÿd + a1ẏd + aoyd

b
+
d

b
. (3.3)

The term v is introduced with two objectives. The first one is for notational simplicity, and
the second one is to simplify the design of a control law that overcomes the effect of yd and
its time derivatives. Equation (3.2) can be rewritten as

ẋ1 = x2,

ẋ2 = −a1x2 − aox1 + bv,
(3.4)

x1 = e, x2 = ė. (3.5)

Consider the following Lyapunov function:

V (x(t)) =
1

2ao
S2 +

1
2
x2
1, (3.6)

x(t) =
[
x1(t) x2(t)

]�
, (3.7)

S(x(t)) = a1x1 + x2. (3.8)

The time derivative of V along trajectory (3.4) is

V̇ =
1
ao

SṠ + x1ẋ1

=
1
ao

S(a1x2 + ẋ2) + x1x2

= −a1x
2
1 +

b

ao
Sv

= −c1a1x
2
1 − (1 − c1)a1x

2
1 +

b

ao
Sv,

(3.9)
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where v is defined in (3.3), whereas c1 is constant, user defined, and satisfies c1 ∈ [0, 1]. Cons-
tant c1 is introduced in (3.9) with the objective to change the commutation rate. A complete
expression of the improved controller is given in (4.9) and it shows explicitly the usefulness
of this constant. The above equation suggests that if the control law for u is properly defined,
then

− (1 − c1)a1x
2
1 +

(
b

ao

)
Sv ≤ 0

=⇒ V̇ ≤ −c1a1x
2
1.

(3.10)

The condition V̇ ≤ −c1a1x
2
1 implies that the tracking error converges asymptotically to a small

value. To find a rough control law that achieves this, the term Sv can be written as

Sv = −S
(
−u +

ÿd + a1ẏd + aoyd

b

)
+
d

b
S

= −|S|
(
−u sgn(S) +

ÿd + a1ẏd + aoyd

b
sgn(S)

)
+
d

b
S.

(3.11)

From assumption (Aiv) it follows that (d/b)S ≤ (μo/b)|S|. Substituting this into (3.11), it is
obtained:

Sv ≤ −|S|
(
−u sgn(S) +

ÿd + a1ẏd + aoyd

b
sgn(S)

)
+
μo

b
|S|,

Sv ≤ −|S|
(
−u sgn(S) +

ÿd + a1ẏd + aoyd

b
sgn(S) − μo

b

)
.

(3.12)

If the term in parenthesis is positive, then Sv ≤ 0. It can be achieved with the following rule:

u =

⎧
⎨

⎩

u − δ sgn(S) if S/= 0

does not change if S = 0,
(3.13)

where

u =
(
1
2

)
(umn + umx), δ =

(
1
2

)
(umx − umn), (3.14)

substituting (3.13) into (3.12), it is obtained

Sv ≤ −|S|
[
δ + sgn(S)

(
ÿd + a1ẏd + aoyd

b
− u

)
− μo

b

]
, (3.15)

the following property is needed.
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Proposition 3.1. If

umn +
μo

b
≤ ÿd + a1ẏd + aoyd

b
≤ umx −

μo

b
∀t ≥ to, (3.16)

then

δ + sgn(S)
(
ÿd + a1ẏd + aoyd

b
− u

)
− μo

b
≥ 0 ∀t ≥ to, (3.17)

the proof is presented in Appendix A.

Remark 3.2. A given desired output yd with excessive magnitude or excessive frequency
would not fulfill (3.16). Nevertheless, since it is assumed that the coefficients ao, a1, b, umn,
umx are constant, and the plant model (2.1) is usually predefined, condition (3.16) can be
fulfilled by modifying the values of amo, am1, and r of the reference model (2.5). This can be
carried out by means of simulation.

Remark 3.3. Condition (3.16) implies that the value of umn is low enough and the value of umx

is high enough such that the control input can drive the output y towards the desired output
yd.

Substituting (3.17) in (3.15), it follows Sv ≤ 0 for S/= 0, and from (3.9) it follows that
V̇ ≤ −a1x

2
1 ≤ −c1a1x

2
1. If S = 0, thus Sv = 0 and from (3.9) it follows that V̇ ≤ −c1a1x

2
1.

Therefore, V̇ ≤ −c1a1x
2
1 if rule (3.13) is used. These results are summarized in the following

Theorem.

