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For the problem that the energy efficiency of the cloud computing data center is low, from the
point of view of the energy efficiency of the servers, we propose a new energy-efficient multi-job
scheduling model based on Google’s massive data processing framework. To solve this model,
we design a practical encoding and decoding method for the individuals and construct an overall
energy efficiency function of the servers as the fitness value of each individual. Meanwhile, in order
to accelerate the convergent speed of our algorithm and enhance its searching ability, a local search
operator is introduced. Finally, the experiments show that the proposed algorithm is effective and
efficient.

1. Introduction

Cloud computing [1] is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. As a new business model, while being
favored by providing services such as on-demand self-service, broad network access, and
rapid elasticity, cloud computing faces some new challenges. One of the prominent issues is
the energy efficiency of data centers.

According to Amazon’s CEMS project [2], based on a 3-year amortization schedule
for servers and 15-year amortization schedule for other infrastructure, the monthly capital
investment of the data center is illustrated in Figure 1. As can be seen from this figure, energy-
related costs (including three parts: direct power consumption, power infrastructure, and
cooling infrastructure) amount to 41.62% of the total. In other words, the largest investment
to build data centers for cloud computing is not only to purchase thousands of server
equipment, but also to buy the distribution and cooling infrastructure and to pay the bill
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Figure 1: Monthly costs of the data center.

for energy consumption of all these facilities. In order to illustrate the importance of energy
consumption for data centers, we introduce the concept, power usage effectiveness (PUE),
which was developed by a consortium called The Green Grid.

Definition 1.1. Power usage effectiveness [3] is the ratio of total amount of power used by a
data center facility to the power delivered to computing equipment. It is a measure of how
efficiently a computer data center uses its power:

PUE =
Total facility power
IT equipment power

. (1.1)

The IT equipment power is the power delivered to the critical load, the servers in
the data center, while the total facility power in addition to the servers also includes other
energy facilities, specifically, the energy consumed by distribution and cooling infrastructure
which accounts for the main part. A PUE of 2.0 states that, for every watt delivered to the
servers, we dissipate 1 watt in cooling system and power distribution. That is, the data
center has to pay 2 watts of electricity, but only one single watt for cloud computing, because
only servers can provide cloud computing services. The energy utilization is only 50%. In
the Environmental Protection Agency (EPA)’s report [4] to the US Congress, they estimate
that, in 2006, the typical enterprise data center had a PUE of 2.0 or higher. It is expected
that equipment efficiency improvements alone, with current practices, could result in a 2011
PUE of 1.9. Data centers combining these efficiency gains with better operational practices
are expected to reach a PUE of 1.3∼1.7. Beyond that, the EPA predicted that “state-of-the-art”
data centers could reach a PUE of 1.2. By now, Google has claimed that their data centers,
on average for all, have exceeded the EPA’s most optimistic scenario [5], which is of course
accompanied by doubt voices from other cloud computing providers [2].
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To reduce the energy consumption of data centers and improve energy efficiency,
many scholars have done some related research, such as literatures [6–10]. Overall, we can
make efforts in three aspects.

(1) Reduce power loss during distribution. However, the statistics from Amazon’s
CEMS project show that, for a data center with a PUE of 1.7, an overall power distribution loss
only accounts for 8% of total energy consumption. Even with better technology, the reduction
will not exceed 8% [2].

(2) Reduce energy consumed by cooling system. For example, you can use Google’s
“free cooling” mode, removing heat from servers by using evaporating water or low
temperature ambient air. Google claims that there is no cooling equipment in its data
centers in Belgium [11]. The climate in Belgium will support free cooling almost year-round,
according to Google engineers, with temperatures rising above the acceptable range for free
cooling about seven days per year on average. The average temperature in Brussels during
summer reaches 66 to 71 degrees, while Google maintains its data centers at temperatures
above 80 degrees. If the weather gets hot, Google says it will turn off equipment as needed in
Belgium and shift computing load to other data centers. This approach is made possible by
the scope of the company’s global network of data centers, which provide the ability to shift
an entire data center’s workload to other facilities.

Although the “free cooling” mode can reduce the energy consumed by cooling system,
it has a key prerequisite that the providers have sufficient enough financial and technical
strength to run several data centers around the world and the data can backup across those
data centers with seamless migration of computing load. This is hardly possible for majority
of cloud computing providers.

