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This paper presents a novel trend-based segmentation method (TBSM) and the support vector
regression (SVR) for financial time series forecasting. The model is named as TBSM-SVR. Over
the last decade, SVR has been a popular forecasting model for nonlinear time series problem. The
general segmentation method, that is, the piecewise linear representation (PLR), has been applied
to locate a set of trading points within a financial time series data. However, owing to the dynamics
in stock trading, PLR cannot reflect the trend changes within a specific time period. Therefore, a
trend based segmentation method is developed in this research to overcome this issue. The model
is tested using various stocks from America stock market with different trend tendencies. The
experimental results show that the proposed model can generate more profits than other models.
The model is very practical for real-world application, and it can be implemented in a real-time
environment.

1. Introduction

Support vector machines (SVMs) have outperformed other forecasting models of machine
learning or soft computing (SC) tools such as decision tree, neural network (NN), bayes
classifier, fuzzy systems (FSs), evolutionary computation (EC), and chaos theory by many
researchers from historical nonlinear time series data applications in the last decade [1–5].
In these techniques, many researchers presented different forecasting models in dealing with
characteristics such as imprecision, uncertainty, partial truth, and approximation to achieve
practicability, robustness, and low solution cost in real applications [6–8]. However, the most
important issue in resolving the nonlinear time series problem is error revision. ANNs use
the empirical risk minimization principle to minimize the generalization errors but SVRs
use the structural risk minimization principle because SVR is able to analyze with small
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samples and to overcome the local optimal solution problem, which surpasses to ANNs [9–
11]. Therefore, the SVRs forecastingmodel is applied to accomplish the forecasting task in this
research. Presently, support vector regression (SVR), which was evolved from support vector
machine (SVM) based on the statistical learning theory, is a powerful forecasting andmachine
learning approach for numerical prediction [12–15]. Also, SVR has high toleration error rate
and high accuracy for learning solution knowledge in complex problems [16]. Although SVR
can be applied well in time series data, the input vector is a key successful factor. Despite
the volatile nature of the stock markets, researchers still can find certain correlations between
these factors and stock prices. An investor’s primary goal is to make profits. In order to help
investors achieve their financial objectives, researchers have studied the relationship between
financial markets and price variations over time from [17–20].

In the last few years, several representations of time series data have been proposed;
the most often used representation is piecewise linear representation (PLR) [21–23]. It can
decompose a time series data into a series of bottom and peak points [24, 25] in financial
market. But the traditional PLR does not consider the multiple trending characteristics in
time series. Moreover, the price movements of stocks are affected by many factors such as
government policies, economic environments, interest rates, and inflation rates. The share
prices of most listed companies also move up and down with other changing factors like
market capitalization, earnings per share (EPS), price- to -earnings ratio, demand and supply,
and market news. Moreover, there are more fractal properties of financial data, such as self-
similarity, heavy-tailed distributions, long memory, as well as power laws [26–29]. One of
fractal properties is long memory which is a common characteristic in financial data or other
fields [30–32]. The daily stock trading is a short-term return so in this paper these fractal prop-
erties were not considered in our framework, just focusing on the real stock price’s trends.

Therefore, there is a need to develop a new segmentation method which takes the
price moving trends into consideration. As a result, this research will consider the multiple
trends of stock price’s movements in TBSM segmentation approach to capture the embedded
knowledge of nonlinear time series. This research intends to improve the SVR forecasting
performance using a trend based decomposition method. The TBSM approach has captured
the tendency of stock price’s movement which can be inputted into SVR in learning the
historical knowledge of the time series data. Moreover, a more accurate forecasting result
can be achieved when applied in real-time stock trading decision.

The rest of this paper is organized as follows. In Section 2, we describe TBSM
segmentation principle. Forecasting model is discussed in Section 3. Section 4 explains
modeling for trading decisions including using historical data to make trading decisions
by the TBSM approach, selecting highly correlated technical indices by stepwise regression
analysis (SRA), forecasting trading signals by SVR, and evaluating trading strategies.
Section 5 explains how the TBSM with SVR for stock trading decisions and compares the
profits obtained from various forecasting approaches. Finally, conclusions and directions for
further research are discussed in Section 6.

