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We consider the nonlinear problem for the flow of Newtonian fluid in a microchannel between
two parallel plates with the effects of velocity slip, viscous dissipation, and temperature jump at
the wall. This problem is modelled by both the Navier-Stokes equation and energy equation with
two thermal boundary conditions related to the two cases: the constant wall temperature (CWT)
and the constant heat flux (CHF). The homotopy analysis method is applied via a polynomial
exponential basis to obtain analytic approximations for this problem. A rarefaction effects on the
velocity profile and the flow friction are investigated. Also, as a result of the application, the effects,
on the Nusselt number Nu, with variation in Brinkman number Br and Knudsen number Kn for
both (CWT) case and (CHF) case are discussed.

1. Introduction

Research on flow and heat transfer in microchannels has increased, recently, due to the
developments in specific areas such as microfabrication technology, microdevices, Microelec-
tromechanical Systems (MEMSs), the electronic industry, and the biomedical engineering.
Microscale fluid flow and heat transfer has a different behaviour from that of macroscale
case. At macroscale case, classical conservation equations are successfully coupled with
the corresponding wall boundary conditions, usual no-slip for hydrodynamic boundary
condition and no-temperature jump for thermal boundary condition. For a rarefied fluid flow
at microscale a slip condition for the velocity and a jump condition for the temperature should
be adopted. Viscous dissipation is another parameter that should be taking into account at
microscale. Viscous dissipation changes the temperature by behaving like an energy source
due to a power generation induced by the shear stress.



2 Mathematical Problems in Engineering

The Knudsen number Kn is the ratio of the fluid mean free path to the characteristic
dimension in the flow field, and it determines the degree of rarefaction and the degree of the
validity of continuum approach. For flows in continuum and slip regions, Eckert and Drake
[1] indicated that there is a strong evidence to use the Navier-Stokes equations modified by
boundary conditions. Beskok and Karniadakis [2] defined four different flow regimes based
on the value of the Knudsen number: continuum flow (Kn < 0.001), slip flow (0.001 < Kn <
0.1), transition flow (0.1 < Kn < 10), and free molecular flow (Kn > 10). Liu et al. [3] and
Arkilic et al. [4] pointed that the Navier-Stokes equations, when they are combined with
slip-flow boundary conditions, give results for pressure drop and friction factor which are in
agreement with the experimental data for some microchannel flows.

Gad-el-Hak [5] treated analysis for microchannel flows through study of microdevices
fluid mechanics. Guo and Li [6] studied the size effects on microscale single-phase fluid
flow and heat transfer. Wu and Cheng [7] studied the friction factor and convective heat
transfer in smooth silicon microchannels of trapezoidal cross-section. Zhang et al. [8]
validated the Navier-Stokes equations for slip flow with transition region. For recent studies
in microchannel flows and heat transfer, see, for example, [9-15]. The homotopy analysis
method presented by Liao [16-19] is a powerful tool for such kind of problems which have
complicated and strong nonlinearity. This method does not depend on existence of small
or large parameters in studied problems such as the perturbation methods [20-22], it does
not use discretization of numerical methods, which have difficulties in case of the existence
of singularities, and unlike other methods, such as Lyapunov’s small parameter method [23]
and the Adomian decomposition method [24-27], it has the ability to control the convergence
for obtained approximations. Liao and other authors applied this method in a successful
manner to various nonlinear applications in science and engineering. See, for example, [28-
34]. To show the basic ideas and aspects of this method, let us consider the following:

N[g(rt] =0, (1.1)

where N is a nonlinear operator, g is unknown function, 7 is a vector of spatial variables, and
t is the time. By means of the traditional concept of homotopy, Liao constructs the so-called
zero-order deformation equation:

(L-q)L[§(r,t,q) - go(r,1)] = ghN[¢(r.t,9)], (1.2)

where g € [0,1] is an embedding parameter, L is an auxiliary linear operator, gy is an initial
approximation for the unknown function g, and h is an auxiliary parameter. As g varies from
0 to 1, the solution of (1.2) varies from the initial approximation gy to the exact solution g of
the nonlinear equation (1.1):

