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H∞ filtering problem for a class of piecewise homogeneous Markovian jump nonlinear systems
is investigated. The aim of this paper is to design a mode-dependent filter such that the filtering
error system is stochastically stable and satisfies a prescribedH∞ disturbance attenuation level. By
using a new mode-dependent Lyapunov-Krasovskii functional, mixed mode-dependent sufficient
conditions on stochastic stability are formulated in terms of linear matrix inequalities (LMIs).
Based on this, the mode-dependent filter is obtained. A numerical example is given to illustrate
the effectiveness of the proposed main results.

1. Introduction

The filtering problem has received significant attention in the past decade. Current efforts
on this topic can be divided into two classes: the Kalman filtering approach and the H∞
filtering approach. As we all know, Kalman filtering approach is based on the assumption
that the system is exactly known, and its disturbances are stationary Gaussian noises with
known statistics. These assumptions limit the application scope of the Kalman filtering
technique when there are uncertainties in either the exogenous input signals or the system
model [1]. To overcome the restriction described above, H∞ filtering has been introduced as
an alternative filtering technique [2–6].

On the other hand, Markovian jump systems are an active area of research. It switches
from one mode to another in a random way, and the switching between the modes is gov-
erned by aMarkovian process with discrete and finite state space. These models serve as con-
venient tools for analyzing plants that are subjected to random abrupt parameter changes due
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to, for instance, component and/or interconnection failures, sudden environmental changes,
or change of the operating point of a linearized model of a nonlinear plant. A wide class of
industrial system applications experience time delays due to various reasons including inher-
ent physical properties (mass transport flow, recycling), data transmission delays or finite
capabilities of information exchange [7]. When considering the continuous systems with
time-varying delay, the systems can be clarified into two types, one is slow time-varying delay
systems, that is, the derivative of the time delay is less than one, for example, [2, 8, 9], and the
other is fast time-varying delay systems, that is, there are no constraints on the derivative of
the time delay. Both Lyapunov-Krasovskii and Lyapunov-Razumikhin approaches are funda-
mental for time-delay systems, and some existing work usually do not require the derivative
of the time delay to be less than one, see, for example, [10, 11]. Due to their extensive
practical applications, considerable attention has been devoted to Markovian jump systems
with time delays. The issues of stability and control have been well investigated; see, for
example, [9, 11–29] and references therein. In [30–32], the sliding mode control of Markovian
jump singular systems was studied, and, new integral-type sliding surface functions were
designed. Moreover, strict LMI conditions of the stochastic stability were proposed in [30, 31],
which are easy to be checked by Matlab LMI toolbox. In [32], a suitable switching surface
function and a sliding mode control law were designed to ensure the attraction of the sliding
surface when the system changes from one mode to another under Markovian switching,
and the slack matrix approach was used to derive less conservative LMI conditions assuring
stochastic admissibility. The filtering problem for Markovian jump time-delay systems was
reported in [8, 33–40]. Many nonlinear physical systems can be represented as a connection of
a linear dynamical system and a nonlinear element. Filtering for Markovian jump nonlinear
system is an important research area that has attracted considerable interest [41–43]. It should
be pointed out that the above-mentioned references assume that the Markovian processes
are homogeneous, that is, the considered transition probabilities (TPs) in Markovian process
are assumed to be time invariant. However, the assumption cannot always be satisfied in
real applications, and the ideal assumption on TPs inevitably limits the applications of the
established results to some extent [44]. Therefore, it is important and necessary to pay
attention to the study of Markovian jump systems with time-varying TPs. Recently, the
problem ofH∞ estimation for discrete-timeMarkovian jump linear systemwith time-varying
TPs has been investigated in [44]. The H∞ control problem has been conducted for a class
of discrete-time Markovian jump systems with time-varying TPs in [45], where the average
dwell-time switching is used to describe the variation among the TPs. The stochastic stability
analysis of piecewise homogeneous Markovian jump neural networks with mixed time
delays has been studied in [46]. But, the time-varying delays in [46] are independent of jump
mode. To the best of our knowledge, no results have been given for piecewise homogeneous
Markovian jump nonlinear systems with mode-dependent time-varying delays. With the
appearance of time-varying TPs and mode-dependent time-varying discrete and distributed
delays, the main difficulties are as follows: (1) the new Lyapunov functional should be
constructed to deal with above problem; (2) since the system involves joint jump processes
and mode-dependent time-varying delays, the calculation of derivative of the Lyapunov
functional and the using of inequality techniques become more complicated. Moreover, the
Lyapunov matrix Pi is assumed to be diagonal matrix in some existing literature, which leads
to some conservativeness. Therefore, the key problems in this research are: (1) how to choose
a Lyapunov function to derive a sufficient stochastic stability condition for the considered sys-
tems; (2) how to use the inequality techniques and calculate the parameters of the filter such
that the resulting sufficient conditions are less conservative? Which has motivated this paper.
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In this study, we are concerned to develop an efficient approach forH∞ filtering prob-
lem of piecewise homogeneous Markovian jump system. The system under study involves
mode-dependent time-varying discrete and distributed delays and inherent sector-like
nonlinearities. By using a novel Lyapunov-Krasovskii functional, mixed mode-dependent
sufficient condition on stochastic stability with an H∞ performance is derived in terms of
LMIs. Based on this, the existence condition of the desired filter which guarantees stochastic
stability and an H∞ performance of the corresponding filtering error system is presented. A
numerical example is provided to show the effectiveness of the proposed results.