Theorem 3.4. Consider the plant model (2.1) subject to assumptions (Ai) to (Aiv), the Lyapunov
function V (x(t)) defined in (3.6) and the signal S defined in (3.8). If condition (3.16) is fulfilled, and
rule (3.13) is used, then

V̇ ≤ −c1a1x
2
1. (3.18)

Therefore, the control law (3.13) implies the convergence of the tracking error x1 to a
small value.

Remark 3.5. The control rule (3.13) operates as follows. For t = to, if S(x(to)) = 0 the control
input may take any on the values umn, umx. If S(x(to))/= 0, the control input is defined by
u = u − δ sgn(S(x(to))) for t = to. The control input u retains its initial value until the signal
sgn(S(x(t))) changes its value with respect to sgn(S(to)). Then, u changes according to the
rule u = u − δ sgn(S). The input u retains such value until the value of sgn(S) changes again,
so that u changes according to u = u−δ sgn(S). This is repeated successively. If S = 0 in some
instant time, the input u does not change its value.

Remark 3.6. According to [2, 7], the use of discontinuous control law may lead to (i)
loss of trajectory unicity, (ii) sliding motion of trajectories along the discontinuity surface,
what may imply chattering (see [2, pages 282-283]), and (iii) input chattering, which is an
undesired large commutation rate component in the control input (see [2, page 292]). Large
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commutation rate may lead to high power consumption and wear of mechanical components
(cf. [5, 6]). A rigorous design of a direct Lyapunovmethod should include the following tasks
(cf. [7]): (i) ensure that trajectory unicity is preserved, (ii) develop the Filippov’s construction
for the case that sliding motion occurs, in order to avoid chattering. In the case under study,
there may be sliding motion of the states x1, x2 along the surface S = 0. In [1] sliding motion
for a closely related control scheme is illustrated. Thus, the control scheme (3.13)may lead to
undesired large commutation rate in the input u when S takes on small values, so that goal
(Gii) is not fulfilled. If large commutation rate is not a problem, sliding mode control could
be used as an alternative approach [17–19].

In next section, the control law given by (3.13) is improved.

4. The Final Control Law

In previous section it was formulated a control law that achieves adequate convergence of
the tracking error but leads to large commutation rate. In this section, the convergence of
the quadratic function V to a small residual set and adequate initial values of the Lyapunov
function V are considered and the large commutation rate is overcome.

In [1, 20] authors show that the convergence of Lyapunov function to a target manifold
leads to the convergence of tracking error to a residual set of user defined size. From (3.6) it
follows that if V converges to some small residual set of adequate size, then the tracking error
e converges to the residual set Ωe defined in (2.6).

Proposition 4.1. Consider the function V defined in (3.6), the tracking error e defined in (2.4) and
the set Ωe defined in (2.6). Let

Ωv = {V (x(t)) ∈ R : V (x(t)) ≤ Cbv}, (4.1)

Cbv =
(
1
2

)
C2

be max

{

1,
a2
1

ao

}

. (4.2)

The convergence of V and e are related as follows: If V converges toΩv, then e converges toΩe, where
Cbe is a positive constant defined by the user. The proof is presented in Appendix B.

Therefore, it is necessary to formulate a control law for u that ensures:

V̇ ≤ −c1a1x
2
1 for V ≥ Cbv. (4.3)

so as to achieve the expected convergence of the tracking error. Indeed, if the above condition
is ensured, then: (i) V converges asymptotically to Ωv, where Ωv = {V (x) ∈ R : V (x) ≤ Cbv},
(ii) if in addition V reachesΩv for some instant, V remains inside thereafter, (iii) the tracking
error e converges asymptotically to Ωe. Control scheme (3.13) can achieve condition (4.3) as
mentioned in Theorem 3.4. does not involve the case V < Cbv, then the control input u can
take arbitrary values for V < Cbv without disrupting the convergence of e to Ωe. As in [1], it
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is advisable to stop the commutation of uwhen V < Cbv, in order to avoid large commutation
rate:

u =

⎧
⎨

⎩

u − δ sgn(S) if V ≥ Cbv, S /= 0,

stops commutation otherwise.
(4.4)

This control rule implies that large commutation rate is prevented for V ≤ Cbv, but not
for V > Cbv. Indeed, there may be sliding motion of the trajectories along S = 0 if V > Cbv,
as occurs in [1]. A possible remedy is to impose a boundary layer around S = 0 for V > Cbv.
From (4.3) it follows that commutation can be stopped when the condition V̇ ≤ −c1a1x

2
1 is

satisfied for V ≥ Cbv under arbitrary values of the control input u. The restrictions over x1

and x2 ensuring the above condition will be determined at the following. Expression (3.9)
can be rewritten as

V̇ ≤ −c1a1x
2
1 − (1 − c1)a1x

2
1 +

(
b

ao

)
|S||v|. (4.5)

The requirement (3.16) implies that |v| is bounded by a constant, as the following proposition
shows.

