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Starting from the experimental data referring to the main parameters of the fracture surfaces
of some 300-grade maraging steel reported by the classical work published in Nature 308, 721–
722(1984), this work studied (a) the multifractal scaling by the main parameters of the slit islands
of fracture surfaces produced by a uniaxial tensile loading and (b) the dependence of the impact
energy to fracture and of the fractal dimensional increment on the temperature of the studied
steels heat treatment, for the fracture surfaces produced by Charpy impact. The obtained results
were analyzed, pointing out the spectral (size) distribution of the found slit islands in the frame of
some specific clusters (fractal components of the multifractal scaling) of representative points of
the logarithms of the slit islands areas and perimeters, respectively.

1. Introduction: Complexity, Universality, Power Laws, and
Fractal Scaling

As it is well-known, one of the most important present topics refers to the obtainment of
scientific information about the complex materials and systems [1–3].

The main founders of the complexity theory in physics have pointed out [4–7] (see
also the synthesis review [8, 9]) that several completely different complex systems (computer
arrays, complex random (Internet, particularly), robots, networks, social sciences, biology
(with some specific topics: colonies, swarms, immunology, brain, genetics, and proteomics),
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economics, mathematics, glasses, agents, and cognition [10–13], etc.) have some common
features centered on their statistical behavior and the corresponding phase transforms [4, 5, 8, 9]
and chemical reactions, particularly, as well as of some dynamic aspects [14–16], nonlinear
effects [17], and so forth. It results that these complex systems have certain universality
properties, which—due to their generality (see, e.g., [8])—can be described only by some
specific numbers (the so-called similitude numbers, or criteria [18–20]).

How could it be possible to describe dimensional (physical, particularly) quantities
only by numbers? The answer is obtained from the examination of: (a) predictions of
Anderson [4, 5, 8, 9] relative to the “explosive” autocatalytic (exponential) growth following
the spontaneous symmetry breaking inside the specific complex systems (one finds that a
certain dimensional parameter p has to be described by its logarithm: lnp), (b) Dalton’s law
of “defined proportions”, intervening in the theory of chemical reactions (somewhat similar
to the phase transforms) [3]: dξ = −dν1/ν1 = −dν2/ν2 = · · · = +dνN/νN , where the sign
“−” corresponds to substances that disappear during the considered chemical reaction, while
the sign “+” corresponds to the appearing substances, finding that the degree of advance ξ
of the considered reaction can be expressed by means of ln νj , where νj is the amount (e.g.,
number of moles) of one of the substances participating in the chemical reaction, (c) statistical
expression of the thermodynamic entropy (describing the dissipative processes), given by
the Planck-Boltzmann’s expression: S = −k · ln℘, where k is the the Boltzmann’s constant,
where ℘ is the probability density, (d) Claude Shannon’s expression [21–23] of the individual
information quantity: � = −a · ln℘ (a = constant).

The simplest expression (the zero-order approximation) of the relation between a test
physical parameter t(u) and the uniqueness one u is, of course, the linear expression:

ln t = ln t1 + s · lnu, equivalent to the power law: t(u) = t1 · us. (1.1)

If the uniqueness parameter u corresponds to the size L of the considered complex system,
then the power law (1.1) particularizes into the fractal scaling

t(L) = t1 · Ls. (1.2)

When the relation ln t = f(lnL) is more intricate than the linear one, presenting, for example,
a certain curvature, then the existing experimental data can be divided in some groups of
pairs {tk1, Lk1; . . . tkn, Lkn} so that for each group, a specific linear relation is valid: ln tki =
ln t1k+sk ln uki, equivalent to the fractal scaling: tki = t1k ·usk

ki
. Because the prepower coefficient

t1k and the power exponent sk depend on the group k of chosen data, it results that the set of
relations {tki = t1k · usk

ki | k = 1,N} corresponds to a multifractal scaling [24, 25].
Some additional detailed studies of the different types of fractal and multifractal

scaling were accomplished in the frame of works [26–28].