(3) Improve energy efficiency of servers. Say a data center with a PUE of 2.0, only 50%
of the power can be used on severs. Therefore, it becomes critical whether servers have used
all the energy to complete the workload. We are aware that low energy utilization of a server
is mainly due to its idle state caused by low CPU utilization. Even at a very low load, such
as 10% CPU utilization, the power consumed is over 50% of the peak power [12]. Thus, the
energy efficiency of servers plays an important role for the entire energy efficiency of the data
center.

This paper mainly focuses on how to improve the energy efficiency of servers through
appropriate scheduling strategies. Taking full consideration of the relationship between
the performance and energy consumption of servers, we propose a new energy-efficient
multi-job scheduling model based on the Google’s massive data processing framework,
MapReduce, and give its corresponding algorithm. As the basics of our model, Section 2
highlights Google’s MapReduce framework; Section 3 gives the mathematical description of
the energy-efficient multi-job scheduling problem and its corresponding model. In order to
solve this model, a genetic algorithm and its genetic operators are designed in Section 4.
Finally, simulation experiments show the proposed algorithm is effective and efficient in
Section 5.

2. MapReduce Framework

MapReduce [13] is Google’s massive data processing framework. It finishes the computation
by mapping and reducing data under cluster environment. Users specify a map function that
processes a key/value pair to generate a set of intermediate key/value pairs and a reduce
function that merges all intermediate values associatedwith the same intermediate key.Many
real world jobs are expressible in this model, for example, counting the frequency of all words
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Figure 2: Overall flow of a MapReduce operation.

appeared in a paper. Figure 2 shows the overall flow of a MapReduce operation. When the
user program calls the MapReduce function, the following sequence of actions occurs (the
numbered labels in Figure 2 correspond to the numbers in the list below).

Step 1. The MapReduce library in the user program first splits the input files into M pieces
of typically 64 megabytes (MBs) per piece. It then starts up many copies of the program on a
cluster of machines.

Step 2. One of the copies of the program is special—the master. The rest are workers that are
assignedwork by themaster. There areMmap tasks andR reduce tasks to assign. Themaster
picks idle workers and assigns each one a map task or a reduce task.

Step 3. A worker who is assigned a map task reads the contents of the corresponding input
split. It parses key/value pairs out of the input data and passes each pair to the user-defined
map function. The intermediate key/value pairs produced by the map function are buffered
in memory.

Step 4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by
the partitioning function. The locations of these buffered pairs on the local disk are passed
back to the master, who is responsible for forwarding these locations to the reduce workers.

Step 5. When a reduce worker is notified by the master about these locations, it uses remote
procedure calls to read the buffered data from the local disks of the map workers.

Step 6. The reduce worker iterates over the sorted intermediate data and for each unique
intermediate key encountered; it passes the key and the corresponding set of intermediate
values to the user’s reduce function. The output of the reduce function is appended to a final
output file for this reduce partition.

Step 7. When all map tasks and reduce tasks have been completed, the master wakes up the
user program. At this point, the MapReduce call in the user program returns back to the user
code.
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3. Energy-Efficient Multi-Job Scheduling Model Based on MapReduce

From the above background knowledge, we know that by improving the energy efficiency of
servers, the PUE of data centers can be enhanced. However, this problem cannot be solved
as easy as balancing loads among servers so as to make all the servers’ CPU utilization reach
100%. Instead, there exists an optimal performance and energy point for each server [12].
Energy consumption per task is influenced by the CPU utilization of servers (certainly, it
may also be affected by other resource utilization such as memory, bandwidth, etc., but, in
order to simplify the model, we only consider the impact of CPU utilization). When the CPU
utilization is low, idle power is not amortized effectively and hence the energy per task is
high. At high CPU utilization, on the other hand, energy consumption is high due to the
competition for resources among tasks, which leads to performance degradation and longer
execution time. Typical variation of energy per task with CPU utilization can be expected
to result in a “U-shaped” curve. Therefore, it can be assumed that the servers achieve the
maximum energy efficiency when all servers running at its optimal performance and power
point. We can get this optimal point of each server by experiments. In literature [12], for
example, data shows that the server meets the highest when its CPU utilization reaches 70%.