2. A Trend Based Segmentation Method (TBSM)

In the time series database there are many approaches such as Fourier transform, wavelets,
and piecewise linear representation which can be applied to find the turning point on time
series data. According to the characteristics of sequential data, a piecewise linear represen-
tation of the data is more appropriate. A variety of algorithms to obtain a proper linear
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Define: Threshold // cutting threshold
X Thld // horizontal area
Y Thld // vertical area
X // a time series
Y // stock price

1: Procedure TBSM(T)
2: Let T be represented as X[1, 2, . . . , n], Y [1, 2, . . . , n]
3: n = 0
4: Draw a line between (X1, Y1) and (Xn, Yn)
5: Max d = maximum distance of (Xi, Yi) to the line
6: If (Max d > Threshold)
7: Let (Xi, Y i) be the point with maximum distance
8: For j = X1 : Xn

9: If (|Xj − Xi| <X Thld) and (|Yj − Yi| < Y Thld)
10: Then Point[n] = [Xj ,Yj], n = n + 1
11: End If
12: End For
13: Select from Point[n ] : Xt1 = Min(X0), Xt2 = Max(Xn)
14: Return: S1 = T [X1, Xt1]
15: S2 = T [Xt2, Xn]
16: End If

Algorithm 1: A pseudocode for TBSM in time series data.

representation of segment data have been presented. As reported in [33–36], PLR is used to
support more tasks and provides an efficient and effective solution. In this paper we intend
to enhance the segmentation accuracy based on different trends in stock price’s movements.
The basic idea of TBSM is to modify the PLR segmentation using the trend tendency in
a specific time period. Three different trends such as uptrend, downtrend, and hold trend
will be considered when making the segmentation. Detailed procedures of TBSM include the
following. (1) PLR is applied to locate the turning points from the time series including up
or downtrends. (2) The points around each turning point will be double-checked if the
variations of the points are within the threshold. If yes, these points will have the same
buy/sell trading in this period. (3) These points are set to be in the same trend. The pseudo-
code of the TBSM is shown in Algorithm 1.

For example, a time series T = {t1, t2, . . . , t191} with 191 data is given to explain
the basic idea of the TBSM procedure. As shown in Figure 1(a), several trading points are
represented as buy (four red points) or sell (six green points) in this case. According to the
TBSM procedure, we can draw a line S1 form the first point to the last point as shown in
Figure 1(b) and find themax distance to line S1 which is point t26. Then line S1 is decomposed
into two segments including line S2 from t1 to t26 and line S3 from t26 to t191. Based on point
t26, we can locate point t16 to t56 which are varied within the threshold. These points are set as
hold trend andwith the same state of point t26. Therefore line S2 and line S3 will be changed to
three different lines including line S4 from point t1 to point t16, line S5 from point t16 to point
t56, and line S6 is from point t56 to point t191 as shown in Figure 1(c). Next step is repeating the
same process for the rest of segments as t56 to t191. The final results are shown in Figure 1(d)
including two hold trend segments (dotted line), one uptrend segment, and two downtrend
segments (solid line) in this time series.
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Figure 1: An example for TBSM in time series data.

3. Support Vector Regressions (SVRs)

Support vector regression is a modification of machine-learning-theory-based classification
called support vector machine. Machine learning techniques have been applied for assigning
trading signal. Many studies used support vector machine for determining whether a case
contains particular class [37, 38]. But the shortcoming only deal with discrete class labels,
whereas trading signal continuum data type because a weight of signal can take a buy or
sell power. Grounded in statistical learning theory [1, 2], support vector regression is capable
to predict the continuous trading signal while still benefiting from the robustness of SVM.
SVM has been successfully employed to solve forecasting problems in many fields, such
as financial time series forecasting [39] and emotion computation [40]. For explaining the
concept of SVR, we have considered a standard regression problem. Let S = {Xi, Yi}i=1...n be
the set of data where Xi is input vector (selected technical index in this research), Yi (trading
signal ts) is an output vector, and n is the number of data points. In regression analysis, we
find a function f(Xi) such that Yi = f(Xi). This function can be used to find the output value
Y of any X. The standard regression function is as follows:

qi = f(xi) + δ, (3.1)

where δ denotes the random error and qi denotes the estimated output. There are two types of
regression problems, namely, linear and nonlinear. SVR is developed to tackle the nonlinear
regression problems because the nonlinear regression problems have high complexity as well
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as stock market trade. In SVR, at first the input vectors are nonlinearly mapped into a high-
dimensional feature space (F), where they are linearly correlated with the respective output
values.