Notation. Throughout this paper, R
n denotes the n-dimensional Euclidean space. (Ω,F,P) is

a probability space, Ω is the sample space, F is the σ-algebra of subsets of the sample space,
and P is the probability measure on F. E{·} refers to the expectation operator with respect to
some probability measureP. We use diag{·, ·, ·} as a block diagonal matrix.A > 0 (< 0)means
A is a symmetric positive (negative) definite matrix. AT denotes the transpose of matrix A, I
is the identity matrix with compatible dimension.

2. System Description and Definitions

Fix a probability space (Ω,F,P) and consider the following stochastic Markovian jump sys-
tem with mode-dependent time-varying delays:

ẋ(t) = A(rt)x(t) +A1(rt)x(t − τ(t, rt)) +A2(rt)
∫ t

t−τ(t,rt)
x(s)ds + B(rt)f(x(t)) +D1(rt)ω(t),

y(t) = C(rt)x(t) + C1(rt)x(t − τ(t, rt)) + C2(rt)
∫ t

t−τ(t,rt)
x(s)ds + E(rt)g(x(t)) +D2(rt)ω(t),

z(t) = H(rt)x(t),

x(t) = φ(t), t ∈ [−τ, 0],
(2.1)

where x(t) ∈ R
n is the state vector; ω(t) is the exogenous disturbance input which belongs

to L2[0 ∞); y(t) ∈ R
p is the measured output; z(t) ∈ R

q is the signal to be estimated;
φ(t) is a compatible vector-valued initial function defined on [−τ, 0]; A(rt), A1(rt), A2(rt),
B(rt), D1(rt), C(rt), C1(rt), C2(rt), E(rt), D2(rt) and H(rt) are real constant matrices with
appropriate dimensions. τ(t, rt) is the mode-dependent time-varying delay. The process
{rt, t � 0} is described by a Markov chain with finite state space S1 = {1, 2, . . . ,N}, and its
transition probability matrix, Π(σt+Δ) = [π(σt+Δ)

il ]N×N (i, l ∈ S1), is governed by

Pr{rt+Δ = l | rt = i} =

{
π

(σt+Δ)
il

Δ + o(Δ), l /= i,

1 + π
(σt+Δ)
ii Δ + o(Δ), l = i,

(2.2)

where Δ > 0 and limΔ→ 0(o(Δ)/Δ) = 0; π(σt+Δ)
il � 0 for l /= i is the transition rate from mode

i at time t to mode l at time t + Δ and π
(σt+Δ)
ii = −∑N

l=1,l /= i π
(σt+Δ)
il . In this study, we assume

that σt vary in another finite set S2 = {1, 2, . . . ,M}, and the variations are considered as the
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stochastic variation. The variation of σt is governed by a higher-level transition probability
(HTP)matrix Λ = [λjk]M×M (j, k ∈ S2) and the TPs of Markov chain satisfy

Pr
{
σt+Δ = k | σt = j

}
=

{
λjkΔ + o(Δ), k /= j,

1 + λjjΔ + o(Δ), k = j,
(2.3)

where λjk � 0 for k /= j is the transition rate from mode j at time t to mode k at time t + Δ
and λjj = −∑M

k=1,k /= j λjk. The stochastic processes rt and σt are assumed to be independent
throughout this paper. For vector-valued functions f(x(t)) and g(x(t)), we assume:

[
f(x) − f

(
y
) −M1

(
x − y

)]T[
f(x) − f

(
y
) −M2

(
x − y

)]
� 0,

[
g(x) − g

(
y
) − L1

(
x − y

)]T[
g(x) − g

(
y
) − L2

(
x − y

)]
� 0,

(2.4)

where for all x, y ∈ R
n and M1,M2, L1, L2 ∈ R

n×n are the known constant matrices. In what
follows, for implicity of presentations and without loss of generality, we always assume that
f(0) = 0 and g(0) = 0.