2. Critical Findings Referring to the Work Nature, 308, 721-722(1984)

In 1984, Mandelbrot et al. [29] claimed that the fracture surfaces of metals are fractal (self-
similar) over a wide range of sizes, and introduced the experimental methods named “slit
island analysis” (SIA) and “fracture profile analysis” (FPA). As the large majority of papers
published by Nature (average impact factor 12.86 in 1985 and 24.82 in 1996), the above-
indicated work had a high scientific impact: we identified [30, 31] at least 26 papers and
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books published only in the following 10 years (up to 1993, inclusively [30]), studying
the fractal character of the fracture surfaces. Despite of its large impact, the hypothesis of
Mandelbrot et al. [29] was somewhat restricted by the following studies: (a) even the papers
of Underwood [32], Pande et al. [33], Lung and Mu [34], and Huang et al. [35] affirmed
that the fracture surfaces of metals can be approximately considered to possess a certain fractal
character, (b) Underwood and Banerji [32] concluded that the slit island analysis itself was
imperfect in nature as a method for measuring the fractal dimension of fractured surfaces,
(c) Lung and Mu [34] found that the fractal dimension was largely affected by the measuring
ruler employed and postulated the concept of inherent measuring ruler, (d) Huang et al.
[35] pointed out that how to determine the fractal dimension of a fractured surface has
always been a problem of “argument”, and (e) Williford [36] tried to explain the obtained
results in terms of multifractals, but this explanation seemed not to be satisfactory for some
experimental results [37, 38], and so forth.

The detailed numerical analysis accomplished in the frame of this work pointed out
that the main missing elements of work [29] are the following:

(a) no justification of the indicated values of fractal dimensional increment from the
capture of Figure 1 [29],

(b) no analysis of the multifractal scaling of the logA = f(log P) dependence corre-
sponding to the slit islands areas and perimeters, respectively,

(c) the regression line: impact energy = f (fractal dimensional increment) from
Figure 3 [29] is obviously inexact, and it does not consider the corresponding
possible nonlinear dependence,

(d) the dependence of the fractal dimensional increment on the temperature of the heat-
treatment of the 300-grade maraging steel Charpy impact specimens studied by
Figure 3 [29] was not studied.

3. Procedure Intended to the Evaluation of the Fractal Dimension of
the Slit Islands

In order to evaluate the slope of the regression line logA = f(log P), the numerical values
of the decimal logarithms logA, logP of the slit islands areas and perimeters, respectively,
(indicated by Figure 1 [29]) were firstly evaluated by means of the scanning procedure [39].
We obtained s ≡ D′ ∼= 1.6225 = D − 1 = iF , in considerable disagreement with the values 1.28
and 1.26 indicated by the capture of Figure 1 [29].

Starting from the interpretation provided by the monograph [40, pages 64–65] of
the experimental data obtained by means of the slit island method, according to whom
(a) the cross-section of area A of the fractured material is not fractal; therefore, this area is
proportional to the square of the slit island average radius R: A ∝ R2, while (b) the perimeter
P of the slit island is really fractal (of dimensionD−1, whereD is the dimension of the fracture
surface); therefore, P ∝ RD−1, and we have found that A ∝ P 2/(D−1) and the slope of the
logA = f(log P) plot is: s = 2/(D − 1). From this relation, we obtained, in good quantitative
agreement with the indicated fractal dimensional increment, iF = D − 1 values indicated in
the caption of Figure 1 [29] as well as with the results obtained by other similar works (e.g.,
[41]).
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Table 1:Main features of the fractal: logA = c0+c1 logP and multifractal (parabolic): logA = co+c1 logP +
c2(logP)

2 scalings of the parametersA, P of the slit islands of fracture surfaces reported by Figure 1 [29].