¢(r,t,0) = go(r,t), o(r,t,1) = g(rt). (1.3)

Expanding ¢(r, t, q) in Taylor series, with respect to g, one has

$(r.t,q) = go(r,t) + . gm(r,)q", (1.4)
m=1
am 7 v
gm(r/ t) = % ¢a(—;mt q) q=0 (15)
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If the parameter h is properly chosen such that the series (1.4) is convergent at g = 1, then
from (1.3)

g(r,t) = go(r,t) + i gm(r,t). (1.6)

m=1

Differentiating the zero-order deformation equation (1.2) m times with respect to g, setting
q = 0, and finally dividing by m!, we obtain the mth order deformation equation:

L{gm(r,t) = Xm§m-1(r,1)] = hPy(r, 1), m>1, (1.7)
B 1 0™ 'N[¢(r,tq)]
Pnlrt) = G i gt o (1.8)
0, m=1,
Xm = { (1-9)
1, m>1.

The solutions g, (r,t),m > 1, of (1.7) are called the mth deformations and can be computed
by any symbolic software. The homotopy analysis method provides a freedom to choose L, go
and control the convergence, by the aid of the parameter A, to obtain analytic approximations
in terms of suitable basis of functions.

2. Mathematical Formulation

The mathematical modelling for two-dimensional steady laminar slip flow in a microchannel
between two parallel plates, with the consideration of Viscous dissipation, has the following
form.

The continuity equation:

ou Ov

The Navier-Stokes equations:

o 2 2
W 1P u<ﬂ+a—”>, (2.2)

ox Yoy T pox  \ax " a2
ov  0v 10p o*v v
ua +U@__l_)@+v<@+a_y2 . (23)

The energy equation
2 2
or oT o T v <6u> , (2.4)

Yox "oy "oy T cp\ay
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Figure 1: Microchannel between two parallel plates.

where in the previous equations, it is assumed that the inlet velocity and the inlet temperature
are uniform, the distance between the two parallel plates is 2H (see Figure 1), and the
tangential and thermal accommodation coefficients are taken to be unity. Also, u and v are
velocity components, p is the density, p is the pressure, v is the kinematic viscosity, T is the
temperature, a is the thermal diffusivity, and C,, is the specific heat.

Equations (2.1)—(2.4) are subject to the following boundary conditions:

ou ou

= — = = _— = = H
u Zay, v=0aty=0, By 0 aty ,
oT Guw
T-T, = Z@ (for CWT), T-Ty = —ET (for CHF) at y =0, (2.5)
oT
@ =0 at y= H,

where ¢ is the molecular free path, T, is the temperature at the wall, g, is the heat flux at the
wall, and 1 is the thermal conductivity.
Using transformations of the form

1
n=gzv.  ¢=fux, (2.6)

where ¢ is a stream function and U is the inlet velocity, (2.3) can be reduced to

0 [op
— | K = 2.7
oy [6x 0. 27)
and hence from (2.7) we can write
0
1Py, (2.8)
p Ox

where C is a constant.
The mean velocity u,, has the following form:

H
Uy = % fo udy = %f(l)llx. (2.9)
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Also, the mean temperature T, has following the form:

T, = %Jj(%)n@ = ]% J: £ () Tdn. (2.10)

By the aid of (2.6), (2.8), and the following transformations:

0= [E] [ T~ T ] (for CWT),

x2 || T = Tw
(2.11)
| H*|[T-Tw+4q,/A
_ [?] [Tm | ttor CHE),
equations (2.1)—(2.4) are transformed to the system of two equations:
f"(n) = Re)f2 () + (Re) f () f" () + € =0, 012
0" (n) = (Br)f" () + (Pe) f ()6 (1) — 2(Pe) f' ()0 (1) =0,
with the following boundary conditions:
f(0) = Kn)f"(0)=0,  f(0)=0,  f'(1)=0,
(2.13)

0(0) - (Kn)@'(0) =0 (for CWT),  0(0)=0 (for CHF),  60'(1) =0,

where Kn = ¢/[2H] is the Knudsen number, Br = y U2/ [A(Ty,—T,,)] is the Brinkman number,
p is the dynamic viscosity, Re = UH/v is the Reynolds number, ¢ = CH?/[Uv] and Pe =
UH/a is the Peclet number.

