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This paper extends an existing cooperative multi-objective interaction programming problem
with interaction constraint for two players (or two agents). First, we define an s-optimal joint
solution with weight vector to multi-objective interaction programming problem with interaction
constraint for two players and get some properties of it. It is proved that the s-optimal joint solution
with weight vector to the multi-objective interaction programming problem can be obtained
by solving a corresponding mathematical programming problem. Then, we define another s-
optimal joint solution with weight value to multi-objective interaction programming problem
with interaction constraint for two players and get some of its properties. It is proved that the s-
optimal joint solution with weight vector to multi-objective interaction programming problem can
be obtained by solving a corresponding mathematical programming problem. Finally, we build
a pricing multi-objective interaction programming model for a bi-level supply chain. Numerical
results show that the interaction programming pricing model is better than Stackelberg pricing
model and the joint pricing model.

1. Introduction

There exists a kind of interactional and complex decision-making problem characterized with
conflicts, incompatibility and complexity among multiagent systems, which has received
much attention from researchers. Ever since the 20th century, researchers have studied two-
player and multiplayer interaction problems and developed a new field called Game Theory
[1], which has been widely applied in economics, engineering, military affairs, computers,
and so forth [2, 3]. The game model contains the following main factors: players, strategies,
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and payoffs. In the game, people focus on finding the optimal strategies that benefit all the
players, which are the equilibrium solutions or cooperative solutions to the interactional
problems. In recent years, some researchers studied the cooperative games and negotiation
games [4], which laid emphasis on the cooperative rules, for example, multiagent model [5].
However, there are still some interactional problems that cannot be solved by the existing
game models. In 1999, Meng and Li introduced a definition of interaction decision-making
problems [6], which mainly considers the multiagent decision-making problems that involve
two persons and more and concerns how decision is made if the decision-making process
of every agent is influenced by the other agents. Therefore, the interaction problems turn
out to be the interaction decision-making problems. In some cases, the interaction decision-
making problems may contain conflicts, so the interaction decision-making problems can be
seen as an extension of the game models. The interaction decision-making model is complex
and mainly contains the following five factors: decision makers (persons or agents), sets of
constraints, decision variables, objective function, and interactional constraints.

Some interaction decision-making problems can be described by nonlinear program-
ming models with parameters, called interaction programming problem (hereinafter called
IPP) and studied in [6]. Generally speaking, the game problems can always be described
as interaction programming models. However, problems with conflicts and under complex
constraints sometimes cannot be described by normal game models, for example, multiagent
problems, and cannot be solved. After 1999, researchers made in-depth researches as to
the existence and equivalence of the solution to and the method of solving the IPP [7–
10]. Ma and Ding studied the relation between interaction programming and multiobjective
programming by adopting the converse problem of parametric programming [8]. Meng et
al. discussed two new types of IPP that are used to solve the problems with or without
conflicts and introduced the definition of its joint optimal solution and the method of solving
this model [9, 10]. Jiang et al. discussed the multiobjective interaction programming for two
persons [11].

In this paper, first, we introduce a definition of an s-optimal joint solution with
weight vector to a multiobjective interaction programming problem with two players (or
two agents). In fact, Meng et al. have proved the s-optimal joint solution is a better solution to
interaction programming problems than Nash equilibrium and can be obtained by solving an
equivalent mathematical programming problem [7]. Moreover, the s-optimal joint solution
is obtained under the assumption that all the decision makers make the same concession.
For some interaction decision-making problems, there are always multiobjective decisions
for decision-makers to make. Therefore, we are to extend the s-optimal joint solution of
interaction programming problem discussed in [7, 11] to multiobjectives interaction pro-
gramming problem with two players and study its properties. Then, we introduce a
definition of s-optimal joint solution with weight value to a multiobjective interaction pro-
gramming problem with two players (or two agents), which differs from the definition of
an s-optimal joint solution. Finally, we build an interaction programming pricing model
for bilevel supply chain. Numerical results show that the pricing interaction programming
model is better than a Stackelberg pricing model or a joint pricing model.

2. s-Optimal Joint Solution

Let f : Rm × Rn → Rk, g : Rm × Rn → Rk be the multiobjective functions, and let X,Y,H ⊂
Rm × Rn be nonempty sets where n, m, and k are positive integers. There exist the following
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multiobjectives interaction programming problem with interaction constraint (x, y) ∈ H for
Player 1 (or Agent 1) and Player 2 (or Agent 2):

min
x

f
(
x, y

)
s.t.

(
x, y

) ∈ X

min
y

g
(
x, y

)
s.t.

(
x, y

) ∈ Y

s.t.
(
x, y

) ∈ H.

(FG)

(x, y) satisfies the following constraint (x, y) ∈ H. Then, such multiobjectives interaction
programming problem with interaction constraint is defined as two-player (or two-agent)
multiobjective interaction programming problem (FG), and H is called the interaction
constraint. Let Z = {(x, y) | (x, y) ∈ X, (x, y) ∈ Y, (x, y) ∈ H} be a feasible set to problem
(FG).