The type of the logA = f(logP) correlation
(scaling)

Regression line
(fractal scaling)

Parabolic correlation
(multifractal scaling)

c0 −1.776 −1.5686
c1 1.6265 (average slope) +2.39074
c2 0 −0.16965
Correlation coefficient 0.9655 0.9792
Average relative error (%) for all 41 studied slit
islands 7.540% 7.346%

Average relative error for the 6 extreme (first 3
and last 3) representative points of Figure 1
[24, 25]

10.134% 8.733%

Apparent fracture surface fractal dimension:
DM = 1 + slope 2.6265 2.4487 · · · 3.0514
Fracture surface fractal dimension according to
our considerations (this work):Ds = 1 + 2/slope 2.23 1.975 · · · 2.380

4. Study of the Multifractal Scaling of the logA = f(logP) Dependence

Taking into account that all 6 extreme (first 3 and last 3) representative points of Figure 1
[29] are located under the regression line, we assumed that a nonlinear (even a parabolic)
logA = f(log P) expression could agree better with the experimental data reported by this
figure. To check this assumption, we used the procedures of the well-known classical gradient
method [42–44] in order to find the parameters of the parabolic correlation

logA = c2
(
log P

)2 + c1 logP + c0, (4.1)

which ensure the best fit of the experimental data of Figure 1 [29].
The obtained results are synthesized by Table 1.
One finds that the explanation given by Williford [36], in terms of multifractals, of the

experimental data referring to the fracture surfaces is more realistic than the initial Mandel-
brot’s hypothesis. We have to underline that this explanation (multifractals) is supported also
by the results obtained by Carpinteri and Chiaia [24, 25] especially for concrete samples.

The new versions of Figures 1 and 3 [29], after our numerical conversion (using the
method of work [39]) of the experimental data indicated by these figures and the following
parabolic fit (for the logA = f(log P) pairs), and the least-squares fit (for the fractal dimen-
sional increment = f (impact energy)) are presented below in the frame of our Figures 1 and
2.

5. Towards the Fractal Components of the Multifractal Set of Fracture
Surfaces Slit Islands of the Maraging Steels Studied by [29]

Taking into account the practical continuous change of the slope of the logA = f(log P)
plot, the definition of the fractal components of the multifractal set of fracture surfaces
slit islands is strongly related to the experimental accuracy of the logA, log P parameters. As
the accuracy of these parameters is not known, a certain image on these fractal components



Mathematical Problems in Engineering 5

100

101

102

103

104

105

100 101 102 103 104 105

A
re
a
(µ
m

2 )

Perimeter (µm)

Figure 1: The new (improved) version of Figure 1 [29] after [29], the numerical conversion (using method
[39]) of the corresponding experimental data and the parabolic fit of the logA = f(logP) pairs.
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Figure 2: The new (corrected) version of Figure 3 [29] after the numerical conversion (using the method
[39]) of the corresponding experimental data, and the least-squares fit of the fractal dimensional incre-
ment = f (impact energy) dependence data.

can be obtained starting from the identification of clusters of representative points logA,
log P .

We defined the logA, log P clusters starting from the distances between the nearest
representative points in the space logA, log P . If the distance between the nearest represen-
tative points belonging to 2 neighbor sets is considerably larger than that for the nearest such
points belonging to each set, these neighbor sets correspond to the desired clusters.

Using this procedure, we have identified 6 clusters in the logA, log P space of
Figure 1 [29], defined by the pairs of logA, log P coordinates corresponding to the marginal
representative points of each cluster.

These clusters of representative points in the logA, log P space are gathered around
some average (logP)i values (i = 1,N). For each cluster of representative points, the local



6 Mathematical Problems in Engineering

Table 2: The “spectral” (size) distribution of the clusters of representative points in the logA, logP plot
involved by Figure 1 [26–29] as representing the fractal components of the multifractal scaling of the
logA = f(logP) dependence.