SVR uses the following linear estimation function:

f(x) =
(
ω · φ(x)) + b, (3.2)

where ω denotes the weight vector, b denotes a constant, φ(x) denotes the mapping function
in the feature space, and (ω · φ(x)) denotes the dot product in the feature space F. SVR
transfers the nonlinear regression problem of the lower dimension input space (x) into a
linear regression problem of a high-dimension feature space. In other words, the optimization
problem involving a nonlinear regression is converted into finding the flattest function in the
feature space instead of input space.

Various cost functions like Laplacian, Huber’s Gaussian, and ε-insensitive can be
used in the formulation of SVR. The cost function should be suitable for the problem and
should not be very complicated because a complicated cost function could lead to difficult
optimization problems. Thus, we have used robust ε-sensitive cost function which is shown
below:

Lε

(
f(x), q

)
=

{∣∣f(x) − q
∣∣ − ε, if

∣∣f(x) − q
∣∣ ≥ 0

0, otherwise,
(3.3)

where ε denotes a precision parameter which represents the radius of the tube located around
the regression function f(x).

The {+ε,−ε} region is called ε-insensitive zone. ε is determined by the user. If the
actual output value lies in this region, the forecasting error is considered to be zero.

Theweight vector,ω, and constant, b, in (3.2) are calculated byminimizing regularized
risk function which is shown in (3.4):

R(C) =
C

n

n∑

i=1

Lε

(
f(xi), qi

)
+
1
2
|ω|2, (3.4)

where Lε(f(xi), qi) denotes the ε-insensitive loss function, |ω|2/2 denotes the regularization
term, and C denotes the regularization constant. ω decides the complexity and approximate
accuracy of the regression model. Value of C is selected by the user to ensure appropriate
value of w and low empirical risk.

The two positive slack variables ξi and ξ∗i are used to replace the ε-insensitive loss
function of (3.3). ξi is defined as the distance between the qi and higher boundary of the ε-
insensitive zone, and ξ∗i is defined as the distance between the qi and lower boundary of the
ε-insensitive zone. Equation (3.4) is transformed into (3.5) by using the slack variables:

Minimize : Rreg
(
f
)
=

1
2
|ω|2 + C

n∑

i=1

(
ξi + ξ∗i

)
(3.5)

Subject to

⎧
⎪⎪⎨

⎪⎪⎩

qi −
(
ω · φ(xi)

) − b ≤ ε + ξi
(
ω · φ(xi)

)
+ b − qi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0, for i = 1, . . . , n.

(3.6)



6 Mathematical Problems in Engineering

Lagrange function method is used to find the solution which minimizes the regression risk
of (3.4)with the cost function in (3.3)which results in the following quadratic programming
problem (QP):

Minimize :
1
2

N∑

i=1

N∑

j=1

(
αi − α∗

i

)(
αj − α∗

j

)(
φ(xi) · φ

(
xj

))

+
N∑

i=1

(
ε
up
i − yi

)
αi +

N∑

i=1

(
εdown
i − yi

)
α∗
i ,

(3.7)

Subject to :
N∑

i=1

(
αi − α∗

i

)
= 0, where αi, α

∗
i ∈ [0, C], (3.8)

where αi and α∗
i denote Lagrange multipliers. εupi and εdown

i represent the ith up- and
downmargin, respectively. The value of εupi and εdown

i is equal to ε. The QP problem of (3.7)
is solved under the constraints of (3.8). After solving the QP problem, we obtained Lagrange
multiplier from (3.9), and (3.2) is transformed into the following equation (3.10):

ω =
N∑

i=1

(
αi − α∗

i

) · φ(xi), (3.9)

f(x) =
(
αi − α∗

i

)(
φ(xi) · φ(x)

)
+ b. (3.10)

The Karush-Kuhn-Tucker (KKT) conditions are used to find the value of b. KKT conditions
state that at the optimal solution, the product between the Lagrange multipliers and the
constraints is equal to zero. The value of b can be calculated as follows:

b =

{
yi −

(
ω · φ(xi)

) − ε
up
i ,

yi −
(
ω · φ(xi)

)
+ εdown

i ,

for αi ∈ (0, C),

for α∗
i ∈ (0, C).

