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This paper investigates the impact of setup cost reduction on an inventory policy for a continuous
review mixture inventory model involving controllable backorder rate and variable lead time
with a service level constraint, in which the order quantity, setup cost, and lead time are decision
variables. Our objective is to develop an algorithm to determine the optimal order quantity, setup
cost, and lead time simultaneously, so that the total expected annual cost incurred has a minimum
value. Furthermore, four numerical examples are provided to illustrate the results, and the effects
of system parameters are also included for decision making.

1. Introduction

Optimal inventory policies have been subject to a lot of research in recent years. In traditional
economic order quantity (EOQ) and economic production quantity (EPQ) models, most of
the literature treating inventory problems, either in deterministic or probabilistic models,
the stockout or setup costs are regarded as prescribed constants and equal at the optimum.
However, the experience of the Japanese indicates that this need not be the case. In practice,
setup cost may be controlled and reduced by virtue of various efforts, such as worker training,
procedural changes, and specialized equipment acquisition. In the literature, Porteus [1] first
introduced the concept of investing in reducing the setup cost in the classical EOQ model and
determined an optimal setup cost level. The framework he proposed has encouraged many
researchers, such as Keller and Noori [2], Nasri et al. [3], Kim et al. [4], Paknejad et al. [5],
and Ouyang and Chang [6] to examine setup cost reduction. Moreover, in many inventory
problems, the stockout cost is one of the components in the objective function, but, in many
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practical situations, the stockout cost includes intangible components, such as loss of good-
will and potential delay to the other parts of the system, and thus the determination (or
estimation) of the stockout cost is considered difficult. Instead of having a stockout cost term
in the objective function, a service level constraint, which implies that the stockout level per
cycle is bounded, is added to the model. Moreover, a service level criterion is generally easy
to interpret and establish. Thus, service level constraint models are more popular in real-life
inventory systems than full-cost models (which have generally received far more attention
in the theoretical literature). Several researchers (e.g., Aardal et al. [7], Moon and Choi [8],
Ouyang and Wu [9], Chen and Krass [10], Lee et al. [11]) replace the stockout cost by a
condition on the service level in order to prevent unacceptable stockouts. We note that these
papers focus on inventory models with a service level constraint in which setup cost is treated
as a prescribed constant, which is not controlled. Ouyang and Chang [12] considered the
setup cost as one of the decision variables, and the backorder rate and the lead time are
assumed to be constant. Later, Ouyang et al. [13] considered the setup cost as one of the
decision variables and the backorder rate is assumed to be a random variable, which therefore
is not subject to control; however, Ouyang and Chuang [14] observed that, under most
market behavior as shortages occur, the longer the length of lead time, the larger the amount
of shortages, the smaller the proportion of customers who wait, and hence the smaller the
backorder rate. In the situation, how to control an appropriate length of lead time to deter-
mine a target value of backorder rate so as to minimize the inventory relevant cost and in-
crease the competitive edge is worth discussing. Consequently, we here assume that the back-
order rate is dependent on the length of the lead time through the amount of shortages.

Based on the arguments above, we extend the model in [13] and propose a more gen-
eral model that allows the backorder rate as a control variable and setup cost as a decision
variable in conjunction with the order quantity and lead time. We further consider two widely
used investment cost functional forms, the logarithmic and the power function, which are
consistent with the Japanese experience [15] to analyze the effects of increasing investment
to reduce the setup cost. Besides, using the assumptions in [16], lead time can be decomposed
into several mutually independent components each having a different crashing cost for
shortening lead time. Furthermore, we develop an algorithm to determine the optimal solu-
tions. Finally, numerical examples are presented to illustrate the solution procedure of the
proposed model and the effects of the parameters.

The paper is organized as follows: Section 2 details the notation and assumptions.
In Section 3, we formulate the controlling setup cost inventory model including a mixture
of backorders and lost sales with a service level constraint for what follows, and then two
forms of capital investment cost function (logarithmic and power) are developed. Further,
an efficient algorithm is developed to find the optimal solutions. In Section 4, four numerical
examples are presented to illustrate the solution procedures of the proposed models and the
effects of the parameters. The final section concludes the paper.