Not only (2.12) are strongly nonlinear but also they have linear boundary conditions.
Poiseuille number is one of the most important parameters in fluid flow which is the product
of friction factor and local Reynolds number. This number is denoted by Po and, based on the
mean velocity [15], it can be given by

Po= 2" (2.14)

The most important parameter in heat transfer is the ratio of convective to conductive heat
transfer across the boundary which is called the Nusselt number. This number is denoted by
Nu and, as in [15], analytic expressions for Nu can be drived for for both the (CWT) and
(CHF) cases as follows:

L 2fMe©O)
[y £/ (m)8(n)dn

e 2£(1)6/(0)
fo f(1)8 () — 2(Kn) £ (1)8'(0)

for (CWT) case,

(2.15)

for (CHF) case.
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Here, we apply the homotopy analysis method via a polynomial exponential basis to get
analytic approximations for solutions of (2.12)-(2.13), and then we use these approximations
to discuss the rarefaction effects on velocity profile and flow friction (effects on Poiseuille

number). Also, we use the expressions (2.15) to study the effects on the Nusselt number with
the variations in Brinkman and Knudsen numbers.

3. Application of the Homotopy Analysis Method

Applying the homotopy analysis method on (2.12)-(2.13), we use the basis

n"e™, m,n>0. (3.1)

Also, we express the solutions by the rule of the following expressions:

F(n) = 25 2 Aumn™e™, (32)
n=1m=1
0(n) = Z ZBn,mrlme’”’l for (CWT) case, (3.3)
n=0 m=0
0(1) = >, D Cum n"e™ for (CHF) case. (3.4)
n=1 m=1

Viewing (2.12)-(2.13) and (3.1)-(3.4), we choose the initial approximations and the
auxiliary linear operators as follows:

fo() = 2(Kn)e + (1 - 2Kn)rfe’ + 7= (8Kn ~ 7)e’, (35)
60(17) = Kn + 5l - %1’[26’7 for (CWT) case, (3.6)
0o (q) = el - %qze’i for (CHF) case, (3.7)

1 _, 0

- _ph_—__

1 _, 0

— o
Lg 26 61’12 . (39)

We construct the so-called zero-order deformation equations:

(1-9)Ls[¢(n,q) - fo(n)] = hraNs[$ ¢, 4], (3.10)

(1-q)Le[g(n,q) — 00(n)] = heqNo[d, ¢, 4], (3.11)
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with the following conditions:

a , 62 , 2 s
(i)g;ll q) |rl:0 _ (Kn)%zq)hﬁ = O, ¢(0 ) 0 ¢6(11112 q) 11 1= 0/
¢(0,9) - (Kn) "’(”’ ) =0 =0 (for CWT), ¢(0,9) =0 (for CHF), (3.12)
o(na),
on bp=1 =0,

where hy and hg are auxiliary parameters and g is an embedding parameter that varies from 0
to 1. As g varies from 0 to, 1 the solution of (3.10)—(3.12) varies from the initial approximations
to the exact solutions of (2.12)—(2.13). Thus we have