Proposition 4.2. The signal V defined in (3.3) satisfies

|v| ≤ umx − umn. (4.6)

The proof is presented in Appendix C.

Substituting (4.6) into (4.5) yields

V̇ ≤ −c1a1x
2
1 − (1 − c1)a1x

2
1 +

(
b

ao

)
|S||umx − umn|. (4.7)

Therefore,

V̇ ≤ −c1a1x
2
1 for V ≥ Cbv, if − (1 − c1)a1x

2
1 +

(
b

ao

)
|S||umx − umn| ≤ 0, (4.8)

where −(1 − c1)a1x
2
1 + (b/ao)|S||umx − umn| ≤ 0 defines a boundary layer around S = 0 in the

x1 − x2 state space, for V > Cbv. The control law can take advantage of the above expression.
Equation (4.8) indicates that it is possible to turn off commutation of the control input uwhile
obtaining V̇ ≤ −c1a1x

2
1 for V ≥ Cbv if x1, x2 satisfy the condition therein. The control law for u

is then formulated as follows: (i) u follows the rule u = u − δ sgn(S) for the case that V ≥ Cbv
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and condition in (4.8) is not fulfilled, (ii) u follows the rule u = u − δ sgn(S) for the case that
V = Cbv and S/= 0, and (iii) u stops commutation (stops cm) otherwise (ow). Equivalently:

u =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u − δ sgn(S) if V ≥ Cbv and − (1 − c1) a1x
2
1 +

(
b

ao

)
|S|(umx − umn) > 0,

u − δ sgn(S) if V = Cbv and S/= 0,

stops cm otherwise,

(4.9)

and for t = to:

(i) if S(x(to)) = 0, u can take any of the values umn or umx,

(ii) if V (x(to)) < Cbv, u can take any on the values umn, umx,

(iii) if S(x(to))/= 0 and V (x(to)) = Cbv, u takes on the value u = u − δ sgn(S(x(to))),

(iv) if V (x(to)) > Cbv and − (1 − c1)a1x
2
1 +

(
b

ao

)
|S|(umx − umn) > 0,

u takes on the value u = u − δ sgn(S(x(to)))

(4.10)

the signals necessary for the computation of u are: u and δ (3.14), Cbv (4.2), S (3.8), e (3.5), yd

provided by (2.1), c1 is a user defined positive constant.

Remark 4.3. The control law (4.9) operates as follows. For t = to, u follows (4.10). The control
input u retains its initial value until some of the conditions in (4.9) is fulfilled. At that instant
time, the control input u follows the rule u = u − δ sgn(S), inducing the decrease of V .
The input u retains such value until some of the conditions in (4.9) are fulfilled again. This
procedure is repeated in the same way. Condition (3.16) should be fulfilled.

Remark 4.4. Equation (4.9) indicates that the control signal u commutes as less as possible.
When the commutation stops, the control signal keeps the value acquired during previous
commutation mode. The commutation rate of the control input u does not reach excessive
values, because if S becomes zero, then u stops commutation.

Remark 4.5. The constant Cbe cannot be zero, as we explain at the following. From (4.9) it
follows that the control input u commutes when V = Cbv and S/= 0. A value Cbe = 0 would
imply Cbv = 0, as it follows from the definition (4.2). Therefore, the control input u would
commute when V = 0 and S/= 0. Such condition is not possible, according to definition (3.6).
If Cbe is overly small, then Cbv is also small, as it follows from the definition (4.2). Therefore,
the time that V takes to reach V = Cbv is small, implying a larger commutation rate, according
to (4.9).