Definition 2.1. For (x∗, y∗) ∈ Z,

(i) if it satisfies

f
(
x∗, y∗) ≤ f

(
x, y

)
, g

(
x∗, y∗) ≤ g

(
x, y

)
, ∀(x, y) ∈ Z, (2.1)

then (x∗, y∗) is called an optimal joint solution for Player 1 (or Agent 1) and Player
2 (or Agent 2) or to problem (FG);

(ii) if there does not exist (x, y∗) ∈ Z, (x∗, y) ∈ Z which satisfies

f
(
x, y∗) ≤ f

(
x, y

)
, g

(
x∗, y

) ≤ g
(
x, y

)
, (2.2)

then (x∗, y∗) is called a Nash-equilibrium solution for Player 1 (or Agent 1) and
Player 2 (or Agent 2) or to problem (FG).

Obviously, the optimal joint solution is a Nash-equilibrium solution.
Let a given weight λ = (λ1, λ2, . . . , λk) > 0.

Definition 2.2. For (x∗, y∗) ∈ Z and s = (s1, s2, . . . , sk) > 0, if it satisfies

fi
(
x∗, y∗) − λisi ≤ fi

(
x, y

)
, gi

(
x∗, y∗) − λisi ≤ gi

(
x, y

)
, i = 1, 2, . . . , k, ∀(x, y) ∈ Z,

(2.3)

then (x∗, y∗) is called an s-joint solution with weight vector λ for Player 1 (or Agent 1) and
Player 2 (or Agent 2) or to problem (FG). s is called a joint value of problem (FG), and the set
of all joint values is denoted by S.

When λ = (1, 1, . . . , 1), an s-joint solution with weight vector λ is an s-joint solution in
[11].
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Theorem 2.3. Consider the following single objective programming problems (Fi) and (Gi) (i =
1, 2, . . . k):

min fi
(
x, y

)

s.t.
(
x, y

) ∈ Z,
(Fi)

min gi
(
x, y

)

s.t.
(
x, y

) ∈ Z.
(Gi)

Let (x∗
fi
, y∗

fi
) be the optimal solution to (Fi), and let (x∗

gi, y
∗
gi) be the optimal solution to (Gi). For any

given (x′, y′) ∈ Z, let s′i = (1/λi)max{fi(x′, y′)−fi(x∗
fi
, y∗

fi
), gi(x′, y′)−gi(x∗

gi, y
∗
gi)} (i = 1, 2, . . . k)

and s′ = (s′1, s
′
2, · · · , s′k). Then (x′, y′) is an s′-joint solution with weight vector λ to problem (FG).

Proof. For any (x, y) ∈ Z and i = 1, 2, . . . k, it concludes from the assumption that

fi
(
x∗
fi, y

∗
fi

)
≤ fi

(
x, y

)
, gi

(
x∗
gi, y

∗
gi

)
≤ gi

(
x, y

)
, (2.4)

which implies

fi
(
x′, y′) −

[
fi
(
x′, y′) − fi

(
x∗
fi, y

∗
fi

)]
≤ fi

(
x, y

)
,

gi
(
x′, y′) −

[
gi
(
x, y

) − gi
(
x∗
gi, y

∗
gi

)]
≤ gi

(
x, y

)
.

(2.5)

It follows with the assumption that

fi
(
x′, y′) − λis

′
i ≤ fi

(
x, y

)
,

gi
(
x′, y′) − λis

′
i ≤ gi

(
x, y

)
.

(2.6)

Then, by Definition 2.2, the proof completes.

By Theorem 2.3, for any (x, y) ∈ Z, there exists a joint value s such that (x, y) is an
s-joint solution with weight vector λ to problem (FG). The s-joint solution illustrates the
same concession s the agents make. Furthermore, we define a joint value |s| = s1 + s2 + · · · sk,
expecting to get a minimum of all the joint values as an optimal solution with weight vector
λ to problem (FG).

Definition 2.4. Let (x∗, y∗) be an s∗-joint solution with weight vector λ to problem (FG) with
the corresponding joint value |s∗|, that is, the minimum of all the joint values. Then, (x∗, y∗) is
called an s∗-optimal joint solution with weight vector λ for Player 1 (or Agent 1) and Player
2 (or Agent 2) or to problem (FG).

Obviously, if |s∗| = 0, then the s∗-optimal joint solution with weight vector λ is the
optimal joint solution as per Definition 2.1. In fact, an s∗-optimal joint solution with weight
vector λ is an s∗-joint solution too, but an s∗-joint solution with weight vector λ is not always
an s∗-optimal joint solution with weight vector λ.
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Theorem 2.5. For i = 1, 2, . . . , k, let (x∗
fi, y

∗
fi) be an optimal solution to (Fi), and let (x∗

gi, y
∗
gi) be the

optimal solution to (Gi). Then, (x∗, y∗, s∗) is an optimal solution to the following problem:

min |s| = s1 + s2 + · · · sk
s.t. fi

(
x, y

) − λisi ≤ fi
(
x∗
fi, y

∗
fi

)
, i = 1, 2, . . . , k,

gi
(
x, y

) − λisi ≤ gi
(
x∗
gi, y

∗
gi

)
, i = 1, 2, . . . , k,

(
x, y

) ∈ Z, si ≥ 0, i = 1, 2, . . . , k

(S)

if and only if (x∗, y∗) is an s∗-optimal joint solution with weight vector λ to problem (FG).