Interval of fractal
increment values (0.975; 1.014) (1.034; 1.140) (1.123; 1.213) (1.205; 1.297) (1.283; 1.392) (1.392; 1.747)

Pairs of values of
the slit islands P
Perimeter (μm)
and area (μm2)

(10.00; 5.62)
· · ·

(17.15; 11.55)

(22.07; 27.38)
· · ·

(74.99; 103.7)

(62.64; 237.1)
· · ·

(154.0; 421.7)

(143.3; 930.6)
· · ·

(316.2; 2458)

(283.9; 4068)
· · ·

(649.4; 4371)

(649.; 23714)
· · ·

(4698;83536)

Number of
representative
points in Figure 1
[1–3]

3 8 10 8 6 6

Percentage of
representative
points

7.318% 19.512% 24.390% 19.512% 14.634% 14.634%

slope si = 2c2(logP)i + c1 of the multifractal scaling logA = c2(logP)2 + c1 logP + c0 and
the local fractal dimensional increment iFi = 2/si were evaluated, the obtained results being
synthesized by Table 2. The synthesis of these clusters features as well as the corresponding
fractal dimensions (or increments) corresponding to each cluster (as a specific representative
of the fractal components of the multifractal set of fracture surfaces slit islands) is presented
by Table 2.

One finds that the small values of the fractal dimension correspond to slit islands of
relatively small dimensions (perimeters of the magnitude order of μm), corresponding to
fracture surfaces not too curly, and even involving some surface breaks (which could explain
eventually the seldom values little less than 2 of the fractal dimension corresponding to some
small parts of the fracture surface).

6. Study of the Fractal Dimensional Increment of
the Fracture Surfaces Produced by Impact on
the Temperature of the Steels Heat Treatment

Unlike the fracture surfaces produced by uniaxial tensile loading, whose characteristic
parameters were reported for the 300-grade maraging steel by Figure 1 [29], the last part
of this work (Figure 3 [29]) reports the main features of the fracture surfaces produced by
impact.

The evaluation of the slope s and intercept i of the regression line Eimp(J) = s · theat + i
describing the impact energy to fracture in terms of the temperature of the studied steels
heat treatment led us to the results: s ∼= −1.069 J/◦C, i ∼= 494.21 J with a correlation coefficient
r ∼= −0.9563 and a square mean relative error of 10.05%.

Similarly, the evaluation of the slope s′ and of the intercept i′ of the regression line
iF = s′ · theat + i′ describing the fractal dimensional increment of the fracture surface produced
by impact in terms of the temperature of the studied steel heat treatment leads to the results
s′ ∼= 1.25 · 10−3 ( ◦C)−1, i′ ∼= −0.260, with a correlation coefficient r ′ ∼= 0.9243 and a square mean
relative error of 10.971%.

One finds that, as it was expected, (a) the impact energy to fracture decreases (approx-
imately linearly, up to 450◦C) with the temperature of the studied steels heat treatment and
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(b) the fracture surface deformation (from its ideal planar shape), measured by its fractal
dimensional increment, increases with the temperature of the heat treatment.

It was possible to obtain also the parameters of a more exact (than that performed in
the frame of Figure 3 [26–29]) regression line Eimp(J) = s′′ · iF + i′′ describing the dependence
of the impact energy to fracture on the corresponding fracture surface deformation (fractal
dimensional increment) s′′ ∼= −781.47 J, i′′ ∼= 258.40 J, correlation coefficient r ′′ ∼= −0.9442, and
square mean relative error 13,31%, but we consider these last results as less important than
the above-indicated ones, referring to the Eimp and iF = f(theat) dependencies.

7. Investigations on the Compatibility with the Experimental Data of
the Fractal/Multifractal Descriptions of the Fracture Parameters

Taking into account the errors affecting practically all experimental data, the decision about
the compatibility (or incompatibility) of a certain hypothesis (e.g., the fractal character of the
fracture surfaces) has to be established using some statistical tests [45–47]. Unfortunately,
neither [29] nor [30, 32–38] studied statistically the compatibility of the investigated
hypothesis relative to the experimental data, and even these works did not indicate the errors
corresponding to the used experimental data.