The discussion and simulation examples shown in [1] indicate that if condition
V (x(to)) ≤ Cbv is fulfilled, then V (x(t)) ≤ Cbv for all t ≥ to and large commutation rate is
avoided. Indeed, from definition (3.6) it follows that the condition V (x(to)) ≤ Cbv is fulfilled
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if e(to), ė(to) have adequate magnitude, or equivalently, if the distance between yd(to) and
y(to), and distance between ẏd(to) and ẏ(to) are adequate. Thus, the following control stra-
tegy is chosen:

u =

⎧
⎨

⎩

u − δ sgn(S) if V = Cbv, /= 0,

stops cm otherwise.
(4.11)

yd(to), ẏd(to) are chosen such that V (x(to)) ∈ Ωv, Ωv = {V (x(t)) ∈ R : V (x(t)) ≤ Cbv}. For
t = to, the signal control is computed as:

(i) if V (x(to)) < Cbv, u can take any on the values umn, umx,

(ii) if S(x(to))/= 0, V (x(to)) = Cbv, u takes on the value u = u − δ sgn(S(x(to))),

(iii) if S(x(to)) = 0, V (x(to)) = Cbv, u can take any on the values umn, umx,

(4.12)

Remark 4.6. The control law (4.11) operates as follows. For t = to, u follows (4.12). The control
input u retains its initial value until V = Cbv and S/= 0. At that instant time, the control input
u follows the rule u = u − δ sgn(S), inducing the decrease of V . The input u retains such
value until V = Cbv and S/= 0 is fulfilled again. This procedure is repeated in the same way. If
V = Cbv and S = 0, then u does not change. Condition (3.16) should be fulfilled. Notice that
the constant c1 is not necessary to formulate the control law (4.11).

Remark 4.7. Equation (4.11) indicates that the control signal u commutes as less as possible.
When the commutation stops, the control signal keeps the value acquired during previous
commutation mode. The commutation rate of the control input u does not reach excessive
values, because if S becomes zero, then u stops commutation.

4.1. Implementation Issues

In experimental implementation could be difficult to detect the exact moment when V = Cbv,
so that it could be difficult to use the control scheme (4.11). Then, with the aim to apply the
control strategy to one system, it is possibility to use the control scheme given by (4.9) instead
of (4.11), because (4.9) includes the case V > Cbv. Other possibility is to use a threshold δV in
(4.11) as follows:

u =

⎧
⎨

⎩

u − δ sgn(S) if V ∈ [Cbv − δV , Cbv], S /= 0,

stops cm otherwise,
(4.13)

where δV is a positive constant that satisfies δV < Cbv, and yd(to) and ẏd(to) are chosen such
that V (x(to)) ∈ Ωv, Ωv = {V (x(t)) ∈ R : V (x(t)) ≤ Cbv}.
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5. Boundedness Analysis

In this section we analyze the boundedness properties of the closed loop signals. As in [21],
the notation (·) ∈ L∞ is used. This notation indicates that (·) is bounded.

Theorem 5.1 (boundedness of the closed loop signals). Consider the plant model (2.1), subject
to assumptions (Ai) to (Aiv), the tracking error e, the desired output yd and the function S provided
by (2.4), (2.5), (3.8), respectively. If condition (3.16) is fulfilled and the controller (4.9) is applied,
then the signals x1, x2, S remain bounded.

Proof. From (4.8) it follows that

V̇ ≤ −c1a1x
2
1 if V > Cbv, −(1 − c1)a1x

2
1 +

(
b

ao

)
|S||umx − umn| ≤ 0. (5.1)

From (4.9) it follows that

u = u − δ sgn(S),

if V > Cbv, −(1 − c1)a1x
2
1 +

(
b

ao

)
|S||umx − umn| > 0,

or V = Cbv, S /= 0.

(5.2)

Therefore, it follows from Theorem 3.4 that

V̇ ≤ −c1a1x
2
1,

if V > Cbv, −(1 − c1)a1x
2
1 +

(
b

ao

)
|S||umx − umn| > 0

or V = Cbv, S /= 0.

, (5.3)

and controller (4.9) is applied. From (4.7) it follows that

V̇ ≤ −c1a1x
2
1,

if V > Cbv, −(1 − c1)a1x
2
1 +

(
b

ao

)
|S||umx − umn| ≤ 0,

or V = Cbv, S = 0.