For simplicity, a matrix R(rt) will be denoted by Ri. For example, A(rt) is denoted by
Ai, A1(rt) is denoted by A1i and τ(rt, t) is denoted by τi(t), (i ∈ S1). When the mode is in
rt = i, the mode-dependent time-varying delay satisfies

0 � τi(t) � τi � τ, τ̇i(t) � μi, (2.5)

where τ = max{τi}.
In this study, the following full-order linear filter is proposed to estimate the signal

z(t):

˙̂x(t) = AFij x̂(t)dt + BFij y(t),

ẑ(t) = CFij x̂(t),

x̂(0) = 0,

(2.6)

where x̂(t) is the filter state vector, and (AFij BFij CFij ) are appropriately dimensioned filter
matrices to be determined.

Define the estimation error by e(t) = z(t) − ẑ(t), we obtain the following filtering error
system:

ξ̇(t) = Aijξ(t) +A1ijKξ(t − τi(t)) +A2ijK

∫ t

t−τi(t)
ξ(s)ds + Bijf(Kξ(t)) + Eijg(Kξ(t)) +Dijω(t),

e(t) = Hijξ(t),

x̃(t) = φ̃(t), ∀t ∈ [−τ, 0],
(2.7)
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where ξ(t) = [xT (t) x̂T (t)]T , φ̃(t) = [φT (t) 0T ]T , and

Aij =
[

Ai 0
BFijCi AFij

]
, A1ij =

[
A1i

BFijC1i

]
, A2ij =

[
A2i

BFijC2i

]
, Bij =

[
Bi

0

]
,

Eij =
[

0
BFijEi

]
, Dij =

[
D1i

BFijD2i

]
, Hij =

[
Hi −CFij

]
, K =

[
I 0

]
.

(2.8)

Remark 2.1. According to the definitions of homogeneous Markovian chain and nonhomoge-
neous Markovian chain in [44, 47], one can see that the Markovian chain σt in this paper is
homogeneous, while the Markovian chain rt is neither homogeneous nor nonhomogeneous,
but a state between them, which can be called the finite piecewise homogeneous Markovian
chain.

Remark 2.2. In this paper, the nonlinear functions f(x(t)) and g(x(t)) are said to belong
to sectors, which means that the nonlinearities are bounded by sectors. The nonlinear
descriptions in (2.4) are quite general that include the usual Lipschitz conditions as a special
case [2].

The following lemma and definitions are introduced, which will be used in the proof
of the main results.

Lemma 2.3 (see [48]). For any matrix M > 0, scalar γ > 0, vector function ω : [0, γ] → Rn such
that the integrations concerned are well defined, the following inequality holds:

[∫ γ

0
ωT (s)ds

]
M

[∫ γ

0
ω(s)ds

]
� γ

∫ γ

0
ωT (s)Mω(s)ds. (2.9)

Definition 2.4. The filtering error system (2.7) with ω(t) = 0 is said to be stochastically stable,
if for any initial ϕ(t) ∈ R

n defined on [−τ, 0] andmodes rt and σt, the following relation holds:
[7]

lim
T →∞

E
{∫T

0

∥∥ξ(s, r0, σ0, ϕ
)∥∥2ds

}
< ∞. (2.10)

Definition 2.5. Given a scalar γ > 0, the filtering error system (2.7) is said to be stochastically
stable with anH∞ performance γ , if for every system mode rt, the filtering error system (2.7)
withω(t) = 0 is stochastically stable and, under zero initial condition, it satisfies ‖e‖2 � γ‖ω‖2
for any nonzero ω(t) ∈ L2[0,∞].
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3. Main Results

In this section, we first propose a delay-dependent sufficient condition for stochastic stability
with the H∞ performance of filtering error system (2.7). Now, consider the following
Lyapunov-Krasovskii functional for systems (2.7):

V
(
ξt, t, i, j

)
=

6∑
n=1

Vn

(
ξt, t, i, j

)
, (3.1)

where

V1
(
ξt, t, i, j

)
= ξT (t)P(rt, σt)ξ(t),

V2
(
ξt, t, i, j

)
=
∫ t

t−τ(t,rt)
ξT (s)KTQ1(rt, σt)Kξ(s)ds +

∫ t

t−τ(rt)
ξT (s)KTQ2(rt, σt)Kξ(s)ds,

V3
(
ξt, t, i, j

)
=
∫ t

t−τ(t,rt)

[∫ t

θ

ξT (s)KTds

]
R1(rt, σt)