2. Notations and Assumptions

To develop the mathematical model, the following notations are used throughout the paper:

A: setup cost per setup (decision variable)

A0: initial setup cost

D: expected demand per year
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h: inventory holding cost per item per year

I(A): capital investment required to achieve setup cost A, 0 < A ≤ A0

L: length of lead time (decision variable)

Q: order quantity (decision variable)

r: reorder point

X: the lead time demand which has a normal d.f. F with finite mean DL and standard
deviation σ

√
L, where σ denotes the standard deviation of the demand per year

α: proportion of demands which are not met from stock, that is, 1 − α is the service
level

β: fraction of the demand during the stockout period that will be backordered, β ∈
[0, 1]

θ: fractional opportunity cost of capital per year

E(·): mathematical expectation

z+: z+ = z ∨ 0 is the positive part of z.

In addition, the following assumptions are made.

(1) The reorder point, r = expected demand during lead time + safety stock (SS), and
SS = k × (standard deviation of lead time demand), that is, r = DL + kσ

√
L, where

k is known as the safety factor and satisfies P(X > r) = q, q denotes the allowable
stockout probability during the lead time interval.

(2) Inventory is continuously reviewed, and replenishments are made whenever the
inventory level falls to the reorder point, r.

(3) The lead time L consists of m mutually independent components. The ith compo-
nent has the normal duration, bi, the minimum duration, ai, and the crashing cost
per unit time, ci. Furthermore, these ci are assumed to be arranged such that c1 ≤
c2 ≤ · · · ≤ cm.

(4) The components of lead time are crashed one at a time starting with the component
of least ci, and so on.

(5) If we let Li be the length of lead time with components 1, 2, . . . , i crashed to their
minimum duration, then Lmin =

∑m
i=1 ai ≤ L ≤ ∑m

i=1 bi = Lmax, Li = Lmax −
∑i

j=1(bj −
aj), and the lead time crashing cost per cycle C(L) for a given L ∈ (Li, Li−1] is given
by C(L) = ci(Li−1 − L) +

∑i−1
j=1 cj(bj − aj).

(6) During the stockout, the backorder rate, β, is variable and is a function of L through
E(X−r)+. The larger the expected shortage quantity, the smaller the backorder rate.
Thus, we define that β = [1 + ξE(X − r)+]−1, where the backorder parameter, ξ, is a
positive constant.

(7) The option of investing in reducing setup cost is available. The investment required
to reduce the setup cost from initial setup cost A0 to a target level A is denoted by
I(A), where I(A) is a convex and strictly decreasing function.
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3. The Basic Models

In this section we provide a quantitative model for how managers should allocate invest-
ments in setup cost reduction programs. For the model without setup cost reduction, we will
closely follow the model in [9]. Specifically, the total expected annual cost, which is composed
of setup cost, inventory holding cost, and lead time crashing cost, subject to a constraint on
service level is expressed as

Min EAC(Q,L) =
AD

Q
+ h

[
Q

2
+ r −Dμ +

(
1 − β

)
E(X − r)+

]

+
D

Q
C(L),

subject to
E(X − r)+

Q
≤ α,

(3.1)

where E(X − r)+ is the expected number of shortages at the end of the cycle.
According to the opinion of Ouyang and Chuang [14] on the backorder rate (under

most market behavior, as shortages occur, the longer the length of lead time, the larger the
amount of shortages, the smaller the proportion of customers who wait, and hence the smaller
the backorder rate) and in contrast with the model in [9] and further as pointed out by Por-
teus [1], in the long run, one can allow the setup cost to be a function of capital expenditure;
in this section, we consider the backorder rate, β, as a control variable and the setup cost, A,
as a decision variable and seek to minimize the total expected annual cost, which is the sum
of the capital investment cost of reducing setup cost and the inventory related costs (as ex-
pressed in (3.1)) by optimizing over Q, A, and L, constrained on 0 < A ≤ A0 and service
level. Mathematically, the problem can be formulated as

Min EAC(Q,A, L) = θI(A) +
AD

Q
+ h

[
Q

2
+ r −Dμ +

(
1 − [1 +G(L)]−1

)
E(X − r)+

]

+
D

Q
C(L),

subject to 0 < A ≤ A0,
E(X − r)+

Q
≤ α,

(3.2)

where G(L) = ξσ
√
LΨ(k).