¢(1,0) = fo(n),  ¢(m1)=f(m), ¢@n0)=060(n), ¢l)=0(). (313

The nonlinear operators Ny and Ny in (3.10) and (3.11) are defined as

Nyl = 52 - <Re>(%) rRegSh e
i ” ; o (3.14)
0 @
No[, ¢,q] = o (Br)<a—ﬂz> + (Pe)qb@ —Z(Pe)& @
By Taylor’s series, at g = 0, we have
¢(1,9) = ¢(1,0) + > fu(n) 4",
" (3.15)
¢(n,q) =9 (1,0) + D 0n(n) 9",
m=1
where
1 0"p(n,9) 1 0"¢(n,q)
Ful) = o g Pl O) = o R (3.16)

m!  0g™

If the parameters hy and hg are properly chosen such that the series (3.15) converge at g = 1,
then from (3.13)

F) = fon) + 3 Ful),
" (3.17)

GMF%®+Z%@-
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Differentiating the zero-order deformation equations (3.10) and (3.11) m times with respect
to g, setting g = 0, and then dividing by m!, we obtain the mth order deformation equations:

Ly[fm(1) = Xmfm1 ()] = hpPu(n), m2>1,

(3.18)
Lo[0m (1) = XmOm1(1)] = heQum (1), m>1,
where
Po(n) = £, () - [Re@f;(n)f;ﬂ_l_n(n) + [Re]ngfn(n)f,ﬁz_l_n(ﬂ) e(1- ),
Qu (1) = 61,1 (1) - [Br]mZ_OfZ(ﬂ)fZ,_l_n(ﬂ)
. (3.19)

m-1 m-1
+[Pe] Zofn (1)6,,,-1_, (11) — 2[Pe] Zof; (1) Om-1-n (1),
{0, m=1,
Xm =
1, m>1.

The solutions of (3.18) are referred as the mth deformations, m > 1, and these deformations
may satisfy the following conditions:

Ofm 02 fom 0% fom
! afl”) o — (K) gnﬁ’” o =0, fu(0) =0, gnﬁ’” o =0,
0,.(0) — (Kn)%hﬂ) —0 (for CWT), 6,,(0) = 0 (for CHF), (3.20)
00,,
" 1511) r = 0.

The solutions of (3.18) can be obtained by a symbolic software such as Mathematica, and
these solutions can be taken as

2m+12m+1

fu() = 25 3 amane™,

n=1 k=1

2m+12m+1

Om (1) = Z Z bfmnqke"’l for (CWT) case, (3.21)
n=0 k=0

2m+1 2m+1

Om(n) = >, > ck nke™ for (CHF) case.

n=1 k=1
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Figure 2: The h-curve for f"(0) at Kn = 0.05, Br = 5, Pe = 0.5, and Re = 10.

For a best choice of hy and hg, the Mth order approximations for the solutions of (2.12)—(2.13)
are then

M 2m+12m+1

f) = fon) + 25 > 3 amamte™,

m=1 n=1 k=1

M 2m+12m+1

0(n) =6o(n) + Z Z Z b,’;,nnke"" for (CWT) case, (3.22)

m=1 n=0 k=0

M 2m+12m+1
0(n) = 60(1) + D, ck nke™  for (CHF) case.

m=1 n=1 k=

_

The best values of parameters hy and hg which control the convergence of the approxima-
tions (3.22) can be deduced by plotting the h-curve of f”(0) and 6”(0) which takes a horizontal
line through the position of convergence.

4. Results of the Application

Applying the homotopy analysis method for (2.12)—(2.13) up to the 10th order approximation
it is found that it is best to take the control parameters hs and hg such that hy = hg = h = -1.2
to get the best approximations for the solutions, as indicated in Figures 2, 3, and 4. In our
study, Brinkman number Br and the Knudsen number Kn are the main parameters for heat
and fluid flow in a microchannel. We study the interactive effects of these parameters for both
the hydrodynamic and the thermal transport in the microchannel. We examine two different
thermal boundary conditions at the wall of the microchannel: the constant wall temperature
(CWT) and the constant heat flux (CHF).

Also, it is noted that Kn = 0 represents the macroscale case, while Kn > 0 holds for the
microscale case and Br = 0 represents the case without effect of the viscous dissipation.