[∫ t

θ

Kξ(s)ds

]
dθ,

V4
(
ξt, t, i, j

)
= τ

∫0

−τ

∫ t

t+θ
ξ̇T (s)KTZKξ̇(s)dsdθ,

V5
(
ξt, t, i, j

)
=
∫0

−τ

∫ t

t+θ
ξT (s)KTR2Kξ(s)dsdθ +

∫0

−τ(rt)

∫ t

t+θ
ξT (s)KTG1(rt)Kξ(s)dsdθ,

V6
(
ξt, t, i, j

)
=
∫ τ

0

∫0

−θ

∫ t

t+s
ξT (α)KTR3Kξ(α)dαdsdθ +

∫ τ

0

∫ t

t−θ
(s − t + θ)ξT (s)KTG2Kξ(s)dsdθ.

(3.2)

Let L be the weak infinitesimal generator of the random process {ξt, rt, σt}. Then, for
each i ∈ S1, j ∈ S2, the stochastic differential of V1(ξt, t, i, j) along the trajectory of system (2.7)
is given by

LV1
(
ξt, t, i, j

)
= 2ξT (t)Pij

×
[
Aijξ(t) +A1ijKξ(t − τi(t)) +A2ijK

∫ t

t−τi(t)
ξ(s)ds + Bijf(Kξ(t))

+Eijg(Kξ(t)) +Dijω(t)

]
+ ξT (t)

[∑
l∈S1

π
(j)
il Plj +

∑
k∈S2

λjkPik

]
ξ(t),

LV2
(
ξt, t, i, j

)
= L

∫ t

t−τ(t,rt)
ξT (s)KTQ1(rt, σt)Kξ(s)ds +L

∫ t

t−τ(rt)
ξT (s)KTQ2(rt, σt)Kξ(s)ds
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= lim
Δ→ 0+

1
Δ
E

{∫ t+Δ

t+Δ−τ(rt+Δ,t+Δ)
ξT (s)KTQ1(rt+Δ, σt+Δ)Kξ(s)ds

−
∫ t

t−τi(t)
ξT (s)KTQ1ijKξ(s)ds

}

+ lim
Δ→ 0+

1
Δ
E

{∫ t+Δ

t+Δ−τ(rt+Δ)
ξT (s)KTQ2(rt+Δ, σt+Δ)Kξ(s)ds

−
∫ t

t−τi(t)
ξT (s)KTQ2ijKξ(s)ds

}

= ξT (t)KTQ1ijKξ(t) − (1 − τ̇i(t))ξT (t − τi(t))KTQ1ijKξ(t − τi(t))

+ ξT (t)KTQ2ijKξ(t)

− ξT (t − τi)KTQ2ijKξ(t − τi) +
∑
l∈S1

π
(j)
il

∫ t

t−τl(t)
ξT (s)KTQ1ljKξ(s)ds

+
∑
k∈S2

λjk

∫ t

t−τi(t)
ξT (s)KTQ1ikKξ(s)ds +

∑
l∈S1

π
(j)
il

∫ t

t−τl
ξT (s)KTQ2ljKξ(s)ds

+
∑
k∈S2

λjk

∫ t

t−τi
ξT (s)KTQ2ikKξ(s)ds

� ξT (t)KTQ1ijKξ(t) − (1 − μi

)
ξT (t − τi(t))KTQ1ijKξ(t − τi(t))

+ ξT (t)KTQ2ijKξ(t)

− ξT (t − τi)KTQ2ijKξ(t − τi) + π
(j)
ii

∫ t

t−τi(t)
ξT (s)KTQ1ijKξ(s)ds

+
∫ t

t−τ
ξT (s)KT

⎛
⎝ ∑

l∈S1,l /= i

π
(j)
il
Q1lj

⎞
⎠Kξ(s)ds

+
∫ t

t−τi(t)
ξT (s)KT

(∑
k∈S2

λjkQ1ik

)
Kξ(s)ds

+ π
(j)
ii

∫ t

t−τi
ξT (s)KTQ2ijKξ(s)ds +

∫ t

t−τ
ξT (s)KT

⎛
⎝ ∑

l∈S1,l /= i

π
(j)
il Q2lj

⎞
⎠Kξ(s)ds

+
∫ t

t−τi
ξT (s)KT

(∑
k∈S2

λjkQ2ik

)
Kξ(s)ds.