(5.4)

From (5.3), (5.4) it follows that

V̇ ≤ −c1a1x
2
1 if V ≥ Cbv. (5.5)
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Since the above expression is not valid for V < Cbv, it does not lead to a straightforward proof
of the boundedness and convergence of V . In order to show that the Lyapunov function V is
bounded, a Lyapunov-like function fa = fa(V ) that satisfies

(i) fa ≥ 0 ∀t ≥ to,

(ii) V ≤ ca + cbf
cc
a (V ) ∀t ≥ to,

(iii) ḟa ≤ 0 ∀t ≥ to,

(5.6)

will be used, being ca, cb, cc positive constants. If fa satisfies the above three conditions, then
fa ∈ L∞ and consequently V ∈ L∞. One example of such function is

fa(V ) =

⎧
⎪⎨

⎪⎩

(
1
2

)
(V − Cbv)2 if V ≥ Cbv,

0 otherwise.
(5.7)

The reader is referenced to [2, page 309], [22, 23] for closely related functions. Its time
derivative is:

ḟa =
∂fa
∂V

V̇ ,

∂fa
∂V

=

⎧
⎨

⎩

V − Cbv if V ≥ Cbv,

0 otherwise,

(5.8)

=⇒ ḟa =

⎧
⎨

⎩

(V − Cbv) if V ≥ Cbv,

0 otherwise,
(5.9)

since V − Cbv is positive or zero for V ≥ Cbv, it can be multiplied by (5.12) without changing
the order of the inequality:

(V − Cbv)V̇ ≤ −a1x
2
1(V − Cbv) if V ≥ Cbv, (5.10)

substituting it into (5.9), it is obtained:

⎧
⎨

⎩

ḟa ≤ −a1x
2
1(V − Cbv) ≤ 0 if V ≥ Cbv,

ḟa = 0 otherwise.
(5.11)

Then, fa satisfies properties (5.6), as discussed at the following. From the definition (5.7) it
follows that fa ≥ 0, V ≤ Cbv +

√
2fa, so that properties (5.6)(i) and (5.6)(ii) are satisfied. From

(5.11) it follows that property (5.6)(iii) is true, so that fa ∈ L∞. Since (5.6)(ii) is true, then
V ∈ L∞. From (3.6) it follows that x1 ∈ L∞, S ∈ L∞, and from (3.8) it follows that x2 ∈ L∞.
This completes the proof.
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If the control law (4.11) is applied to the plant (2.1), and the initial value of the function
V is located inside the target region, then V remains inside the target region thereafter, as is
proven at the following.

Theorem 5.2 (boundedness of the Lyapunov function for V ≤ V (x(to))). Consider the plant
model (2.1), subject to assumptions (Ai) to (Aiv), the tracking error e, the desired output yd and the
function S provided by (2.4), (2.5), and (3.8), respectively. If condition (3.16) is fulfilled, the controller
(4.11) is applied and V (x(to)) ≤ Cbv, then V (x(t)) ≤ Cbv for all t ≥ to, x1 ∈ L∞, x2 ∈ L∞.

Proof. The nature of V̇ for V = Cbv must be examined considering each of the cases S = 0 and
S/= 0 separately. From Theorem 3.4 it follows that if the control law (3.13) is used, S/= 0 and
V = Cbv, then V̇ ≤ −a1x

2
1. To show that this expression is also valid for the case when S = 0

and V = Cbv, (3.9) is used. From (3.9) it follows that V̇ ≤ −a1x
2
1 if S = 0, regardless the value

of V . Consequently, if the control law (4.11) is used, S = 0 and V = Cbv, then V̇ ≤ −a1x
2
1. So

far, it has been shown that if the control law (4.11) is used and V = Cbv, then

V̇ ≤ −c1a1x
2
1, (5.12)

regardless the value of S. This implies that if V (x(t1)) = Cbv for any t1 ≥ to, then V (x(t1+δt)) ≤
V (x(t1)) for a small value of δt. Consequently, V (x(t2)) ≤ V (x(t1)) for all t2 ≥ t1. Moreover,
if V (x(to)) ≤ Cbv, then V (x(t)) ≤ Cbv for all t ≥ to. From (3.6) it follows that x1 ∈ L∞, S ∈ L∞,
and from (3.8) it follows that x2 ∈ L∞. This completes the proof.

6. Convergence of the Tracking Error

In this section it is proven that if the controller (4.11) is applied to the plant model (2.1), the
tracking error e(t) converges to a residual set Ωe = {e ∈ R : |e| ≤ Cbe}.