Figure 5 investigates the dimensionless velocity profile for no-slip and slip microchan-
nel flow. When Kn = 0, the velocity increases from zero at wall to a maximum value (1.5) at
plate centerline. The dimensionless velocity profile seems near parabolic. The velocity profile
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Figure 3: The h-curve for 6”(0) for CHF case at Kn = 0.05, Br = 5, Pe = 0.5, and Re = 10.
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Figure 4: The h-curve for 0”(0) for CWT case at Kn = 0.05, Br = 5, Pe = 0.5, and Re = 10.
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Figure 5: The dimensionless velocity profile for different values of Kn = 0,0.05,0.1.
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Figure 6: The Poiseuille number Po with continuous variation of Kn.
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Figure 7: Effects on Nu with Br at Kn = 0 for CWT case.

for Kn = 0.05 and Kn = 0.1 are traced in this figure and it is remarked that all velocity profiles
for the three cases of Kn intersect at one point. Figure 6 indicates the Poiseuille number Po
with the continuous variation of the Knudsen number Kn. In this figure, the values of the
Poiseuille number decrease gradually with the increase of Kn.

This is expected because the higher value of Kn implies larger slip and the higher
velocity near the wall decreases the shear stress which causes the Po to drop further. This
figure shows, also, that Po = 12 when Kn = 0 which agrees with the macroscale case and
goes to an asymptotic value with the increasing of Kn. Figures 7 and 8 illustrate the effects
on Nusselt number Nu, with variation in the Brinkman number Br and different values of
Knudsen number Kn for the constant wall temperature (CWT) case. These figures seem to
be a hyperbola for each Kn. In general, these figures show that the increase of Knudsen
number Kn decreases the Nusselt number Nu due to the temperature jump at the wall. If
the Brinkman number Br takes positive values, then this corresponds to what is called wall
heating case. For this case, the wall temperature is greater than that of the bulk fluid. For this
case it is noticed that Nu decreases as Br increases. Also, the value of Br indicates the effects
of the viscous dissipation. Viscous dissipation increases the temperature of the bulk fluid
especially near the wall, because the highest shear rate occurs in this region. This effect causes
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Figure 8: Effects on Nu with Br at Kn = 0.05 (thin line) and 0.1 (solid line) for CWT case.

Figure 9: Effects on Nu with Br at Kn = 0 for CHF case.

the temperature difference between wall and the bulk fluid decrease. The extra increasing of
Br yields that the heat supplied by the wall into the fluid is balanced with the internal heat due
to the viscous heating and hence the Nu reaches an asymptotic value. Also, for wall cooling
case when Br takes negative values, the Nu reaches an asymptotic value with the increasing
of Br in the negative direction. Figures 9 and 10 depict the effects on the Nusselt number Nu,
with the variation in Brinkman number Br and different values of Knudsen number Kn for
the constant heat flux (CHF) case. The effects on Nu are very similar to the case of constant
wall temperature (CWT). This similarity can be expected from the similarity of the formulae
(2.15) of the Nusselt number Nu and also from the similarity of the initials of the temperature
profile in (3.6) and (3.7).

5. Conclusion

In this paper the homotopy analysis method was applied via a polynomial exponential
basis to obtain analytic approximations for the nonlinear problem of the flow fluid in a
microchannel between two parallel plates taking into account the effects of velocity slip,
viscous dissipation, and temperature jump at the wall. As a result of this application, the
rarefied effects on the velocity profile and the flow friction are studied and also effects on the
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Figure 10: Effects on Nu with Br at Kn = 0.05 (thin line) and 0.1 (solid line) for CHF case.

Nusselt number with the variation in Brinkman and Knudsen numbers are discussed for both
the constant wall temperature (CWT) and the constant heat flux (CHF). Also, the application
proved the great ability and flexibility of this method to treat the strongly nonlinear problems
which have linear boundary conditions via any suitable set of continuous functional basis.
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