Proof. For any (x, y) ∈ Z, by the assumption, (x∗, y∗, s∗) is an optimal solution to problem (S)
such that

fi
(
x∗, y∗) − λisi ≤ fi

(
x∗
fi, y

∗
fi

)
≤ f

(
x, y

)
, i = 1, 2, . . . , k,

gi
(
x∗, y∗) − λisi ≤ gi

(
x∗
gi, y

∗
gi

)
< gi

(
x, y

)
, i = 1, 2, . . . , k.

(2.7)

Then, it concludes from Definition 2.2 that (x∗, y∗) is an s∗-joint solution to problem (FG). Let
(x′, y′) be an s′-optimal joint solution with weight vector λ to problem (FG). By Definitions
2.2 and 2.4, we have |s∗| ≥ |s′| and, for all (x, y) ∈ Z,

fi
(
x′, y′) − λis

′
i ≤ fi

(
x, y

)
,

gi
(
x′, y′) − λis

′
i ≤ gi

(
x, y

)
.

(2.8)

Then, (x′, y′) is feasible solution to problem (S), and with |s∗| ≤ |s′|, we conclude |s∗| = |s′|.
That is to say, (x∗, y∗) is an s∗-optimal joint solution with weight vector λ to problem (FG).

The converse statement is also true. If (x∗, y∗) is an s∗-optimal joint solution with
weight vector λ to problem (FG), then it implies (x∗, y∗, s∗) is feasible to problem (S) by
Definition 2.2. Suppose (x′, y′, s′) is an optimal solution to (S), from the previous proof, it
concludes that (x′, y′) is an s′-optimal joint solution with weight vector λ to problem (FG)
and |s∗| = |s′|. Therefore, (x∗, y∗, s∗) is an optimal solution to problem (S), and the proof
completes.

Corollary 2.6. Let Z be compact, and let f and g be continuous functions. Then there exists an
s∗-optimal joint solution to problem (FG).

Theorem 2.7. For i = 1, 2, . . . , k, let (x∗
fi, y

∗
fi) be the optimal solution to (Fi), and let (x∗

gi, y
∗
gi) be

the optimal solution to (Gi). If [(x′, y′, s′), (x′
i1, y

′
i1)(x

′′
i2, y

′′
i2)] (i = 1, 2, . . . , k) is an optimal solution

to the following problem:

min
k∑

i=1

[
si + f

(
xi

′, yi
′) + g

(
xi

′′, yi
′′)]

s.t. fi
(
x, y

) − λisi ≤ fi
(
x′
i1, y

′
i1

)
, i = 1, 2, . . . , k,

gi
(
x, y

) − λisi ≤ gi
(
x′′
i , y

′′
i

)
, i = 1, 2, . . . , k,

(
x, y

)
,
(
x′
i, y

′
i

)
,
(
x′′
i , y

′′
i

) ∈ Z, si ≥ 0, i = 1, 2, . . . , k,

(S′)



6 Mathematical Problems in Engineering

then (x′, y′) is an s∗-optimal joint solution with weight vector λ to problem (FG), where

s∗i = s′i +
1
λi

max
{(

fi
(
x′
i1, y

′
i1

) − fi
(
x∗
fi, y

∗
fi

))
,
(
gi
(
x′′
i2, y

′′
i2
) − gi

(
x∗
gi, y

∗
gi

))}
, i = 1, 2, . . . , k.

(2.9)

Proof. Supposing (x∗, y∗) is an s∗-optimal joint solution with weight vector λ to problem
(FG), from Theorem 2.5, we have that (x∗, y∗, s∗) is an optimal solution to problem (S). Then,
[(x∗, y∗, s∗), (x∗

fi
, y∗

fi
)(x∗

gi, y
∗
gi)] (i = 1, 2, . . . , k) is feasible to problem (S′), which implies

k∑

i=1

[
s′i + f

(
x′
i1, y

′
i1

)
+ g

(
x′′
i2, y

′′
i2
)] ≤

k∑

i=1

[
s∗i + f

(
x∗
fi, y

∗
fi

)
+ g

(
x∗
gi, y

∗
gi

)]
, (2.10)

that is:

k∑

i=1

[
s′i +

(
f
(
x′
i1, y

′
i1

) − f
(
x∗
fi, y

∗
fi

))
+
(
g
(
x′′
i2, y

′′
i2
) − g

(
x∗
gi, y

∗
gi

))]
≤

k∑

i=1

s∗i . (2.11)