Equation (5.11) will be arranged into a single expression. Using

fb =

⎧
⎨

⎩

V − Cbv if V ≥ Cbv,

0 otherwise.
(6.1)

Equation (5.11) can be rewritten as

⎧
⎨

⎩

ḟa ≤ −a1x
2
1fb ≤ 0 if V ≥ Cbv,

ḟa = 0 = −a1x
2
1fb, otherwise

=⇒ ḟa ≤ −a1x
2
1fb. (6.2)

A difficulty is that dfb/dt is not continuous, as ∂fb/∂V is discontinuous at V = Cbv.
Consequently, the Barbalat’s Lemma can not be applied on fb. One remedy is to express
(6.2) in terms of a new function whose first derivative with respect to V is continuous. One
instance of that function is

fc =

⎧
⎨

⎩

(√
V −

√
Cbv

)2
if V ≥ Cbv,

0 otherwise.
(6.3)
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The reader is referenced to [2, page 309], [22, 24, 25] for closely related functions. To express
(6.2) in terms of fc, the following property is needed.

Proposition 6.1. The function (6.3) satisfies

fb ≥ fc, (6.4)

the proof is presented in Appendix D.

Substituting (6.4) into (6.2), it is obtained

ḟa ≤ −a1x
2
1fb ≤ −a1x

2
1fc ≤ 0. (6.5)

Arranging and integrating, as in [26, 27], it is obtained

a1

∫ t

to

x2
1fcdτ ≤ fa(Vo) − fa(V ),

Vo = V (x(to)),

fa(V ) + a1

∫ t

to

x2
1fcdτ ≤ fa(Vo),

(6.6)

since fc ≥ 0, then x2
1fc ∈ L1. As in [21], (·) ∈ L1 is used to indicate that

∫ t
to
|(·)|dτ is bounded.

Proposition 6.2. The term x2
1fc satisfies: x

2
1fc ∈ L∞, d(x2

1fc)/dt ∈ L∞. The proof is presented in
Appendix E.

In view of the above proposition and applying the Barbalat’s Lemma (cf. [21, page 76],
[26–28]), it is obtained

lim
t→∞

x2
1fc = 0

=⇒ lim
t→∞

x2
1 = 0 or lim

t→∞
fc = 0.

(6.7)

If fc is the one that converges towards zero, it follows from (6.3) that V converges to Ωv,
where Ωv = {V (x) ∈ R : V (x) ≤ Cbv}. From Proposition 4.1 it follows that e converges to Ωe,
where Ωe = {e ∈ R : |e| ≤ Cbe}. The results can be summarized as follows.

Theorem 6.3 (convergence of the tracking error). Consider the plant model (2.1), subject to
assumptions (Ai) to (Aiv), the tracking error e, the desired output yd and the function S provided by
(2.4), (2.5), and (3.8), respectively. If condition (3.16) is fulfilled and the controller (4.11) is applied,
then e converges to Ωe, where Ωe = {e ∈ R : |e| ≤ Cbe}, being Cbe a positive user defined constant.



Mathematical Problems in Engineering 15

50 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Time

Figure 1: Example 1, top horizontal line: umx−μo/b, bottom horizontal line: umn+μo/b, thin line: (1/b)(ÿd+
a1ẏd + aoyd).

7. Simulation Example

The aim of the following example is to show that the controller (4.11) achieves the benefits
mentioned in Theorem 6.3. To that end, assumptions (Ai) to (Aiv) of Section 2 and condition
(3.16) have to fulfill. Considerations of Section 4 are taken into account. Consider the plant:

ÿ = −ẏ − y + u + d, y(to) = 0.97, ẏ(to) = 0,

u ∈ {−1.2, 1.2},

d = 0.1
(
1 + 0.1 sin

(
2π
3
t

))
,

|d| ≤ 0.11 =⇒ μo = 0.11,

(7.1)

which is an example of the plant (2.1) with a1 = 1, ao = 1, b = 1, umn = −1.2, umx = 1.2, μo =
0.11. Therefore, assumptions (Ai) to (Aiv) stated in Section 2 are fulfilled. Since ao > (1/4)a2

1,
the linear part of the plant is underdamped. The aim is that y converges towards the value
r = cos(0.5t) with an accuracy of 0.05. Thus, set Cbe = 0.05 and yd is defined by means of the
second order system:

yd =
λ2r

(
p + λr

)2 r, (7.2)

which is a special case of (2.1). V (x(to)) ≤ Cbv is fulfilled choosing yd(to) = 1 and
ẏd(to) = 0. By means of simulation it is possible to check that yd, ẏd, ÿd, and λr = 12 satisfy
condition (3.16), as shown in Figure 1. The chosen values of λr , yd(to), ẏd(to) imply that
yd ≈ r for all t ≥ to. Since a1 = 1, the signal S defined in (3.8) is then S = a1e + ė = e + ė.
The closed loop behavior of y, e, u is shown in Figure 2, whereas the state plane is shown in
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Figure 2: Example 1, (a) output y (continuous line) and desired output yd (dashed line); (b) tracking error
e(t); (c) control input u.
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Figure 3: Example 1, the solid line represents V = Cbv.