We first give a general mathematical description of the energy-efficient multi-job
scheduling problem and then build its corresponding single-objective optimization model.

Assuming that there are N servers in a data center. The current CPU utilization of
sever k is CSk and its optimal point is COk, where k = 1, 2, . . .N. There are F jobs A =
{A1, A2, . . . , AF} need to be processed, and the input data of jobAq isDq, where q = 1, 2, . . . , F.
The input data Dq will be divided into mq splits with each size of 64M, so there are m =
∑F

q=1 mq splits, which are denoted as D = {D1, D2, . . . , DF} = {d1, d2, . . . , dm}. First, we need
to randomly store thesem splits onN servers. To ensure the reliability of data, each split will
choose three different servers for storage. We use a m × 3 matrix P to represent the storage
location of every split, and the element pij indicates the storage location of split di, where
integer pij ∈ [1,N], i = 1, 2, . . . ,m and j = 1, 2, 3. From the MapReduce framework, we know
that each input dataDq will be processed bymq map tasks and rq reduce tasks, provided that
the CPU required for every map task of jobAq is CMq and, for every reduce task, is CRq. The
problem is how to assign these v =

∑F
q=1 mq +

∑F
q=1 rq tasks on N servers, so that the energy

efficiency of all servers reaches the highest.
We use vector S = (s1, s2, . . . si, . . . , sv) to represent the final task scheduling scheme,

and the ith element of vector S indicates that task i is assigned on server si, where 1 ≤ si ≤ N
and i = 1, 2, . . . , v. Traversing through the scheduling scheme S, we can get the set of all map
tasks and reduce tasks of job Aq which are assigned on server k, denoted as M

q

k and R
q

k,
respectively, where k = 1, 2, . . .N and q = 1, 2, . . . , F. Let NM

q

k = |Mq

k| and NR
q

k = |Rq

k|. Here
we give the single-objective optimization model for the energy-efficient multi-job scheduling
problem based on MapReduce for cloud computing:

min
N∑

k=1

⎛

⎝COk −
⎛

⎝CSk +
F∑

q=1

(
NM

q

k × CMq

)
+

F∑

q=1

(
NR

q

k × CRq

)
⎞

⎠

⎞

⎠

2

(3.1)

s.t. for scheduling scheme S,

{
si ∈

{
pi1, pi2, pi3

}
, for i = 1, 2, . . . ,m,

si ∈ [1,N], for i = m + 1, m + 2, . . . , v,
(3.2)
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where m0 = 0, k = 1, 2, . . .N, q = 1, 2, . . . , F,

(3.3)

NR
q

k
=

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
si | si = k, i = m +

q−1∑

j=0

rj + 1, m +
q−1∑

j=0

rj + 2, . . . , m +
q−1∑

j=0

rj + rq

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
,

where r0 = 0, k = 1, 2, . . .N, q = 1, 2, . . . , F,

(3.4)

CSk +
F∑

q=1

(
NM

q

k
× CMq

)
+

F∑

q=1

(
NR

q

k
× CRq

)
≤ 1,

where k = 1, 2, . . .N, CMq ∈ [0, 1], CRq ∈ [0, 1], q = 1, 2, . . . , F.

(3.5)

The objective function indicates the minimum sum of the difference between all
servers’ CPU utilizations after scheduling and their optimal points. Constraint (3.2) expresses
that if a map task i is assigned to server si, then server si must have stored the corresponding
input data of this map task. This is because the MapReduce framework is mainly used in
massive data processing and the network bandwidth is a relatively scarce resource in cloud
computing environment. MapReduce prefers moving the executive program to the node
which stores the data, rather than moving the data as in traditional distributed computing.
This scheduling scheme based on data location can avoid a large-scale data movement, which
not only reduces the network overhead, but alsomakes themap tasks locally read and process
the data. Constraints (3.3) and (3.4) compute the number of map tasks NM

q

k
and reduce

tasks NR
q

k
of job Aq which are assigned to server k. Constraints (3.5) indicates that the CPU

utilization of any server should not exceed 100% before and after the task scheduling.