We note that the setup cost level is A ∈ (0, A0], which implies that if the optimal setup
cost obtained does not satisfy the restriction on A, then no setup cost reduction investment is
made. For this special case, the optimal setup cost is the initial setup cost.

3.1. Logarithmic Investment Function Case

In this subsection, we assume that the capital investment, I(A), in reducing setup cost is a
logarithmic function of the setup cost A. That is, I(A) = b ln(A0/A) for 0 < A ≤ A0, where b =
1/δ, and δ is a percentage decreasing in setup cost, A, per dollar and increasing in investment
I(A). This function is consistent with the Japanese experience [15] and has been used by
Porteus [1, 17], Paknejad and Affisco [18], Hong and Hayya [19], Lin [20], and others.
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As mentioned earlier, we have assumed that the lead time demand, X, follows a
normal distribution with finite mean, DL, and standard deviation, σ

√
L. We note that r =

DL + kσ
√
L, and, hence, the expected shortage quantity at the end of the cycle is given by

E(X − r)+ = σ
√
LΨ(k), where Ψ(k) = φ(k)−k[1−Φ(k)], and φ, Φ denote the standard normal

probability density function and cumulative distribution function, respectively. Therefore, the
cost function equation (3.2) can be transformed to

Min EACL(Q,A, L) = θb ln
(
A0

A

)

+
AD

Q
+ h

[
Q

2
+ kσ

√
L

]

+ h
(

1 − [1 +G(L)]−1
)
σ
√
LΨ(k) +

D

Q
C(L),

subject to 0 < A ≤ A0,
σ
√
LΨ(k)
α

≤ Q,

(3.3)

where the superscript L in EAC(·) denotes the total expected annual cost for the logarithmic
investment function case.

In order to find the minimum cost for this nonlinear programming problem, we first
ignore the restriction 0 < A ≤ A0 and the service level constraint σ

√
LΨ(k)/α ≤ Q for the

moment and minimize the total relevant cost function over Q, A, and L with classical opti-
mization techniques by taking the first partial derivatives of EACL(Q,A, L) with respect to
Q, A, and L ∈ (Li, Li−1), respectively. We obtain that

∂EACL(Q,A, L)
∂Q

= −AD

Q2
+
h

2
− D

Q2
C(L),

∂EACL(Q,A, L)
∂A

= −θb
A

+
D

Q
,

∂EACL(Q,A, L)
∂L

=
1
2
hkσL−1/2 +

hG2(L)[2 +G(L)]

2ξL[1 +G(L)]2
− ci

D

Q
.

(3.4)

By examining the second-order sufficient conditions (SOSCs), it can be verified that
EACL(Q,A, L) is not a convex function of (Q,A, L). However, for fixed (Q,A), EACL(Q,A, L)
is concave in L ∈ [Li,Li−1], since

∂2EACL(Q,A, L)
∂L2

= −1
4
hkσL−3/2 − h[3 +G(L)]G3(L)

4ξL2[1 +G(L)]3
< 0. (3.5)
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Thus, for fixed (Q,A), the minimum total expected annual cost will occur at the end points
of the interval [Li, Li−1]. Consequently, the problem is reduced to

Min EACL(Q,A, Li) = θb ln
(
A0

A

)

+
AD

Q
+ h

[
Q

2
+ kσ

√
Li

]

+ h
(

1 − [1 +G(Li)]−1
)
σ
√
LiΨ(k) +

D

Q
C(Li),

subject to 0 < A ≤ A0,
σ
√
LiΨ(k)
α

≤ Q, i = 0, 1, 2, . . . , m.

(3.6)

On the other hand, for a given value of L ∈ [Li, Li−1], by solving the equations
∂EACL(Q,A, L)/∂Q = 0 and ∂EACL(Q,A, L)/∂A = 0 for Q and A, we obtain that

Q∗ =
{

2D[A∗ + C(L)]
h

}1/2

, (3.7)

A∗ =
θbQ∗

D
. (3.8)

Theoretically, for fixed L ∈ [Li, Li−1], from (3.7) and (3.8), we can obtain the values of Q∗ and
A∗. Moreover, it can be verified that the SOSCs are satisfied as follows. For fixed L ∈ [Li, Li−1],
let us now consider the Hessian matrix H as follows:

H =

⎡

⎢
⎢
⎢
⎣

∂2EACL(Q,A, L)
∂Q2

∂2EACL(Q,A, L)
∂Q∂A

∂2EACL(Q,A, L)
∂A∂Q

∂2EACL(Q,A, L)
∂A2

⎤

⎥
⎥
⎥
⎦
. (3.9)

Taking the second partial derivatives of EACL(Q,A, L) with respect to Q and A, we obtain
that

∂2EACL(Q,A, L)
∂Q2

=
2AD

Q3
+ 2C(L)

D

Q3
> 0,

∂2EACL(Q,A, L)
∂Q∂A

=
∂2EACL(Q,A, L)

∂A∂Q
= − D

Q2
,

∂2EACL(Q,A, L)
∂A2

=
θb

A2
.

(3.10)

We proceed by evaluating the principal minor determinant of the Hessian matrix H at point
(Q∗, A∗). The first principal minor determinant of H then becomes

|H11| = 2A∗D

Q∗3
+ 2C(L)

D

Q∗3
> 0. (3.11)
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Next, computing the second principal minor determinant of H (note that from (3.8), A∗ =
θbQ∗/D), we have

|H22| =
(

2A∗D

Q∗3
+ 2C(L)

D

Q∗3

)
θb

A∗2
− D2

Q∗4
=

θbD

A∗Q∗3

[

1 +
2C(L)
A∗

]

> 0. (3.12)

We conclude that the Hessian matrix H is positive definite at point (Q∗, A∗). Thus, for fixed
L ∈ [Li, Li−1], the point (Q∗, A∗) is the quasioptimal solution (the optimal solution must obey
the service level constraint and the restriction on setup cost per setup) so that the total ex-
pected annual cost of the logarithmic investment model has a minimum value.

We note that it is not possible to find the closed-form solution for (Q∗, A∗) from (3.7)
and (3.8); however, the optimal value of (Q∗, A∗) can be obtained by adopting a graphical
technique similar to that used in [21]. The similar numerical search technique also has been
used in [22, 23], and others. Thus, we develop the following iterative algorithm to find the
optimal values for the order quantity, setup cost, and lead time.

Algorithm 3.1.

Step 1. For each Li, i = 0, 1, 2, . . . , m, and a given q (and hence, the value of safety factor k can
be found directly from the standard normal distribution table), perform (i) to (iv).

(i) Start with Ai1 = A0.

(ii) Substituting Ai1 into (3.7) evaluates Qi1.

(iii) Utilizing Qi1 determines Ai2 from (3.8).

(iv) Repeat (ii) to (iii) until no change occurs in the values of Qi and Ai.

Step 2. Compare Ai and A0.

(i) If Ai < A0, then Ai is feasible and we denote the solution found in Step 1 for given
Li by (QLi ,ALi).

(ii) If Ai ≥ A0, then Ai is not feasible and for given Li, take ALi = A0 and the corre-
sponding value of QLi can be obtained by substituting ALi into (3.7).

Step 3. Let xi = max{QLi , (σ/α)
√
LiΨ(k)}.

Step 4. For each (xi,ALi , Li), i = 0, 1, 2, . . . , m, compute the corresponding total expected an-
nual cost of the logarithmic investment model EACL(xi,ALi , Li), utilizing (3.6).

Step 5. Find mini=0,1,...,m EACL(xi,ALi , Li).

If EACL(Qs,As, Ls) = mini=0,1,...,m EACL(xi,ALi , Li), then (Qs,As, Ls) is the optimal solution.
And the optimal backorder rate

βs =
1

1 + ξσ
√
LsΨ(k)

. (3.13)
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3.2. Power Investment Function

In contrast to the logarithmic investment function case, in this subsection, we consider the
situation where the capital investment, I(A), for reducing setup cost is a power function of
the setup cost, A. That is,

I(A) = λA−ω − l, for 0 < A ≤ A0, (3.14)

where l = λA−ω
0 , and λ and ω are positive constants. We note that this particular investment

cost function has been used by Porteus [1] and others.
In this case, the cost function (3.2) can be transformed to

Min EACP (Q,A, L) = θ
(
λA−ω − l

)
+
AD

Q
+ h

[
Q

2
+ kσ

√
L

]

+ h
(

1 − [1 +G(L)]−1
)
σ
√
LΨ(k) +

D

Q
C(L),

subject to 0 < A ≤ A0,
σ
√
LΨ(k)
α

≤ Q,

(3.15)

where the superscript P in EAC(·) is the total expected annual cost for the power investment
function case.