(3.11)

Using the trick of the kernel function, (3.10) can be written as (3.12):

f(x) =
n∑

i=1

(
αi − α∗

i

)
K(x, xi) + b, (3.12)

where K(x, xi) = (φ(x) · φ(xi)) denotes the kernel function which is symmetric and satisfies
the Mercer’s condition. SVR was able to predict the nonlinear relationship between technical
indices and trading signal ts better than other soft computing (SC) techniques.

4. Application in Financial Time Series Data

This paper proposes a forecasting framework using a TBSM combinedwith SVRmodel which
is called TBSM-SVR trading model for stock trading. The framework of TBSM-SVR trading
model has five stages: the first is generating nonlinear trading segments by TBSM approach
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Figure 2: The framework of TBSM-SVR model for stock trading.

from historical stock price; the second is trading signal transformation from trading segments;
the third is feature selection from technical indices by SRA approach; the fourth is learning the
trading forecasting model by SVRs approach. The framework of TBSM-SVR model is shown
in Figure 2. The five stages of TBSM-SVR model are explained as follows.

4.1. Find Turning Points Based on Multiple Trend by TBSM

According to TBSM procedure to find turning point based on trend of stock price, we selected
a time series of historical stock price in a period to segment into several segments based on
three trends including uptrend, downtrend, and hold trend. For example, a time series is
given to segment trend segments from the date 2008/1/2 to 2008/12/30. Figure 3 shows the
segmentation result by our proposed TBSM approach. The blue line is original historical stock
price. The dashed lines are up/down trends which if the segment trend goes up is belonging
to uptrend and if the segment trend goes down is belonging to downtrend. The dot line is



8 Mathematical Problems in Engineering

195

175

155

135

115

95

75

St
oc

k 
pr

ic
e

2008/1/2 2008/12/30
Date

Figure 3: An example of segmentation result by TBSM.

belonging to hold trend. In our experiment, each stock price can split to multiple trend seg-
ments for trading signal transformation.

4.2. Trading Signal Transformation

In this stage, the aim is calculating the trading signal for a nonlinear time series of
segmentation result which are a lot of segments based on trends. We suppose a segment
Sk is uptrend; then we assume the real value into the vector S′

k like to Sk = [0, 0.1, . . . , 1]; if
Sk is hold trend but locates in buy point, then the vector like to S′

k
= [0.5, 0, 0.5]; if Sk is hold

trend but locates in sell point; then the vector like to S′
k
= [0.5, 1, 0.5]; if Sk is downtrend, then

the vector S′
k like to [1, 0.9, . . . , 0]. Finally we combine these S′

k to a full time series of trading
signal ts. If the segment belongs to uptrend or downtrend, then the formula equation (4.1) is
used to calculate trading signal value:

S′
k,i =

⎧
⎪⎪⎨

⎪⎪⎩

i

L
if Sk is uptrend segment,

(L − i)
L

if Sk is downtrend segment,
(4.1)

where L denotes the length of segment Sk, whereas segment belonging to hold trend is using
(4.2) to calculation:

S′
k,i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ith is higherpoint in time series,
0 if ith is lower point in time series,
0.5 otherwise.

(4.2)

For example, the S1, and S3 are hold trend; the S1 is down-trend; the S4 is up-trend. The
result of trading signal ts is shown in Figure 4. The red dotted line is the hold trend which
is a special signal for increasing reflects on the original turning points, so the hold trend is
not a horizontal line. The purple dotted line is downtrend signal, and the orange dotted line
is uptrend signal. For example, in the time series T the T1 to T5 and T10 to T14 are hold trend
signal representation, T6 to T9 is downtrend signal representation, and finally T15 to T18 is
uptrend signal representation. Finally the trading signal ts which is like to ts = {S1, S2, S3,
S4} = {〈0.5, 0.5, 1, 0.5, 0.5〉, 〈1, 0.66, 0.333, 0〉, 〈0.5, 0.5, 0, 0.5, 0.5〉, 〈0, 0.33, 0.66, 1〉}.
For the detail process see the pseudocode in Algorithm 2.
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Input: length, oldTs // input data length and vector.
Output: newTs // a new time series vector of trading signal.
Method:

1: Start = oldTs [1]
2: End = oldTs[length]
3: If Start = = −1 and End = = 1
4: newTs [1] = 0
5: For i = 1: length−1
6: newTs[i+1] = 1/(lenghth−1)∗i
7: End For
8: Else If Start = = 1 and End = = −1
9: newTs[length] = 0
10: For i = 1 : length−1
11: newTs[i+1] = 1/(lenghth−1)∗(length−i)
12: End For
13: Else
14: For i = 2 : length−1
15: newTs[i] = 0.5
16: End For
17: End If

Algorithm 2: A pseudocode for trend segments by TBSM in time series.