4. An Energy-Efficient Multi-Job Scheduling Algorithm
Based on MapReduce

Task scheduling is an NP problem, and the genetic algorithm based on evolutionary theory is
very suitable for complex optimization problems. Here, we give the energy-efficient multi-job
scheduling algorithm in detail, including the encoding, decoding methods for individuals,
and other genetic operators. In particular, to make the new generated individuals meet the
constraints, a modified operator is designed in the proposed algorithm. Meanwhile, in order
to accelerate the convergence of the proposed algorithm, a local search operator is introduced.
Finally, the overall genetic algorithm flow will be given in this section.

4.1. Encoding, Decoding, and Initializing Population

In genetic algorithm, the encodingmethod is of great significance. Based on the characteristics
of this energy-efficient multi-job scheduling problem, we adopt the integer coding, provided
that there are v =

∑F
q=1 mq +

∑F
q=1 rq tasks need to be processed, including m =

∑F
q=1 mq map

tasks and r =
∑F

q=1 rq reduce tasks. We use vector S = (s1, s2, . . . , sv) as an individual to
represent a scheduling scheme, where the ith element indicates task i is assigned on server
si. This encoding method has the advantage that we can use relatively simple multipoint
crossover operator for the evolution of individuals.
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When initializing individual S = (s1, s2, . . . , sv), for map tasks i = 1, 2, . . . m, it is
necessary that they have to be assigned on servers which store their corresponding input
data. Take a random integer j ∈ [1, 3], let si = pij ; for reduce tasks i = m+ 1, m+ 2, . . . , v, there
is no such requirement, so just take a random integer k ∈ [1,N], let si = k.

To compute individuals’ fitness value, we need to decode it first. The individual
decoding method is as follows.

Algorithm 4.1.

Step 1. Initializing NM
q

k
and NR

q

k
, let NM

q

k
= 0 and NR

q

k
= 0, where k = 1, 2, . . .N and

q = 1, 2, . . . q. Empty set Mk and Rk.

Step 2. For each element si of individual S, set k = si and m0 = 0. For job Aq, where q =
1, 2, . . . , F, if i =

∑q−1
j=0 mj +1,

∑q−1
j=0 mj +2, . . . ,

∑q−1
j=0 mj +mq,NM

q

k plus 1 and put i into setMk;

else if i = m +
∑q−1

j=0 rj + 1, m +
∑q−1

j=0 rj + 2, . . . ,m +
∑q−1

j=0 rj + rq, NR
q

k
plus 1 and put i into set

Rk.

4.2. Modified Operator

As the CPU utilization of each server cannot exceed 100% after task scheduling and whether
an individual is generated by population initialization or by genetic operators like crossover
and mutation, constraints cannot be guaranteed. So the new generated individuals may need
to be modified. Based on different status for each server, we will remove its corresponding
excess map tasks and reduce tasks allocated on it. The following shows the specific steps for
the modified operator.

Algorithm 4.2.

Step 1. Say individual S need to be modified. Decode individual S according to
Algorithm 4.1.

Step 2. Let k = 1.

Step 3. If k > N, stop; else if CSk +
∑F

q=1(NM
q

k
× CMq) +

∑F
q=1(NR

q

k
× CRq) > 1, go to Step 4;

otherwise, let k = k + 1 go to Step 3.

Step 4. Let d = COk − CSk. If d ≤ 0, go to Step 5; otherwise, go to Step 6.

Step 5. Equation d = 0 indicates that server k has been the best state before task scheduling,
so there is no need to assign more tasks on it, while d < 0 means that the CPU utilization of
server k has already been higher than its optimal point before task scheduling, so the best
choice is not to assign more tasks on it. Therefore, in both cases, all tasks allocated on server
k should be deleted. Let cut =

∑F
q=1(NM

q

k × CMq) +
∑F

q=1(NR
q

k × CRq), go to Step 7.

Step 6. If d > 0, then server k has not been the best state before scheduling, but its CPU
utilization exceeds 100% after the scheduling, so we need to remove the excess part of its
assignment. Let cut = CSk +

∑F
q=1(NM

q

k ×CMq) +
∑F

q=1(NR
q

k ×CRq)−COk. In order to avoid
the situation that is always deleting tasks with smaller numbers, which is caused by the fixed
sequence of sets Mk and Nk, we randomly disrupt task orders in them.
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Step 7. Remove excess map tasks. For x = 1, 2, . . . ,NMk, take the xth map task i from set
Mk. There exists an integer s ∈ [1, F] which satisfies

∑s
q=1 mq ≤ i ≤ ∑s+1

q=1 mq. The value
of s indicates that this map task belongs to job As thus, its CPU requirement is CMs. If
cut − CMs < 0, then go to Step 8; otherwise, reassign task i to a new server w which satisfies
w/= k and w ∈ {pi1, pi2, pi3}. Set si = w. Continue the next iteration, let x = x + 1 and
cut = cut − CMs.