As discussed in the preceding subsection, the problem can be reduced to consider

Min EACP (Q,A, Li) = θ
(
λA−ω − l

)
+
AD

Q
+ h

[
Q

2
+ kσ

√
Li

]

+ h
(

1 − [1 +G(Li)]−1
)
σ
√
LiΨ(k) +

D

Q
C(Li),

subject to 0 < A ≤ A0,
σ
√
LiΨ(k )
α

≤ Q, i = 0, 1, 2, . . . , m.

(3.16)

The solution can be obtained by taking the first partial derivatives of EACP (Q,A, L)
with respect to Q and A, and set them equal to zero, that is, ∂EACP (Q,A, L)/∂Q = 0 and
∂EACP (Q,A, L)/∂A = 0. The resulting solutions are

Q =
{

2D[A + C(L)]
h

}1/2

,

A =
(
θλωQ

D

)1/(ω+1)

.

(3.17)

We can apply a similar algorithm as in Section 3.1 to obtain the optimal solution in the
power investment function case, in which the optimal values of order quantity, setup cost,
lead time, and backorder rate, respectively, are denoted by Q̂s, Âs, L̂s, and β̂s.
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Table 1: Lead time data.

Lead time
component, i

Normal duration,
bi (days)

Minimum duration,
ai (days)

Unit crashing cost,
ci ($/day)

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

The backorder parameter
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Figure 1: Summary of the results of the optimal procedure for different values of ξ. Note that
EACL(Qs,As, Ls) and EAC(Qs,As, Ls) will be denoted by the symbols EACL(·) and EAC(·), respectively.

4. Numerical Examples

Example 4.1. In order to illustrate the above solution procedure and the effects of setup cost
reduction, let us consider an inventory system with the following data: D = 600 units per
year, A0 = $200 per setup, h = $20 per unit per year, θ = 0.1 per dollar per year, σ = 7 units
per week, and the service level 1 − α = 0.975; that is, the proportion of demands which are
not met from stock is α = 0.025, and the lead time has three components with data shown in
Table 1. Suppose further that the lead time demand follows a normal distribution and the
capital investment, I(A), in reducing setup cost can be described by a logarithmic function
with the parameter b = 5800. We want to solve the cases when the backorder parameter
ξ = 0, 0.5, 1, 10, 20, 40, 80, 100, and ∞ and q = 0.2 (in this situation, the value of the safety factor,
k, can be found directly from the standard normal distribution table and is 0.845). Applying
the proposed algorithm procedure yields the results shown in Table 2. Furthermore, we list
the optimal results of the fixed setup cost model in the same table to illustrate the effects of
investing in setup cost reduction (also see Figure 1).

From Table 2, comparing our new model with that of the fixed setup cost case, we
observe that the savings range from 9.68% to 9.83%, which shows that significant savings can
be achieved due to controlling the setup cost. Note that the savings and backorder rate β in-
crease as ξ decreases. It is also interesting to observe that the optimal order quantity, setup
cost, and lead time are the same for various backorder parameter, ξ.

Example 4.2. We use the same data as in numerical Example 4.1, and expect that the capital
investment I(A) in reducing setup cost is described by a power function with the parameters
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Figure 2: Summary of the results of the optimal procedure for different values of ξ. Note that
EACP (Âs, Q̂s, L̂s) and EAC(Âs,Q̂s,L̂s) will be denoted by the symbols EACP (·) and EAC(·), respectively.

Table 2: The optimal solutions for logarithmic investment case in Example 4.1.

Setup cost reduction model Fixed setup cost model (A = 200)

ξ As Qs Ls βs EACL(·) Qs Ls βs EAC(·) Savings (%)

0.0 61 76 6 1 2264.29 111 6 1 2511.13 9.83
0.5 61 76 6 0.512 2282.84 111 6 0.512 2529.68 9.76
1.0 61 76 6 0.345 2289.23 111 6 0.345 2536.07 9.73
10 61 76 6 0.050 2300.44 111 6 0.050 2547.28 9.69
20 61 76 6 0.026 2301.37 111 6 0.026 2548.20 9.69
40 61 76 6 0.013 2301.85 111 6 0.013 2548.68 9.68
80 61 76 6 0.007 2302.09 111 6 0.007 2548.93 9.68
100 61 76 6 0.005 2302.14 111 6 0.005 2548.98 9.68
∞ 61 76 6 0 2302.34 111 6 0 2549.18 9.68
Ls in weeks.