4.3. Feature Selection for Technical Indices by SRA

In this paper, we have considered 28 variables (technical indices) as listed in Table 1. These
variables are correlated with variations in stock prices to some degree. The quantity of
correlation varies for different variables. Rather than using all the 28 variables, we select the
variables with a greater correlation than a user-defined threshold. The variable selection is
done by stepwise regression analysis. We apply the SRA approach to determine which techni-
cal indices affecting the stock price. This is accomplished by selecting the variables repeatedly.

In the feature selection part input factors will be further selected using stepwise
regression analysis (SRA). The SRA has been applied to determine the set of independent
variables which is most closely affecting the dependent variable. The SRA is step by step to
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Table 1: Technical indices used as input variables.

Technical Technical index Explanation

Moving average (Ma) 5MA, 6MA,
10MA, 20MA

Moving averages are used to emphasize the
direction of a trend and smooth out price and
volume fluctuations that can confuse
interpretation.

Bias (BIAS) 5 BIAS, 10 BIAS

The difference between the closing value and
moving average line, which uses the stock
price nature of returning back to average price
to analyze the stock market.

Relative strength index
(RSI) 6RSI, 12RSI

RSI compares the magnitude of recent gains to
recent losses in an attempt to determine
overbought and oversold conditions of an
asset.

Nine days stochastic line
(K, D) 9K, 9D

The stochastic line K and line D are used to
determine the signals of overpurchasing,
overselling, or deviation.

Moving average
convergence and divergence
(MACD)

9 MACD

MACD shows the difference between a fast
and slow exponential moving average (EMA)
of closing prices. Fast means a short-period
average, and slow means a long period one.

Williams %R
(pronounced “percent R”) 12W%R

Williams %R is usually plotted using negative
values. For the purpose of analysis and
discussion, simply ignore the negative
symbols. It is best to wait for the security’s
price to change direction before placing your
trades.

Moving average
convergence and divergence
(MACD)

9 MACD

MACD shows the difference between a fast
and slow exponential moving average (EMA)
of closing prices. Fast means a short-period
average, and slow means a long period one.

Williams %R
(pronounced “percent R”) 12W%R

Williams %R is usually plotted using negative
values. For the purpose of analysis and
discussion, simply ignore the negative
symbols. It is best to wait for the security’s
price to change direction before placing your
trades.

Transaction volume (TV) 5 TV, 10 TV, 15 TV

Transaction volume is a basic yet very
important element of market timing strategy.
Volume provides clues as to the intensity of a
given price move.

Differences of technical
index (Δ)

Δ5MA, Δ6MA,
Δ10MA, Δ5BIAS,
Δ10BIAS, Δ6RSI,
Δ12RSI,
Δ12W%R, Δ9K,
Δ9D, Δ9MACD

Differences of technical index between the day
and next day.
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select factor into regression model which if factor has the significance level, then it is selected.
We can follow (4.4) to calculate the F value of SRA:

SSR =
∑(

Ŷ − Y
)2
,

SSE =
∑(

Ŷi − Yi

)2
,

(4.3)

F∗
j =

MSR
(
xj | xi

)

MSE
(
xj | xi

) =
SSR

(
xj | xi

)

SSE/(n − 2)
(
xj | xi

) i ∈ I, (4.4)

where SSR denotes a regression sum of square. SSE denotes residual sum of squares. x is the
value of technical index. y is the value of stock price. n is the total number of training data.
Ŷ is the forecasting value of regression. Y is the average stock price of training data. After
the feature selection by SRA, we can provide a set of features to form an input vector for the
next step to learning the forecasting model.

The steps of the SRA approach are described as follows.

Step 1. Find the correlation coefficient rfor each technical index v1, v2, . . . , vn with the stock
price y in a stock. These correlation coefficients are stored in a matrix called correlation
matrix.

Step 2. The technical index with largest R2 value is selected from the correlation matrix. Let
the technical index be vi. Derive a regression model between the stock price and technical
index, that is, ŷ = f(vi).