Letting

s◦i = s′i +
1
λi

max
{(

f
(
x′
i1, y

′
i1

) − f
(
x∗
fi, y

∗
fi

))
,
(
g
(
x′′
i2, y

′′
i2
) − g

(
x∗
gi, y

∗
gi

))}
, i = 1, 2, . . . , k,

(2.12)

then it follows
∑k

i=1 s
◦
i ≤

∑k
i=1 s

∗
i . On the other hand, from the assumption we have that

fi
(
x′, y′) − λis

′
i ≤ fi

(
x′
i1, y

′
i1

)
, i = 1, 2, . . . , k,

gi
(
x′, y′) − λis

′
i ≤ gi

(
x′′
i2, y

′′
i2
)
, i = 1, 2, . . . , k,

(2.13)

which implies

fi
(
x′, y′) ≤ λis

′
i + fi

(
x′
i1, y

′
i1

) − fi
(
x∗
fi, y

∗
fi

)
+ fi

(
x∗
fi, y

∗
fi

)
, i = 1, 2, . . . , k,

gi
(
x′, y′) ≤ λis

′
i + gi

(
x′′
i2, y

′′
i2
) − gi

(
x∗
gi, y

∗
gi

)
+ gi

(
x∗
gi, y

∗
gi

)
, i = 1, 2, . . . , k,

(2.14)

that is:

fi
(
x′, y′) ≤ s◦i + fi

(
x∗
fi, y

∗
fi

)
, i = 1, 2, . . . , k,

gi
(
x′, y′) ≤ s◦i + gi

(
x∗
gi, y

∗
gi

)
, i = 1, 2, . . . , k.

(2.15)
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Then, (x′, y′, s◦) is a feasible solution to problem (S). Thus,
∑k

i=1 s
◦
i ≥

∑k
i=1 s

∗
i holds and (x′, y′)

becomes an s◦-optimal joint solution with weight vector λ to problem (FG) with
∑k

i=1 s
◦
i =

∑k
i=1 s

∗
i . This completes the proof.

Remark 2.8. By Theorem 2.7, we can get an s∗-optimal joint solution with weight vector λ to
problem (FG) if the optimal solution to problem (S′) is obtained. However, we cannot get the
optimal joint value s∗ unless the optimal solutions to problems (Fi) and (Gi) (i = 1, 2, . . . , k)
are obtained.

3. s-Optimal Joint Solution with Weight Value

In this section, we discuss another optimal joint solution to (FG), where f : Rm × Rn → Rk1

and g : Rm × Rn → Rk2 . When k1 /= k2, the definition of s-optimal joint solution to problem
(FG) is not appropriate. Consider the following multiobjectives interaction programming
problem with interaction constraint (x, y) ∈ H for Player 1 (or Agent 1) and Player 2 (or
Agent 2):

min
x

f
(
x, y

)
s.t.

(
x, y

) ∈ X,

min
y

g
(
x, y

)
s.t.

(
x, y

) ∈ Y

s.t.
(
x, y

) ∈ H.

(FG)

Hence, we need to define a new s-optimal joint solution to problem (FG). Suppose the weight
of fi is pi > 0 and the weight of gj is qj > 0, i = 1, 2, . . . , k1, j = 1, 2, . . . , k2. Let

p =
(
p1, p2, . . . , pk1

)
, q =

(
q1, q2, . . . , qk1

)
. (3.1)

Definition 3.1. For (x∗, y∗) ∈ Z, s ≥ 0, if it satisfies

fi
(
x∗, y∗) − pis ≤ fi

(
x, y

)
, gj

(
x∗, y∗) − qjs ≤ gj

(
x, y

)
(3.2)

for (x, y) ∈ Z (i = 1, 2, . . . , k1, j = 1, 2, . . . , k2), then (x∗, y∗) is called an s-joint solution with
weight vector (p, q) for Player 1 (or Agent 1) and Player 2 (or Agent 2) or to problem (FG). s
is called a joint value with weight vector (p, q). Here, s is real value.

Theorem 3.2. Suppose (x∗
fi
, y∗

fi
) is the optimal solution to (Fi) and (x∗

gj , y
∗
gj) is the optimal solution

to (Gi). For any (x, y) ∈ Z, letting

s = max

{
1
pi

(
fi
(
x, y

)−fi
(
x∗
fi, y

∗
fi

))
,

1
qj

(
gj
(
x, y

)−gj
(
x∗
gj , y

∗
gj

))
| i=1, 2, . . . , k1, j =1, 2, . . . , k2

}

,

(3.3)

then (x, y) is the s-joint solution with weight vector (p, q) to (FG).
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Proof. For all (x, y) ∈ Z, i = 1, 2, . . . , k1, j = 1, 2, . . . , k2, it follows from the assumption that

fi
(
x∗
fi, y

∗
fi

)
≤ fi

(
x, y

)
, gj

(
x∗
gj , y

∗
gj

)
≤ gj

(
x, y

)
, (3.4)

which implies

fi
(
x, y

) −
[
fi
(
x, y

) − fi
(
x∗
fi, y

∗
fi

)]
≤ fi

(
x, y

)
,

gj
(
x, y

) −
[
gj
(
x, y

) − gj
(
x∗
gj , y

∗
gj

)]
≤ gj

(
x, y

)
,

(3.5)

so

fi
(
x, y

) − pis ≤ fi
(
x, y

)
, gj

(
x, y

) − qjs ≤ gj
(
x, y

)
. (3.6)

This completes the proof with Definition 3.1.