Step 8. Remove excess reduce tasks. For x = 1, 2, . . .NRk, take the xth reduce task i from
set Rk. There exists an integer s ∈ [1, F] which satisfies m +

∑s
q=1 rq ≤ i ≤ m +

∑s+1
q=1 rq. The

value of s indicates that this reduce task belongs to jobAs, and its CPU requirement is CRs. If
cut − CRs < 0, then go to Step 1; otherwise, reassign this task to a new serverwwhich satisfies
w ∈ [1,N] and w/= k. Set si = w. Start the next iteration, let x = x + 1 and cut = cut − CRs.

4.3. Crossover Operator

We adopt the multipoint crossover operator for the evolution of individuals. To make
individuals meet the constraints of our model, the new generated individuals may need to be
modified. Meanwhile, in order to speed up the convergence of the proposed algorithm, we
conduct a local search for the new generated individuals. Take two jobs F = 2 as an example,
and the crossover process is as follows.

Algorithm 4.3.

Step 1. Say the crossover probability is pc. Empty the crossover pool set pl. For each
individual in the population, generate a real number q ∈ [0, 1]. If q ≤ pc, then put this
individual into pl.

Step 2. If pl is empty or there is only one individual in it, stop; otherwise, select two
individuals S1 and S2 from pl without replacement. Generate four random integers c1 ∈
[1, m1], c2 ∈ [m1 + 1, m], c3 ∈ [m + 1, m + r1], and c4 ∈ [m + r1 + 1, v] as the crossover points.

Step 3. For individuals S1 and S2, generate new individuals S3 and S4 as follows:

S1 =
(
s11, . . . , s

1
c1,

... s1c1+1, . . . , s
1
c2,

... s1c2+1, . . . , s
1
c3,

... s1c3+1, . . . , s
1
c4,

... s1c4+1, . . . , s
1
v

)

S2 =
(
s21, . . . , s

2
c1,

... s2c1+1, . . . , s
2
c2,

... s2c2+1, . . . , s
2
c3,

... s2c3+1, . . . , s
2
c4,

... s2c4+1, . . . , s
2
v

)

⇓ ⇓ ⇓ ⇓ ⇓
S3 =

(
s11, . . . , s

1
c1,

... s2c1+1, . . . , s
2
c2,

... s1c2+1, . . . , s
1
c3,

... s2c3+1, · · · , s2c4,
... s1c4+1, . . . , s

1
v

)

S4 =
(
s21, . . . , s

2
c1,

... s1c1+1, . . . , s
1
c2,

... s2c2+1, . . . , s
2
c3,

... s1c3+1, . . . , s
1
c4,

... s2c4+1, . . . , s
2
v

)
.

(4.1)

Step 4. Modify individuals S3 and S4 according to Algorithm 4.2.

Step 5. Locally search individuals S3 and S4 according to Algorithm 4.5. Go to Step 2.

4.4. Mutation Operator

We use single-point mutation operator for the evolution of individuals. To make individuals
meet the constraints of our model, the new generated individuals may need to be modified.
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Meanwhile, in order to speed up the convergence of our algorithm, we conduct a local search
for the new generated individuals. The mutation process is as follows.

Algorithm 4.4.

Step 1. Select individuals from the offspring of crossover according to the mutation
probability pm.

Step 2. For each selected offspring, say S = (s1, s2, . . . si, . . . , sv), randomly generate an integer
i ∈ [1, v]. If i ≤ m, then task i is a map task, reassign this task to a new serverwwhich satisfies
w/= si and w ∈ {pi1, pi2, pi3}. Set si = w; otherwise, task i is a reduce task. Randomly generate
an integer k ∈ [1,N] that satisfies k /= si. Set si = k. The new generated individual is denoted
as S′.

Step 3. Modify individual S′ according to Algorithm 4.2.