Step 3. Calculate the partial F value of other technical indices. Compare the R2 value of
the remaining technical indices and select the technical index with the highest correlation
coefficient. Let the technical index be vj . Derive another regression model, that is, ŷ =
f(vi, vj).

Step 4. Calculate the partial F value of the original data for the technical index vj . If the F-
value is smaller than the user-defined threshold, vj is removed from the regression model
since it does not affect the stock price significantly.

Step 5. Repeat Step 3 to Step 4. If the F-value of variable is more than the user-defined
threshold, the variable should be added to the model, otherwise it should be removed.

In addition, the range of the input variables of SVR model should be between 0 and 1.
Hence, the selected technical indices are normalized as follows:

Normal
(
xij

)
=

xij −Min(xi)
Max(xi) −Min(xi)

i = 1, . . . , n; j = 1, . . . , m; n, m ∈ 	, (4.5)

where Normal(xij) denotes the normalized value of jth data point of ith technical index.
Max(xi) denotes the maximum value of ith technical index. Min(xi) denotes the minimum
value of ith technical index. xij denotes original value of jth data point of ith technical index.
n andm denote the total number of technical indices and data points, respectively.
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4.4. Learning the Trading Forecasting Model by SVR

Support vector regression will be applied as a machine learning model to extract the hidden
knowledge in the historic stock database. The single output is the trading signal ts from
TSBM process, and the multiple input features are technical indices from SRA selection. SVR
learning model transforms multiple features into high multidimensional feature space, and
the transformed feature space can be mapped into a hyperplane space to determine correct
signals based on those support vector points. On the kernel function selection, we try to use
linear, RBF, polynomial, and sigmoid functions to generate better performance for the SVR
model because the stock market is a very complicated nonlinear environment. Since the SVR
approach possesses high learning capability and accuracy in predicting continuous signals
for building hidden knowledge among trading signals and technical indices, it is a widely
used tool for predicting the trading signals.

4.5. Trading Points Decision from Forecasted Trading Signal

In the daily forecasting, if the forecasted trading signals by SVR satisfied buy threshold, then
this means it is needed to buy stock quickly because it is very close to turning point; otherwise
if the state satisfied a sell threshold, then there is need to sell stock. These satisfied points are
recommended to transaction in stock market. Before determining the trading point, we will
calculate the buy/sell threshold values for two trading types. The trading thresholds of two
types are as follows:

Buythreshold = μ + σ,

Sellthreshold = 1 − μ + σ,

μ =
1
N

N∑

i=1
x′
i,

σ =
√

1
N

∑N
i=1

(
x′
i − μ

)
,

(4.6)

where μ denotes the average of trading signal in training data. σ denotes the standard
deviation of trading signal in training data. Buy threshold denotes the buy trading threshold.
Sell threshold denotes the sell trading threshold. If forecasted trading signals form SVR
model in testing data are more than buy threshold, then this suggests trading point for buy
stocks else if forecasting signal in testing data is smaller than sell threshold, then this suggests
trading for sell stock.

In the trading decision step, the TBSM-SVR model is employed to calculate daily
trading signals. The detailed principles for making trading decisions include the following.

(1) If the time series prediction of trading signals by TBSM-SVR model is going up
and intersects with buy trading threshold Buy threshold, then it is a “buy” trading
decision.

(2) If the time series prediction of trading signals by TBSM-SVR model is going down
and intersects with sell trading threshold sell threshold, then it is a “sell” trading
decision.
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Figure 5: An example of result for detecting trading points of Apple.

(3) A “hold” trading decision is made (or do not make any trading decision)when the
forecasting trading signal does not intersect with buy and sell thresholds.

For example, Figure 5 shows trading points decision for Apple stock. How to suggest
the buy/sell points for stock in a time series in which the red square points are buy points
and green triangle points are the sell points? Both are satisfied two thresholds in which the
orange dotted line is sell threshold and the purple dotted line is buy threshold, so we can
forecast the trading points daily by an automatically trading system.

5. Experimental Results

5.1. Profit Evaluation and Parameters Setting

In this research, the trading point (buy and sell timing) is decided by the TBSM-SVR model
based on the forecasting trading signal of SVR and TBSM segmentation. In the experimental
section, we also use various forecasting models to the generated profiting trading points and
compare their performances. The profits in each different forecasting model are calculated as
follows:

profits = C
k∏

i=1

{
(1 − a − b) × pSi − (1 + a) × pBi

(1 + a) × pBi

}
, (5.1)

where C is the total amount of money to be invested at the beginning as well as the capital
of money, a refers to the tax rate of ith transaction, b refers to the handling charge of ith
transaction, k is the total number of transaction, pSi is the selling price of the ith transaction
and pBi is the buying price of ith transaction.