By Theorem 2.3, for all (x, y) ∈ X, and for all (x, y) ∈ Y , there exists a value s such that
(x, y) becomes an s-joint solution with weight vector (p, q) to (FG). s-joint solution implies
the decision makers give the same concession s with weight vector (p, q), which is fair for all
the decision makers. Thus, it is useful for us to find the minimum of all the joint values.

Definition 3.3. Suppose (x∗, y∗) is an s∗-joint solution with weight vector (p, q) to (FG)with s∗

the minimum of all the joint values. Then, (x∗, y∗) is called an s∗-optimal joint solution with
weight vector (p, q) to (FG).

Obviously, if s∗ = 0, (x∗, y∗) becomes the optimal joint solution for Player 1 (or Agent
1) and Player 2 (or Agent 2).

Theorem 3.4. For i = 1, . . . , k1, j = 1, . . . , k2, let (x∗
fi, y

∗
fi) be the optimal solution to (Fi), and let

(x∗
gj , y

∗
gj) be the optimal solution to (Gi). Then, (x∗, y∗, s∗) is an optimal solution to the following

problem (SW):

min s

s.t. fi
(
x, y

) − pis ≤ fi
(
x∗
fi, y

∗
fi

)
, i = 1, 2, . . . , k1,

gj
(
x, y

) − qjs ≤ gj
(
x∗
gj , y

∗
gj

)
, j = 1, 2, . . . , k2,

s ≥ 0,
(
x, y

) ∈ Z,

(SW)

if and only if (x∗, y∗) is an s∗-optimal joint solution with weight vector (p, q) to (FG).

Proof. Suppose (x∗, y∗, s∗) is the optimal solution to the problem (SW). For any (x, y) ∈ Z,
i = 1, 2, . . . , k1, j = 1, 2, . . . , k2, it follows with the constraints of (SW) that

fi
(
x∗, y∗) − pis∗ ≤ fi

(
x∗
fi, y

∗
fi

)
≤ fi

(
x, y

)
, gj

(
x∗, y∗) − qjs∗ ≤ gj

(
x∗
gj , y

∗
gj

)
≤ gj

(
x, y

)
,

(3.7)
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which implies (x∗, y∗) is an s∗-joint solution with weight vector (p, q) to (FG). Assume (x, y)
is the s-optimal joint solution with weight vector (p, q) to (FG). Then, with Definitions 3.1
and 3.3, it gets s∗ ≥ s and

fi
(
x, y

) − pis ≤ fi
(
x, y

)
, gj

(
x, y

) − qjs ≤ gj
(
x, y

)
, ∀(x, y) ∈ Z, (3.8)

which implies (x, y) is feasible to (S) and s ≥ s∗. Then, we get s = s∗, and (x∗, y∗) becomes the
s∗-optimal joint solution with weight vector (p, q) to (FG).

On the contrary, if (x∗, y∗) is an s∗-optimal joint solution with weight vector (p, q) to
(FG), by Definition 3.1, it gets (x∗, y∗, s∗) is feasible to (SW). Supposing (x, y, s) is the optimal
solution to (SW), it is easily obtained that (x, y) is the s-optimal joint solution with weight
vector (p, q) to (FG), which implies s = s∗. Thus, (x∗, y∗, s∗) is the optimal solution to (SW),
and this completes the proof.

Remark 3.5. If the optimal solutions to (Fi) and (Gi) exist, the s∗-optimal joint solution with
weight vector (p, q) to (FG) exists, too. By Theorem 3.4, we can obtain a method of solving the
problem IPP as follows. First, get the optimal solutions to (Fi) and (Gi). Then, we can get an
optimal solution (x∗, y∗, s∗) to (SW), and (x∗, y∗) is an s∗-optimal joint solution with weight
vector (p, q) to (FG).

Theorem 3.6. Suppose (x∗, y∗) is an s∗-optimal joint solution with weight vector (p, q) to (FG).
Then, there does not exist (x, y) ∈ Z such that

fi
(
x, y

)
< fi

(
x∗, y∗), gj

(
x, y

)
< gj

(
x∗, y∗), i = 1, 2, . . . , k1, j = 1, 2, . . . , k2. (3.9)

Proof. It is obviously correct if s∗ = 0. For s∗ > 0, suppose there exists (x′, y′) ∈ Z such that

fi
(
x′, y′) < fi

(
x∗, y∗), gj

(
x′, y′) < gj

(
x∗, y∗), i = 1, 2, . . . , k1, j = 1, 2, . . . , k2. (3.10)

Let δ = min{fi(x∗, y∗) − fi(x′, y′), gj(x∗, y∗) − gj(x′, y′) | i = 1, 2, . . . , k1, j = 1, 2, . . . , k2} with
δ > 0. Then, there exists sufficiently small α > 0 such that s∗ − αδ > 0, piα < 1, and qjα < 1
for i = 1, 2, . . . , k1, j = 1, 2, . . . , k2. Letting s′ = s∗ − αδ, then, we get s′ < s∗. It follows with
Definition 3.1 that

fi
(
x′, y′) − pis′ = fi

(
x′, y′) − pis∗ + piαδ < fi

(
x′, y′) − pis∗ + fi

(
x∗, y∗) − fi

(
x′, y′)