In order to evaluate the error risk at the rejection of the compatibility of a certain
representative point relative to the studied correlation Yi = f(X), it is possible to use both
global (for the entire correlation) or local test, respectively. For example, the error risk can be
evaluated by means of the expression (see [44–48])

qk = exp

{

− 1
2
(
1 − r2

k

)

[(
Yik − Yi,tk

s(Yik)

)2

+
(
Xk −Xtk

s(Xk)

)2

− 2rk
(
Yik − Yi,tk

s(Yik)

)(
Xk −Xtk

s(Xk)

)]}

,

(7.1)

where Yik and Xk are the impact energy and the fractal dimension corresponding to the
representative point (state) k(= 1, 2, . . .N), Yi,tk andXtk are the impact energy and the fractal
dimension corresponding to the tangency point of the confidence ellipse centered in (Yik, Xk)
with the studied correlation plot: Yi = f(X), while rk, s(Yik), and s(Xk) are the correlation
coefficient and the square mean errors corresponding to the individual values Yik and Xk.
Because these errors are not indicated by the studied work [29], we will try evaluate them
from other studies about the fracture energy.

The studies [31, 48] of the published works concerning the (multi)fractal correlations
of some mechanical (fracture) parameters with the specimen size points out the magnitude
orders of the errors corresponding to the fracture energy. The corresponding relative errors
are indicated in Table 3. One finds that for concrete specimens, the average relative errors
affecting the fracture energy is of (approximately) 7%.

Assuming that the relative errors affecting the values of the fractal dimension
are considerably less than those corresponding to the impact energy (approx. 10%), the
expression (7.1) leads to error risks somewhat larger than 2% associated to the rejection of
the compatibility hypothesis of the fractal/multifractal descriptions with the experimental
data. It results that the compatibility hypothesis cannot be rejected, but a more sure decision
needs imperatively the knowledge of the corresponding measurement errors.
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Table 3: Relative errors corresponding to the experimental data concerning the fracture energy GF for dif-
ferent concrete and rocks specimens.

Material [reference] Concrete [49] Dry concrete [50] Wet concrete [50] Red felser
sandstone [50]

Limits of relative errors 4.68 · · · 9.76% 4.028 · · · 16.217% 2.502 · · · 11.585% 3.125 · · · 35.424%
Average relative error 6.062% 8.131% 6.473% 16.236%

8. Conclusions

The accomplished study of the numerical data involved by [29] points out the following main
original findings.

(1) The decision concerning the fractal (or multifractal) character of the fracture sur-
faces of metals needs a previous rigorous study by means of the numerical analysis
procedures.

(2) In this aim, both the errors corresponding to the geometrical parameters (perime-
ters and areas of the slit islands) and to the specific mechanical parameters (impact
energies), respectively, are necessary.

(3) Taking into account the considerable differences between the values of the fractal
dimension resulting from Figure 1 [29], or indicated in the caption of Figure 1 [29],
or in Figure 3 [29], we consider that the correct calculation of the fractal dimension
corresponds to the interpretation from work [40], which considers that only the
perimeters of the slit islands present a fractal character: P ∝ RD−1, while the areas of
these slit islands present the usual second degree dependence on their radiiA ∝ R2;
we have found that this interpretation [40] leads also to an agreement between the
data from Figure 1 [29] and the values of the fractal dimension indicated by this
work [29].

(4) The accomplished study indicates a multifractal nature of the fracture surfaces of
metals, the size distribution of the fractals (involved by this multifractal structure)
being also evaluated by this work.

(5) The influence of the temperature of the studied maraging steels heat-treatment
on the (a) impact energy to fracture and (b) the fracture surface deformation,
measured by its fractal dimensional increment, were also studied, finding the
increase of the fracture surface deformation with the heat-treatment temperature,
particularly.

(6) Using the evaluated errors affecting the fracture energies of some concrete speci-
mens, we have found that the compatibility hypothesis of the fractal/multifractal
descriptions with the experimental data cannot be rejected, but amore sure decision
always needs an accurate knowledge of the corresponding measurement errors.
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