This study uses minimal root mean square error (RMSE) to measure the model
performance in SVR train stage. In the model selection strategy that the dataset uses the last
one trading period of training data contains (buy/sell and sell/buy states). The RMSE of an
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Table 2: The parameter setup for TBSM and SVR by DOEs (design of experiments).

Approach Parameter Value Explanation

TBSM Threshold 0.1σ to 1σ The difference of price at uptrend
or downtrend

TBSM X Thld 0.1σ to 1σ The difference of days at hold
trend

TBSM Y Thld 0.1σ to 1σ The difference of price at hold
trend

SVR C 10−3 to 103 Cost
SVR ε 10−4 to 10−1 Epsilon
SVR d 2−9 to 2−1 Degree
SVR g 21 to 24 Gamma

estimator t̂s with respect to the estimated parameter ts is defined as the square root of the
mean square error:

RMSE =

√∑n
i=1 tsi − t̂si

N
. (5.2)

ts denotes the trading signal by trading signal transformation from TBSM segmentation in
Section 4.2. t̂s denotes the estimated trading signal by SVR forecasting model. N denotes
total number in each training data (Table 2).

In parameter section we use design of experiments (DOEs) approach to set each
parameter for capture optimal parameter combination for trading system in financial data.
The parameters of the TBSM are based on standard deviation σ from stock price in each
stock which is the range from 0.1σ to 1σ for testing in each parameters. In SVR model, the
kernels chosen for testing are “radial basis function (RBF)” and “polynomial” function. The
common combination includes cost C; epsilon ε and γ are selected by the grid search with
exponentially growing sequences. C ranges from 10−3 to 103. ε from 10−4 to 10−1 and γ is fixed
as 0. In “polynomial” function, the degree d ranges from 2−9 to 2−1. The gamma g ranges from
21 to 24 in RBF kernel.

5.2. Profit Comparison in the US Stock Market

In this research, we have selected 7 stocks from the US stock market to compare the profit
achieved by various trading models, including Apple, BOENING CO. (BA), Caterpillar Inc.
(CAT), Johnson and Johnson (JNJ), Exxon Mobil Corp. (XOM), Verizon Communication Inc.
(VZ), and S&P 500. Among all the stocks, 253 data points were collected for the training
period from 1/2/2008 (mm/dd/yy) to 12/31/2008 while 124 data points were used for
the testing period from 1/2/2009 to 6/30/2009. In this research, we have compared our
forecasting model of TBMS-SVR approach with two other identification models developed
in the past. The PLR-BPN model proposed by Chang et al. [26] used neural networks in
combination with PLR and exponential smoothing to determine the trading points. Kwon
and Kish [41] used statistical model such as moving average, rate of change and trading
volumes to determine the buy-sell points and generated profit.
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Table 3: Feature selection result in each stock for technical indices by SRA.

Stock Technical index

Apple 5MA, 6MA, 9K, 9MACD, 12W%R

BA 5MA, 6MA, 9K, 10 TV, 12W%R

CAT 5MA, 6MA, 9K, 10 TV, Δ5MA

JNJ 5MA, 6MA, 6RSI, 9MACD, Δ5MA

S&P 500 5MA, 5 BIAS, 10 TV, 26 BR, TAPI

VZ 5MA, 6MA, Δ5MA, 10TV, 26VR

XOM 5MA,6MA, Δ5MA

Table 4: Model selection results from TSBM-SVR model for each stock.

Stock
Kernel

Radial basis function (RBF) Polynomial

g C ε SVs RMSE d C ε SVs RMSE

Apple 2−1 103 10−4 253 0.0819 2 [0.001 : 1000] [0.0001 : 0.1] 71 0.266
BA 2−1 103 10−1 107 0.0955 2 [0.001 : 1000] [0.0001 : 0.1] 76 0.269
CAT 2−1 103 10−3 254 0.0898 2 [0.001 : 1000] [0.0001 : 0.1] 156 0.233
JNJ 2−1 102 10−1 137 0.2617 1 [0.001 : 1000] [0.0001 : 0.1] 116 0.426
S&P 500 2−1 103 10−4 254 0.0004 1 [0.001 : 1000] [0.0001 : 0.1] 112 0.379
VZ 2−1 103 10−3 251 0.0031 1 [0.001 : 1000] [0.0001 : 0.1] 125 0.269
XOM 2−1 103 10−4 253 0.0001 2 [0.001 : 1000] [0.0001 : 0.1] 182 0.18

Table 5: Comparison of profit obtained by various forecasting models.