Step 4. Locally search individual S′ according to Algorithm 4.5.

4.5. Local Search Operator

In order to accelerate the convergent speed and enhance the searching ability of the proposed
algorithm, a local search operator is designed in this paper. We know that after scheduling
the smaller the difference between the CPU utilization and the optimal point, the better the
individual. Thus, in each iteration, we select the server with themaximumdifference between
the CPU utilization after scheduling and its optimal point, then reassign tasks on it. If the
new generated individual is better than the current one, update the current individual and
continue to the next iteration; otherwise, stop the local search.

Algorithm 4.5.

Step 1. Say the fitness value of individual S is f . Copy this individual. Let S′ = S.

Step 2. Decode individual S′ according to Algorithm 4.1.

Step 3. Among all the servers, there exists a server k with the highest CPU utilization, and at
least one task is assigned on it. Let d = COk − CSk. If d < 0, then the initial CPU utilization
of server k has been higher than its optimal point before scheduling, so all tasks allocated on
server k should be deleted. Let cut =

∑F
q=1(NM

q

k × CMq) +
∑F

q=1(NR
q

k × CRq), go to Step 4;
otherwise, let cut = CSk +

∑F
q=1(NM

q

k
×CMq) +

∑F
q=1(NR

q

k
×CRq) −COk. Randomly disrupt

task orders in sets Mk and Nk.

Step 4. Remove excess map tasks. For x = 1, 2, . . . ,NMk, take the xth map task i from setMk.
There exists an integer s ∈ [1, F] which satisfies

∑s
q=1 mq ≤ i ≤ ∑s+1

q=1 mq. If cut − CMs < 0,
then go to Step 5; otherwise, reassign task i on a new server w which satisfies w/= k and
w ∈ {pi1, pi2, pi3}. Let si = w and cut = cut − CMs.

Step 5. Remove excess reduce tasks. For x = 1, 2, . . . ,NRk, take the xth reduce task i from
set Rk. There exists an integer s ∈ [1, F] which satisfies m +

∑s
q=1 rq ≤ i ≤ m +

∑s+1
q=1 rq. If

cut − CRs < 0, compute the fitness value of individual S′ denoted as f ′; otherwise, reassign a
server w which satisfies w ∈ [1,N] and w/= k for task i. Let si = w and cut = cut − CRs.
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Step 6. If f ′ < f , then S′ is better than S, let S = S′, and go to Step 2; otherwise, recopy
individual S, let S′ = S. Decode individual S′ according to Algorithm 4.1.

Step 7. Among all the servers, there exists a server k with the lowest CPU utilization.
Let add = COk − CSk +

∑F
q=1(NM

q

k
× CMq) +

∑F
q=1(NR

q

k
× CRq).

Step 8. Add map tasks. According to the storage location of each data split, we can get all
tasks which can be assigned on server k, denoted as setMMk. Randomly disrupt task orders
in set MMk.

Step 9. There exists a map task p ∈ MMk and s′p /= k. For this task, there exists an integer
s ∈ [1, F] which satisfies

∑s
q=1 mq ≤ p ≤ ∑s+1

q=1 mq. If add − CMp < 0, go to Step 10; otherwise,
let s′p = k and add = add − CMp, go to Step 9.

Step 10. Add reduce tasks: There exists task p ∈ [m+1, v] and s′p /= k. For this task, there exists
an integer s ∈ [1, F] which satisfies m +

∑s
q=1 rq ≤ p ≤ m +

∑s+1
q=1 rq. If add − CRp < 0, compute

the fitness value of individual S′ denoted as f ′; otherwise, let s′p = k and add = add−CRp, go
to Step 10.

Step 11. If f ′ < f , then S′ is better than S. Let S = S′, go to Step 7; otherwise, stop.

4.6. An Energy-Efficient Multi-Job Scheduling Algorithm
Based on MapReduce

Algorithm 4.6.

Step 1. Initializing. Choose proper genetic parameters: population size X, crossover
probability pc, mutation probability pm, and elitist number k. Generate an initial population
P . Modify each individual in population P according to Algorithm 4.2, and compute its
fitness values. Set generation number t = 0.

Step 2. Crossover. Execute crossover by Algorithm 4.3. The offspring set is denoted as P1 and
compute each individual’s fitness value.