λ = 74000 and ω = 0.2. We solve the cases when ξ = 0, 0.5, 1, 10, 20, 40, 80, 100, and ∞.
Utilizing a similar procedure as proposed in the algorithm, the summarized optimal values
are tabulated in Table 3. Furthermore, the optimal results of the no-investment policy are
shown in the same table to illustrate the effects of investing in setup cost reduction (also see
Figure 2).
The following inferences can be made from the results in Tables 2 and 3.

(1) We observe that adopting different capital investment functions will cause a differ-
ence in setup cost. Hence, we have to choose an appropriate capital investment
function.

(2) Increasing the value of the backorder parameter, ξ, will result in an increase in the
total expected annual cost, but a decrease in the backorder rate, β. Moreover, for dif-
ferent parameter values, ξ, the optimal order quantity, setup cost, and lead time are
not influenced.
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Table 3: The optimal solutions for power investment case in Example 4.2.

Setup cost reduction model Fixed setup cost model (A = 200)

ξ Âs Q̂s L̂s β̂s EACP (·) Qs Ls βs EAC(·) Savings (%)

0.0 71 76 6 1 2244.56 111 6 1 2511.13 10.62
0.5 71 76 6 0.512 2263.12 111 6 0.512 2529.68 10.54
1.0 71 76 6 0.345 2269.51 111 6 0.345 2536.07 10.51
10 71 76 6 0.050 2280.72 111 6 0.050 2547.28 10.46
20 71 76 6 0.026 2281.64 111 6 0.026 2548.20 10.46
40 71 76 6 0.013 2282.12 111 6 0.013 2548.68 10.46
80 71 76 6 0.007 2282.37 111 6 0.007 2548.93 10.46
100 71 76 6 0.005 2282.42 111 6 0.005 2548.98 10.46
∞ 71 76 6 0 2282.62 111 6 0 2549.18 10.46
Ls in weeks.
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Figure 3: The effects of h, D, and δ on EACL(·).

(3) As the value of ξ increases, the total expected annual cost becomes close to the com-
plete lost sales case. Conversely, decreasing the value of ξ, the total expected annual
cost will approach the complete backorder case.

In addition, we use the logarithmic and power investment functions to examine the effects of
changes in the system parameters h, D, and δ(λ,ω) on the optimal order quantity Qs(Q̂s),
optimal setup cost As(Âs), optimal lead time Ls(L̂s), and minimum total expected annual
cost EACL(Qs,As, Ls) (EACP (Âs, Q̂s, L̂s)) in Examples 4.1 and 4.2.

Example 4.3. Using the same data and assumptions proposed in Example 4.1, we fix ξ at 0.5
and perform a sensitivity analysis by changing each of the parameters by +50%, +40%, +25%,
−25%, −40%, and −50%, taking one parameter at a time and keeping the remaining para-
meters unchanged. The results are shown in Table 4 and Figure 3.
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Table 4: Effects of change in the parameters for logarithmic investment case in Example 4.1.

Parameters % of change % of change in
Ls

As Qs EACL(·)

h

+50 −13.11 −18.42 +22.89 4
+40 −8.20 −18.42 +18.95 4
+25 −18.03 0 +13.00 6
−25 +31.15 +9.21 −12.22 6
−40 +52.46 +27.63 −20.45 8
−50 +83.61 +52.63 −26.65 8

D

+50 −31.15 0 +11.13 6
+40 −26.23 0 +9.21 6
+25 −18.03 0 +6.08 6
−25 +31.15 0 −7.70 6
−40 +62.30 0 −13.60 6
−50 +114.75 −10.53 −18.86 4

δ

+50 −50.82 0 −8.64 6
+40 −45.90 0 −7.21 6
+25 −32.79 0 −4.82 6
−25 +72.13 +6.58 +6.70 6
−40 +163.93 +31.58 +10.28 6
−50 +227.87 +46.05 +10.81 6

ξ = 0.5; Ls in weeks.

On the basis of the results of the Table 4, the following observations can be made.