≤ fi
(
x, y

)
,

gj
(
x′, y′) − qjs′ = gj

(
x′, y′) − qjs∗ + qjαδ

< gj
(
x′, y′) − qjs∗ + gj

(
x∗, y∗) − gj

(
x′, y′) ≤ gj

(
x, y

)
,

(3.11)

for any (x, y) ∈ Z. Thus, (x′, y′) is s′-optimal joint solution with weight vector (p, q) to (FG)
and s′ > s∗, which contradicts the assumption of s′ < s∗; this completes the proof.
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Theorem 3.7. For i = 1, . . . , k1, j = 1, . . . , k2, let (x∗
fi, y

∗
fi) be an optimal solution to (Fi), and

let (x∗
gj , y

∗
gj) be an optimal solution to (Gi). If [(x, y, s), (x

′
i, y

′
i), (x

′′
j , y

′′
j )] (i = 1, 2, . . . , k1, j =

1, 2, . . . , k2) is the optimal solution of the following problem (S):

min s +
k1∑

i=1

1
pi
fi
(
x′
i, y

′
i

)
+

k2∑

j=1

1
qj
gj
(
x′′
j , y

′′
j

)

s.t. fi
(
x, y

) − pis ≤ fi
(
x′
i, y

′
i

)
, i = 1, 2, . . . , k1,

gj
(
x, y

) − qjs ≤ gj
(
x′′
j , y

′′
j

)
, j = 1, 2, . . . , k2,

s ≥ 0,
(
x, y

)
,
(
x′
i, y

′
i

)
,
(
x′′
j , y

′′
j

)
∈ Z, i = 1, 2, . . . , k1, j = 1, 2, . . . , k2,

(S)

then (x, y) is an s∗-optimal joint solution with weight vector (p, q) to (FG), where

s∗ = s +max

{
1
pi

(
fi
(
x′
i, y

′
i

) − fi
(
x∗
fi, y

∗
fi

))
,

1
qj

(
gj
(
x′′
j , y

′′
j

)
− gj

(
x∗
gj , y

∗
gj

))
| i = 1, 2, . . . , k1, j = 1, 2, . . . , k2

}

.

(3.12)

Proof. Supposing (x∗, y∗) is the s∗-optimal joint solution with weight vector (p, q) to (FG),
it concludes from Theorem 3.4 that (x∗, y∗, s∗) is the optimal solution to (SW). Then,

[(x∗, y∗, s∗), (x∗
fi
, y∗

fi
), (x∗

gj , y
∗
gj)] (i = 1, 2, . . . , k1, j = 1, 2, . . . , k2) is feasible to (S). Thus, we

have

s +
k1∑

i=1

1
pi
f
(
x′
i, y

′
i

)
+

k2∑

j=1

1
qj
g
(
x′′
j , y

′′
j

)
≤ s∗ +

k1∑

i=1

1
pi
fi
(
x∗
fi, y

∗
fi

)
+

k2∑

j=1

1
qj
gj
(
x∗
gj , y

∗
gj

)
. (3.13)

Let s̃ = s + max{(1/pi)(fi(x′
i, y

′
i) − fi(x∗

fi, y
∗
fi)), (1/qj)(gj(x

′′
j , y

′′
j ) − gj(x∗

gj , y
∗
gj)) | i =

1, 2, . . . , k1, j = 1, 2, . . . , k2}.
It concludes from (3.13) that s̃ ≤ s∗. Further, with the assumption, we get

fi
(
x, y

) − pis ≤ fi
(
x′
i, y

′
i

)
, i = 1, 2, . . . , k1,

gj
(
x, y

) − qjs ≤ gj
(
x′′
j , y

′′
j

)
, j = 1, 2, . . . , k2,

(3.14)

which implies

fi
(
x, y

) ≤ pis + fi
(
x′
i, y

′
i

) − fi
(
x∗
fi, y

∗
fi

)
+ fi

(
x∗
fi, y

∗
fi

)
, i = 1, 2, . . . , k1,

gj
(
x, y

) ≤ qjs + gj
(
x′′
j , y

′′
j

)
− gj

(
x∗
gj , y

∗
gj

)
+ gj

(
x∗
gj , y

∗
gj

)
, j = 1, 2, . . . , k2.

(3.15)
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Thus,

fi
(
x, y

) ≤ pis̃ + fi
(
x∗
fi, y

∗
fi

)
, i = 1, 2, . . . , k1,

gj
(
x, y

) ≤ qj s̃ + gj
(
x∗
gj , y

∗
gj

)
, j = 1, 2, . . . , k2.

(3.16)

Therefore, (x, y, s̃) is feasible to (S), which implies s̃ ≥ s∗, and (x, y) is the s̃-joint solution
with weight vector (p, q) to (FG). Thus, s̃ = s∗, and this completes the proof.