Figure 3. The state plane confirms that V (x(to)) ≤ Cbv, so that V (x(t)) ≤ Cbv for all t ≥ to and
u only commutes when V = Cbv. The figure of the control input u and the state plane indica-
te that large commutation rate is avoided. This confirms the importance of choosing yd(to),
ẏd(to) such that V (x(to)) ≤ Cbv.

8. Discussion

The discussion presented here is only valid for the plant model (2.1), which is a model second
order with known constant coefficients and an additive disturbance. The time derivative of
the function V defined in (3.6) results in a negative semidefinite term, so that it is necessary to
use Lyapunov-like function method to prove the convergence of the tracking error. Hereafter,
some conclusions based on both stability proofs and numerical simulations are stated. In the
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classical relay feedback method [10, 13] the commutation of the control input is function of
the tracking error, but it does not take into account the time derivative of the tracking error.

The developed condition (3.16) indicates wether a given desired output yd is suitable
to achieve the convergence of the tracking error e to a residual set of user defined size,
that is, Ωe, for the plant (2.1). For any instance of the plant (2.1), one may modify the
coefficients of the reference model (2.5) to satisfy condition (3.16), by means of trial and
error. This procedure does not involve the output y, nor the input u, and is previous to the
implementation of the controller.

It is important to set the initial values of the desired output and its time derivative
such that V (x(to)) ≤ Cbv. This implies that the Lyapunov function V is always located inside
the target region Ωv = {V ∈ R : V ≤ Cbv}, so that it avoids convergence towards this region,
and consequently large commutation rate of the control input are avoided.

The contribution of the scheme with respect to classical relay feedback control based
on hysteresis is to ensure the convergence of the tracking error e(t) to a residual set whose
size is user defined. The main contribution with respect to closely related control based on
the direct Lyapunov method is that the condition that the desired output yd has to fulfill in
order to achieve tracking is defined.

9. Conclusions

The controller achieves the convergence of the tracking error to a residual set of user defined
size if the desired output satisfies the formulated condition. This condition uses the upper
bound of the additive disturbance, as in a basic nonadaptive robust controller. It allows us
to develop a rigorous proof of the tracking error convergence to a residual set that is user
defined, by means of the Lyapunov-like function. If the initial values of the desired output
and its time derivative are properly defined, the Lyapunov function is located inside a target
region at initial time and thereafter. In this case, the control input only commutes when the
Lyapunov function reaches the boundary.

Appendices

A. Proof of Proposition 3.1

From (3.16) it follows that

u − δ +
μo

b
≤ ÿd + a1ẏd + aoyd

b
≤ u + δ − μo

b
, (A.1)

subtracting u:

−δ +
μo

b
≤ ÿd + a1ẏd + aoyd

b
− u ≤ δ − μo

b
. (A.2)
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Thus,

δ −
(
ÿd + a1ẏd + aoyd

b
− u

)
− μo

b
≥ 0,

δ +
(
ÿd + a1ẏd + aoyd

b
− u

)
− μo

b
≥ 0.

(A.3)

Thus,

δ + sgn(S)
(
ÿd + a1ẏd + aoyd

b
− u

)
− μo

b
≥ 0. (A.4)

This completes the proof.

B. Proof of Proposition 4.1

Proposition 4.1 will be proven by finding the value of a positive constant C∗
b
such that:

If V converges to Ωv, Ωv =
{
V ∈ R : V ≤ C∗

b

}
,

then e converges to Ωe, Ωe = {e ∈ R : |e| ≤ Cbe}.
(B.1)

The value of C∗
b
will be fond out by means of two different ways. On the one hand, it follows

from (3.6) and the definition of Ωv in (B.1) that

1
2ao

S2 ≤ V,=⇒ |S| ≤
√
2aoV

=⇒ if V converges to Ωv, then S converges to Ωs,

Ωs =
{
S : |S| ≤

√
2aoC

∗
b

}
.