Step 3. Mutation. Execute mutation on P1 by Algorithm 4.4. The offspring set is denoted as
P2, and compute each individual’s fitness value.

Step 4. Elitist strategy. Sort the individuals in set P ∪ P1 ∪ P2 according to its fitness value,
and select the best k individuals directly to form the next generation population, while the
others are selected by using roulette wheel method on the set P ∪ P1 ∪ P2.

Step 5. If stopping criterion is not met, let t = t + 1, go to Step 2; otherwise, stop.

5. Experiments and Analysis

5.1. Parameter Values

Given that there are 200 servers in a data center and 2 jobs need to be processed, as N = 200
and F = 2, the data sizes of the jobs are 500G and 750G, respectively, and they can be divided
into 8000 splits and 12000 splits, whichmeansm1 = 8000 andm2 = 12000. Each split randomly
selects three servers to back up its data. Suppose that the number of reduce tasks required for
completing the two jobs are 180 and 270, respectively, which means r1 = 180 and r2 = 270.
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Based on a 3-year amortization schedule for servers in a data center, different server
may have different optimal performance-energy point for how long it has been used. Here we
assume that 1/3 servers have been used for one year with their optimal point of 0.9. Other 1/3
servers have been used for two years with their optimal point of 0.7, while the others have
been used for three years with their optimal point of 0.5. Take random real numbers over
[0, 0.35] as servers’ initial CPU utilization value. To reflect the effectiveness of the proposed
algorithm well, we set some special initial states of servers as follows:

CS5 = 0.5, CS25 = 0.7, CS45 = 0.9,

CS75 = 0.5, CS95 = 0.7, CS115 = 0.9,

CS145 = 0.5, CS165 = 0.7, CS195 = 0.9.

(5.1)

In the proposed energy-efficient multi-job scheduling algorithm, we adopt the
following genetic parameters: population size X = 100; crossover probability pc = 0.6;
mutation probability pm = 0.02; elitist number k = 5; stop criterion t = 2000.

5.2. Simulation Results and Comparions

We conduct three sets of comparative experiments between the proposed algorithm and
Hadoop MapReduce which is an open-source MapReduce framework implementation [14].

Comparison 1

Set the CPU requirements for each map task of the two jobs as CM1 = 0.0055 and CM2 =
0.0046, respectively, and the CPU requirements for each reduce tasks as CR1 = 0.0017
and CR = 0.0022, respectively. The experimental results of the energy-efficient multi-job
scheduling algorithm proposed in this paper are shown in Figure 3(a), while the results of
the Hadoop MapReduce scheduling are shown in Figure 3(b).

It can be clearly seen by comparing Figure 3(a) with Figure 3(b) that the proposed
algorithm in this paper can effectively schedule multi-job on servers according to each
server’s optimal performance-energy point. For the 5th, 75th, and 145th servers with the same
initial CPU utilization of 0.5, since the optimal points of these three servers are 0.9, 0.7, and
0.5, the proposed algorithm only assigns tasks on the 5th and 75th servers, while the 145th
server stays at its original state. Similarly, for the 25th, 95th, and 165th servers with the same
initial CPU utilization of 0.7, the proposed algorithm only assigns tasks on the 25th server.
Also, for the 45th, 115th, and 195th servers with the same initial CPU utilization of 0.9, the
proposed algorithm does not assign any tasks on them. From another perspective, we check
the total amount of tasks assigned on each server. For the proposed algorithm, it can be seen
from Figure 3(c) that the higher the server’s optimal performance-energy point, the more
tasks it needs to deal with, expect for those servers with high initial CUP utilization, while,
for the Hadoop MapReduce scheduling, if not taken server’s initial state into consideration,
tasks are assigned nearly equally. Furthermore, computing the energy efficiency of all servers
by the proposed algorithm and Hadoop MapReduce scheduling according to the objective
function in our model, we will get the results of 0.240227 and 6.79271, respectively, which
means that the proposed algorithm can greatly improve the energy efficiency of servers, so
as to enhance the PUE of data centers.
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Figure 3: (a) The results of the energy-efficient multi-job scheduling algorithm in experiment 1. (b) The
results of the Hadoop MapReduce scheduling algorithm in experiment 1. (c) The total amount of tasks
assigned on each server in experiment 1.