In Theorem 3.4, as soon as the optimal solutions to (Fi) and (Gi) are found, it is possible
to find out an s∗-optimal joint solution with weight vector to (FG) by solving the problem
(SW). In Theorem 3.7, we can obtain an s∗-optimal joint solution with weight vector to (FG)
by solving the problem (S). However, if we do not solve the optimal solutions to (Fi) and
(Gi), it is unluckily that we cannot get an s∗.

Example 3.8. Considering the following IPP:

min f
(
x, y

)
=
(
(x − 2)2 + y2, x2 + y2

)
,

(
F
(
y
))

min g
(
x, y

)
=
(
x2 +

(
y − 2

)2
, x2 + y2

)

s.t. x, y ∈ R,
(G(x))

where H = R × R. For p1 = p2 = q1 = q2 = 2, by Theorem 3.4, it is easily obtained (1, 1) that is
the 1-optimal joint solution with weight vector (2, 2, 2, 2) to this IPP.

4. A Bilevel Supply Chain with Two Players

Now, we show an example of a bilevel supply chain with two players, which is solved
with the method given in Section 2. The bilevel supply chain can be seen as a two-player
system where a manufacturer is one agent while a retailer is the other, with the manufacturer
providing goods for the retailer to sell. Then, the problem is to decide the prices of the goods
at a level such that both the manufacturer and retailer can gain the most. Clearly, this is an
IPP with two players. Suppose there is a manufacturer which manufactures products Pi (i =
1, 2, . . . , n). Let ci denote the production cost for Pi (i = 1, 2, . . . , n), cit the transportation cost
for Pi (i = 1, 2, . . . , n), and wi the price of Pi (i = 1, 2, . . . , n). The manufacturer provides
products to the retailer atwmin

i ≤ wi ≤ wmax
i , wherewmin

i is theminimum ofwi andwmax
i is the

maximumofwi. Let qi denote the quantity ordered for Pi (i = 1, 2, . . . , n)with qmin
i ≤ qi ≤ qmax

i ,
where qmin

i is the minimum of qi and qmax
i is the maximum of qi. Supposing the retailer sells

the product Pi (i = 1, 2, . . . , n) at the price of pi, then it is clear that wi ≤ pi. Let Di = Di(pi),
which denotes the market demand for Pi (i = 1, 2, . . . , n). Then we get the following pricing
model for the bi-level supply chain:

max
w

f
(
w, p

)
=
(
(w1 − c1 − ct1)D1

(
p1
)
, (w2 − c2 − ct2)D2

(
p2
)
, . . . ,

(
(wn − cn − ctn)Dn

(
pn

)))

s.t. wmin
i ≤ wi ≤ wmax

i , i = 1, 2, . . . , n,

qmin
i ≤ Di

(
pi
) ≤ qmax

i , i = 1, 2, . . . , n,

(
Fp

)
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max
p

g
(
w, p

)
=
((
p1 −w1

)
D1

(
p1
)
,
(
p2 −w2

)
D2

(
p2
)
, . . . ,

((
pn −wn

)
Dn

(
pn

)))

s.t. wmin
i ≤ wi ≤ wmax

i , i = 1, 2, . . . , n,

qmin
i ≤ Di

(
pi
) ≤ qmax

i , i = 1, 2, . . . , n,

wi ≤ pi, i = 1, 2, . . . , n,

(Gw)

where p = (p1, p2, . . . , pn) is the parameter for
(
Fp

)
, w = (w1, w2, . . . , wn) is the parameter for

(Gw), and wi ≤ pi (i = 1, 2, . . . , n) is the interaction constraint.
As is known to all, Stackelberg pricing model (which is a pricing model constructed

as per Stackelberg model) and joint pricing model are widely used in the supply chain
pricing decision. Stackelberg pricing model tends to benefit the manufacturer since the price
is decided by the manufacturer, while the price is always decided by the retailer in joint
pricing model.

Thenwe compare the results of our model with those of Stackelberg pricingmodel and
joint pricing model. For the previous problem, let i = 1, 2, 3, and let all the Pi be independent
to each other; the transportation cost cit = 5 for all Pi; the production costs: c1 = 10, c2 = 12
and c3 = 13; the production capacity 40 ≤ q1 ≤ 100, 30 ≤ q2 ≤ 100 and 30 ≤ q3 ≤ 100; the price
wi (i = 1, 2, 3) restricted by 20 ≤ w1 ≤ 30, 20 ≤ w2 ≤ 35 and 20 ≤ w3 ≤ 35; the market demand
for Pi: D1(p1) = 200 − 4p1, D2(p2) = 250 − 5p2 and D3(p3) = 300 − 6p3.