Stock no. Stock
name

TBSN-SVR
model (RBF)

PLR-SVR
model
(RBF)

PLR-BPN
model

Statistical
model

1 Apple 92.35% 35.84% 12.97% 20.50%
2 BA 59.49% 35.69% 17.50% 20.03%
3 CAT 43.39% 36.09% 9.36% 24.83%
4 JNJ 13.95% 9.47% 16.88% 0%
5 S&P 500 22.78% 4.19% 3.77% 9.81%
6 VZ 28.60% 2.60% 27.72% 0%
7 XOM 22.40% 12.34% −1.99% −7.65%
Average 40.42% 19.46% 12.32% 9.65%

The technical indices selected result by SRA as shown in Table 3. Apple, Ba, CAT, JNJ,
S&P 500, and VZ used 5 features (technical indices) for training forecastingmodel; XOMused
3 features for training forecasting model. From this result we can know that a few features
can capture more trading knowledge.

From model selection results the RBF kernel has better low error in each stock by
RMSE. Moreover, the gamma, degree, cost, epsilon, support vectors, and RMSE as shown
in Table 4 are necessary parameters and measures. The models of TBSM-SVR in each stock
are selecting optimal parameter combination by RMSE consideration.
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Figure 7: The forecasted trading points of BA (a steady-trend stock).

Each forecasting model provides trading points for each stock, so the best profits of
the 3 forecasting models are shown in Table 5. The results turn out that our proposed TBSM
with SVR model generates the greatest returns for the seven stocks, that is, number 1, 2, 3, 4,
5, 6, and 7 outperform other models. The average profit rate of these seven stocks is 40.42%
using the TBSM-SVR model whereas the average profit rate generated by other models like
PLR-SVR, PLR-BPN, and Statistical is 19.46%, 12.32%, and 9.65%, respectively. Therefore, our
TBSM approach is better than PLR approach which is only considered linear representation.

The buy and sell points obtained from the TBSM forecasting model in each stock are
shown in Figures 6, 7, 8, 9, 10, 11, and 12. The red square represents the buy point, and the
black triangle represents the sell point using a trading strategy to determine turning points.
Furthermore, our proposed approach TBSM is better than PLR segmentation which denotes
that TBSM approach captures better trading knowledge for SVR forecasting model. Due
to PLR only the linear representation is considering, so it loses important trend. Therefore,
TBSM is an effective segmentation method for nonlinear time series data in stock market.
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Figure 8: The forecasted trading points of CAT (a downtrend stock).
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Figure 9: The forecasted trading points of JNJ (a steady-trend stock).
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Figure 10: The forecasted trading points of S&P 500 (a steady-trend stock).
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Figure 11: The forecasted trading points of VZ (a downtrend stock).
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Figure 12: The forecasted trading points of XOM (a downtrend stock).

6. Conclusions

In this paper we proposed a trading system combining TBSM with SVR, and it is called
TBSM-SVR-based stock trading system. This new trading system has been very effective
in earning high profit while with the greatest ability. Experimental results showed that the
TSBM can segment the stock price’s variation into different trading trends. The trading signal
in each trading trend will be assumed to be the same. The nonlinear time series can be
better represented using these trading trends. Additionally, SVR is applied to capture the
trading knowledge using the trading signals derived from these trading trends. The captured
knowledge is more effective using TBSM-SVRwhen compared to PLR segmentation method.
As a result, the primary goal of the investor could be easily achieved by providing him with
simple trading decisions. However, the limitation of the TBSM-SVR trading system is the
machine learning tool; that is, SVR is still not that mature yet. There are still rooms for the
improvement of a better machine learningmechanism to be developed. Therefore, the trading
system may make a wrong trading and lose money. In the future works, we can extend the
segmentation method by considering a more detailed trend by investigating different buy-
hold strategy or better trading strategy. In addition, the trend based segmentation method
can further consider the fractal properties such as long memory, which can be accommodated
to improve the segmentation performances.
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