Comparison 2

Suppose that the input data to be processed is relatively small. Set the CPU requirements
for each map task of the two jobs as CM1 = 0.0042 and CM2 = 0.004, respectively, and the
CPU requirements for each reduce tasks as CR1 = 0.0015 and CR = 0.002, respectively. The
experimental results of the energy-efficient multi-job scheduling algorithm proposed in this
paper are shown in Figure 4(a), while the results of the Hadoop MapReduce scheduling are
shown in Figure 4(b).

From Figure 4(a), it can be seen that even when the input data to be processed
is relatively small, the proposed algorithm can effectively schedule multi-job on servers
according to each server’s optimal performance-energy point. Although the CPU utilizations
of all servers are not able to reach their optimal points after the scheduling, each server’s CPU
utilization is near as much as possible to its optimal point. Similar to comparison 1, we check
the total amount of tasks assigned on each server. For the proposed algorithm, it can be seen
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Figure 4: (a) The results of the energy-efficient multi-job scheduling algorithm in experiment 2. (b) The
results of the Hadoop MapReduce scheduling algorithm in experiment 2. (c) The total amount of tasks
assigned on each server in experiment 2.

from Figure 4(c) that the higher the server’s optimal performance-energy point, the more
tasks it needs to deal with, expect for those servers with high initial CUP utilization, while, for
the HadoopMapReduce scheduling, if not taken server’s initial state into consideration, tasks
are assigned nearly balancing. Furthermore, computing the energy efficiency of all servers
by the proposed algorithm and Hadoop MapReduce scheduling according to the objective
function in our model, we will get the results of 1.12455 and 8.61073, respectively, which
proves that the proposed algorithm can greatly improve the energy efficiency of servers, so
as to enhance the PUE of data centers.

Comparison 3

Suppose that the input data to be processed is relatively large. Set the CPU requirements for
each map task of the two jobs as CM1 = 0.0065 and CM2 = 0.0054, respectively, and the
CPU requirements for each reduce tasks as CR1 = 0.002 and CR = 0.003, respectively. The
experimental results of the energy-efficient multi-job scheduling algorithm proposed in this
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Figure 5: (a) The results of the energy-efficient multi-job scheduling algorithm in experiment 3. (b) The
results of the Hadoop MapReduce scheduling algorithm in experiment 3. (c) The total amount of tasks
assigned on each server in experiment 3.

paper are shown in Figure 5(a), while the results of the Hadoop MapReduce scheduling are
shown in Figure 5(b).

From Figure 5(a), it can be seen that even when the input data to be processed is
relatively large, the proposed algorithm in this paper can effectively schedule multi-job on
servers according to each server’s optimal performance-energy point. Although the CPU
utilizations of all servers are beyond their optimal points after the scheduling, each server’s
CUP utilization is near as much as possible to its optimal point. From another perspective,
we check the total amount of tasks assigned on each server. For the proposed algorithm,
it can be seen from Figure 5(c) that the higher the server’s optimal performance-energy
point, the more tasks it needs to deal with, expect for those servers with high initial CUP
utilization, while, for the Hadoop MapReduce scheduling, if not taken server’s initial state
into consideration, tasks are assigned nearly balancing. Furthermore, computing the energy
efficiency of all servers by the proposed algorithm and Hadoop MapReduce scheduling
according to the objective function in our model, we will get the results of 1.93834 and
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7.37484, respectively, which proves that the proposed algorithm can greatly improve the
energy efficiency of servers, so as to enhance the PUE of data centers.

6. Conclusion

The energy efficiency of servers plays a significant role in the overall energy consumption
of the data center. This paper mainly focuses on how to improve the energy efficiency
of servers through appropriate scheduling strategies. Taking full consideration of the
relationship between the performance and energy consumption of servers, we propose a new
energy-efficient multi-job scheduling model based on the Google’s massive data processing
framework, MapReduce, and give the corresponding algorithm. Meanwhile, we design a
practical encoding and decoding method for the individuals and construct an overall energy
efficiency function of the servers as the fitness value of the individual. Also, in order to
accelerate the convergent speed and enhance the searching ability of our algorithm, a local
search operator is introduced. Finally, the experiments show that the proposed algorithm is
effective and efficient.
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