(1) Qs and Ls decrease while EACL(·) increases with an increase in the value of the
holding cost parameter, h. The results show that EACL(·) is moderately sensitive,
whereas Qs and As are highly sensitive to the changes in h.

(2) Qs, Ls, and EACL(·) increase, whereas As decreases with an increase in the value
of the demand parameter D. Moreover, Qs and EACL(·) are moderately sensitive,
whereas As is highly sensitive to the changes in D.

(3) Qs, As, and EACL(·) decrease with an increase in the value of the model parameter
δ. Moreover, Qs and EACL(·) are moderately sensitive, whereas As is highly sensi-
tive to the changes in δ. Besides, we observe that as the value δ changes, the value Ls

is not influenced.

Example 4.4. Using the same data and assumptions proposed in Example 4.2, we fix ξ at 0.5
and perform a sensitivity analysis by changing each of the parameters by +50%, +40%, +25%,
−25%, −40%, and −50%, taking one parameter at a time and keeping the remaining para-
meters unchanged. The results are shown in Table 5 and Figure 4.
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Table 5: Effects of change in the parameters for power investment case in Example 4.2.

Parameters % of change % of change in
L̂s

Âs Q̂s EACP (·)

h

+50 −11.27 −18.42 +23.66 4
+40 −7.04 −18.42 +19.77 4
+25 −14.08 0 +12.60 6
−25 +22.54 +13.16 −12.21 6
−40 +36.62 +30.26 −20.65 8
−50 +54.93 +51.32 −26.94 8

D

+50 −23.94 0 +12.31 6
+40 −19.72 0 +10.13 6
+25 −14.08 0 +6.62 6
−25 +22.54 0 −8.02 6
−40 +42.25 0 −13.89 6
−50 +76.06 −13.16 −19.01 4

λ

+50 +76.06 +15.79 +8.61 6
+40 +59.15 +10.53 +7.36 6
+25 +36.62 +2.63 +5.02 6
−25 −32.39 0 −6.06 6
−40 −49.30 0 −10.46 6
−50 −59.15 0 −13.88 6

ω

+50 −1.41 0 −1.70 6
+40 0 0 −1.11 6
+25 +1.41 0 −0.42 6
−25 −9.86 0 −0.98 6
−40 −22.54 0 −2.65 6
−50 −33.80 0 −4.46 6

ξ = 0.5; L̂s in weeks.

On the basis of the results of the Table 5, the following observations can be made.

(1) The results of our computing show that when the power investment function is
considered, the optimal values of the order quantity, setup cost, lead time, and total
expected annual cost in h and D have the same tendency as in the logarithmic in-
vestment function.

(2) Q̂s, Âs, and EACP (·) increase with an increase in the value of the model parameter
λ. The results show that Âs is highly sensitive, whereas Q̂s and EACP (·) are moder-
ately sensitive to the changes in λ. Besides, we observe that as the value λ changes,
the value L̂s is not influenced.

(3) As the value ω changes, Q̂s and L̂s are not influenced. Moreover, Âs and EACL(·)
are moderately sensitive to the changes in ω.

5. Concluding Remarks

The purpose of this paper is to investigate a mixture inventory policy on a controlling setup
cost in the stochastic continuous review model involving controllable backorder rate and
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Figure 4: The effects of h, D, λ, and ω on EACP (·).

variable lead time in which the stockout cost is replaced with a service level constraint that
requires a certain level of service to be met in every cycle. We consider two forms of com-
monly used investment cost functions, logarithmic and power, to reduce setup cost. By an-
alyzing the total expected annual cost, we develop an algorithm to determine the optimal
order quantity, setup cost, and lead time so that the total expected annual cost incurred has
the minimum value. The results of the numerical examples indicate that if we make decisions
with capital investment in reducing setup cost, it would help to lower the system cost, and we
can obtain a significant amount of savings. To understand the effects of the optimal solution
on changes in the value of the different parameters associated with the inventory system,
sensitivity analysis is performed. Furthermore, we observe from the sensitivity analysis that
there are slight differences between the two capital investment functions. From Table 4, we
see that the optimal setup cost and the total expected annual cost decrease with an increased
parameter δ for the logarithmic functions. Nevertheless, from Table 5, the optimal setup cost
and the total expected annual cost increase with an increased parameter λ for the power
function.
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