(B.2)

From the definitions (3.8), (3.5), S can be expressed as a linear function of e, ė: S = a1e + ė.
Thus, e in terms of S is given by

e =
1

p + a1
S. (B.3)

In view of this equation and according to [2, page 279-280], and [29], it follows:

If S converges asymptotically to Ωs,

then e converges asymptotically to Ωe,
(B.4)

where

Ωs =
{
S : |S| ≤

√
2aoC

∗
b

}
, Ωe =

{
e : |e| ≤

(
1
a1

)√
2aoC

∗
b

}
. (B.5)
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This and (B.2) imply:

if V converges to Ωv, then e converges to Ωe,

Ωe = {e : |e| ≤ ca}, ca =
(

1
a1

)√
2aoC

∗
b
.

(B.6)

See [2, page 279-280] and [29] for closely related results. The value of C∗
b
that leads to ca = Cbe

has been found, thus (B.1) is satisfied. This value is C∗
b = a2

1C
2
be/(2ao), which is a first value

of C∗
b. On the other hand, it follows from (3.6) that

(
1
2

)
e2 ≤ V =⇒ |e| ≤

√
2V . (B.7)

This and the definition of Ωv in (B.1) imply

if V converges to Ωv, then e converges to Ωe,

Ωe = {e : |e| ≤ cc}, cc =
√
2C∗

b
.

(B.8)

Now, the value of C∗
b
that leads to cc = Cbe has been found out so that (B.1) is satisfied. This

value is C∗
b = (1/2)C2

be, which is a second value of C∗
b. Since both values of C∗

b are valid, then
Cbv can be defined as the maximum:

Cbv = max

{
a2
1C

2
be

2ao
,
C2

be

2

}

=
C2

be

2
max

{
a2
1

ao
, 1

}

(B.9)

This completes the proof.

C. Proof of Proposition 4.2

From (2.2) and (3.16) it follows that

−u ≤ −umn, (C.1)

−u ≥ −umx, (C.2)

ÿd + a1ẏd + aoyd

b
+
μo

b
≤ umx, (C.3)

ÿd + a1ẏd + aoyd

b
− μo

b
≥ umn. (C.4)
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From (C.3), (C.4), (2.3) it follows that

ÿd + a1ẏd + aoyd

b
− d

b
≤ ÿd + a1ẏd + aoyd

b
+
μo

b
≤ umx, (C.5)

ÿd + a1ẏd + aoyd

b
− d

b
≥ ÿd + a1ẏd + aoyd

b
− μo

b
≥ umn, (C.6)

combining (C.1) with (C.5) and (C.2)with (C.6), and using definition (3.3), yields

−v =
ÿ + a1ẏd + aoyd

b
− d

b
− u ≤ umx − umn,

−v =
ÿ + a1ẏd + aoyd

b
− d

b
− u ≥ umn − umx,

(C.7)

combining the above equations yields:

− (umx − umn) ≤ −v ≤ umx − umn,

=⇒ |−v| ≤ umx − umn,

|v| ≤ umx − umn.

(C.8)

This completes the proof.

D. Proof of Proposition 6.1

The squared term of (6.3) in terms of V can be expressed as

(√
V −

√
Cbv

)2
= V − 2

√
Cbv

√
V + Cbv. (D.1)

If V > Cbv, then
√
V >

√
Cbv, and −

√
V < −

√
Cbv. Using this in (D.1), it is obtained

(√
V −

√
Cbv

)2
< V − 2C1/2

bv C1/2
bv + Cbv if V > Cbv.

(√
V −

√
Cbv

)2
< V − Cbv if V > Cbv.

(D.2)

From this property and definitions (6.3), (6.1), it is obtained fc ≤ fb. This completes the proof.
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E. Proof of Proposition 6.2

From the definition (6.3) and V ∈ L∞, it follows fc ∈ L∞. Since x1 ∈ L∞, then x2
1fc ∈ L∞. This

completes the proof of the first part of Proposition 6.2. The time derivative of x2
1fc is

dx2
1fc

dt
= 2x1ẋ1fc + x2

1ḟc
, (E.1)

ḟc =
∂fc
∂V

V̇ . (E.2)

Equation (6.3) is used to compute ∂fc/∂V :

∂fc
∂V

=

⎧
⎪⎨

⎪⎩

√
V −

√
Cbv√

V
if V ≥ Cbv,

0 otherwise.
(E.3)

Since V ∈ L∞, then the above equation indicates that (∂fc/∂V ) ∈ L∞. Since x1 ∈ L∞, x2 ∈ L∞,
S ∈ L∞, then (3.9) indicates that V̇ ∈ L∞. Thus, (E.2) indicates that ḟc ∈ L∞, whereas (E.1)
indicates that d(x2

1fc)/dt ∈ L∞. This completes the proof.
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