We have the pricing model of (FG):

max
w

f
(
w, p

)
=
(
(w1 − 15)

(
200 − 4p1

)
, (w2 − 17)

(
250 − 5p2

)
, (w3 − 18)

(
300 − 6p3

))

s.t. 20 ≤ w1 ≤ 30, 20 ≤ w2 ≤ 35, 20 ≤ w3 ≤ 35,

40 ≤ 200 − 4p1 ≤ 100, 30 ≤ 250 − 5p2 ≤ 100, 30 ≤ 300 − 6p3 ≤ 100,

(
Fp

)

max
p

g
(
w, p

)
=
((
p1 −w1

)(
200 − 4p1

)
,
(
p2 −w2

)(
250 − 5p2

)
,
(
p3 −w3

)(
300 − 6p3

))

s.t. 20 ≤ w1 ≤ 30, 20 ≤ w2 ≤ 35, 20 ≤ w3 ≤ 35,

40 ≤ 200 − 4p1 ≤ 100, 30 ≤ 250 − 5p2 ≤ 100, 30 ≤ 300 − 6p3 ≤ 100,

p1 ≥ w1, p2 ≥ w2, p3 ≥ w3.

(Gw)

We give the Stackelberg pricing model:

max
w,p

f
(
w, p

)
=
(
(w1 − 15)

(
200 − 4p1

)
, (w2 − 17)

(
250 − 5p2

)
, (w3 − 18)

(
300 − 6p3

))

s.t. 20 ≤ w1 ≤ 30, 20 ≤ w2 ≤ 35, 20 ≤ w3 ≤ 35,

40 ≤ 200 − 4p1 ≤ 100, 30 ≤ 250 − 5p2 ≤ 100, 30 ≤ 300 − 6p3 ≤ 100.

(4.1)
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p solves the lower level problem:

max
p

g
(
w, p

)
=
((
p1 −w1

)(
200 − 4p1

)
,
(
p2 −w2

)(
250 − 5p2

)
,
(
p3 −w3

)(
300 − 6p3

))

s.t. 20 ≤ w1 ≤ 30, 20 ≤ w2 ≤ 35, 20 ≤ w3 ≤ 35,

40 ≤ 200 − 4p1 ≤ 100, 30 ≤ 250 − 5p2 ≤ 100, 30 ≤ 300 − 6p3 ≤ 100,

p1 ≥ w1, p2 ≥ w2, p3 ≥ w3.

(4.2)

Let f1(w, p) = (w1 − 15)(200 − 4p1) + (w2 − 17)(250 − 5p2) + (w3 − 18)(300 − 6p3) and let
g1(w, p) = (p1 −w1)(200 − 4p1) + (p2 −w2)(250 − 5p2) + (p3 −w3)(300 − 6p3). We give the joint
pricing model:

max
p

f1
(
w, p

)
+ g1

(
w, p

)

s.t. 20 ≤ w1 ≤ 30, 20 ≤ w2 ≤ 35, 20 ≤ w3 ≤ 35,

40 ≤ 200 − 4p1 ≤ 100, 30 ≤ 250 − 5p2 ≤ 100, 30 ≤ 300 − 6p3 ≤ 100,

p1 ≥ w1, p2 ≥ w2, p3 ≥ w3.

(4.3)

Then, we solve this pricing problem of supply chain with the previously mentioned
three pricing models, and the numerical results are given in Table 1.

From Table 1, it is found that the profit πm of the manufacturer is about 4 times less
than the profit πr of the retailer in the solution of joint pricing model which cannot be
accepted by the manufacturer. The profit πm of the manufacturer is about 2 times more than
the profit πr of the retailer in the solution of Stackelberg model which may not be accepted by
the retailer. However, in s-optimal joint solution to the IPP, the difference between the profit
πm of the manufacturer and the profit πr of the retailer is much closer, around 40%. Therefore,
the s-optimal joint solution to (FG) provides a better equilibrium solution that can provide
maximum profit for both the manufacturer and the retailer. Thus, the s-optimal joint solution
is an acceptable solution for the manufacturer and the retailer.

5. Conclusion

In this paper, s-optimal joint solution and s-optimal joint solution with weight vector to the
multiobjective interaction programming problem with two players are discussed, and they
are obtained by solving some equivalentmathematical programming problems. Furthermore,
the proposed model in this paper can be extended to that of multiagents. The numerical
results illustrate that the solution of the multiobjective interaction programming model to
the bilevel supply chain is better than those of Stackelberg model and joint pricing model.
Moreover, the multiobjective interaction programming may be applied in other fields, such
as allocation of multi-jobs in computer networks and allocation of resources in market.
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Table 1: Solutions of the three models.

Profit of s-joint solution Profit of Stackelberg solution Profit of pricing solution

Manufacturer

πm1 563.22 612.5 350
πm2 657.3 680.625 247.5
πm3 755.44 765 192
πm 1976.36 2058.125 789.5

Retailer

πr1 273.22 288.75 875
πr2 569.1 344.4375 1113.75
πr3 571.9 433.5 1344
πr 1414.22 1066.6875 3332.75

System π 3390.58 3124.8125 4122.25
πmi (i = 1, 2, 3) denotes the profit of Pi for the manufacturer.
πm =

∑3
i=1 πmi denotes the total profit of Pi for the manufacturer.

πri (i = 1, 2, 3) denotes the profit of Pi for the retailer.
πr =

∑3
i=1 πri denotes the total profit of Pi for the retailer.

π = πm + πr denotes the total profit of Pi for the system, the manufacturer, and the retailer as a whole.
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