LV3
(
ξt, t, i, j

)
= − (1 − τ̇i(t))

∫ t

t−τi(t)
ξT (s)KTdsR1ij

∫ t

t−τi(t)
Kξ(s)ds

+ 2
∫ t

t−τi(t)
ξT (t)KTR1ij

∫ t

θ

Kξ(s)dsdθ
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+
∑
l∈S1

π
(j)
il

∫ t

t−τl(t)

(∫ t

θ

ξT (s)KTds

)
R1lj

(∫ t

θ

Kξ(s)ds

)
dθ

+
∑
k∈S2

λjk

∫ t

t−τi(t)

∫ t

θ

ξT (s)KTR1ikKξ(s)dsdθ.

(3.3)

Using Lemma 2.3 and considering (2.5), it can be deduced that

LV3
(
ξt, t, i, j

)
� − (1 − μi

)(∫ t

t−τi(t)
ξT (s)KTds

)
R1ij

(∫ t

t−τi(t)
Kξ(s)ds

)

+ ξT (t)KT

(
1
2
τ2i R1ij

)
Kξ(t) +

∫ t

t−τi(t)

∫ t

θ

ξT (s)KTR1ijKξ(s)dsdθ

+
∑
l /= i

π
(j)
il

∫ t

t−τl(t)
(t − θ)

∫ t

θ

ξT (s)KTR1ljKξ(s)dsdθ

+
∑
k /= j

λjk

∫ t

t−τi(t)
(t − θ)

∫ t

θ

ξT (s)KTR1ikKξ(s)dsdθ

� − (1 − μi

)(∫ t

t−τi(t)
ξT (s)KTds

)
R1ij

(∫ t

t−τi(t)
Kξ(s)ds

)

+ ξT (t)KT

(
1
2
τ2i R1ij

)
Kξ(t) +

∫ t

t−τi(t)

∫ t

θ

ξT (s)KTR1ijKξ(s)dsdθ

+
∑
l /= i

π
(j)
il

∫ t

t−τl(t)
ξT (s)KTR1ljKξ(s)

∫ t

t−τl(t)
(t − θ)dθ ds

+
∑
k /= j

λjk

∫ t

t−τi(t)
ξT (s)KTR1ikKξ(s)

∫ t

t−τi(t)
(t − θ)dθ ds

� − (1 − μi

)(∫ t

t−τi(t)
ξT (s)KTds

)
R1ij

(∫ t

t−τi(t)
Kξ(s)ds

)

+ ξT (t)KT

(
1
2
τ2i R1ij

)
Kξ(t) +

∫ t

t−τ

∫ t

θ

ξT (s)KTR1ijKξ(s)dsdθ

+
∑
l /= i

1
2
τ2l π

(j)
il

∫ t

t−τ
ξT (s)KTR1ljKξ(s)ds

+
1
2

∑
k /= j

τ2i λjk

∫ t

t−τi(t)
ξT (s)KTR1ikKξ(s)ds.

(3.4)
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In addition, it is not difficult to get

LV4
(
ξt, t, i, j

)
= τ2ξ̇T (t)KTZKξ̇(t) − τ

∫ t

t−τ
ξ̇T (s)KTZKξ̇(s)ds, (3.5)

LV5
(
ξt, t, i, j

)
� τξT (t)KTR2Kξ(t) −

∫ t

t−τ
ξT (s)KTR2Kξ(s)ds

+ τiξ
T (t)KTG1iKξ(t) − 1

τ

∫ t

t−τi(t)
ξT (s)KTdsG1i

∫ t

t−τi(t)
Kξ(s)ds

+
∫0

−τ

∫ t

t+θ
ξT (s)KT

⎛
⎝ ∑

l∈S1,l /= i

π
(j)
il G1i

⎞
⎠Kξ(s)dsdθ,

(3.6)

LV6
(
ξt, t, i, j

)
=

1
2
τ2ξT (t)KTR3Kξ(t) −

∫ t

t−τ

∫ t

θ

ξT (s)KTR3Kξ(s)dsdθ

+
1
2
τ2ξT (t)KTG2Kξ(t) −

∫0

−τ

∫ t

t+θ
ξT (s)KTG2Kξ(s)dsdθ.

(3.7)

Next, following a similar method of [46], to (3.5), denote

δ1(t) =
∫ t

t−τi(t)
Kξ̇(s)ds, δ2(t) =

∫ t−τi(t)

t−τ
Kξ̇(s)ds. (3.8)

When 0 < τi(t) < τ , according to Jensen’s inequality, we have that

τ

∫ t

t−τ
ξ̇T (s)KTZKξ̇(s)ds = τ

∫ t

t−τi(t)
ξ̇T (s)KTZKξ̇(s)ds + τ

∫ t−τi(t)

t−τ
ξ̇T (s)KTZKξ̇(s)ds

� τ

τi(t)
δ1(t)TZδ1(t) +

τ

τ − τi(t)
δ2(t)TZδ2(t)

= δ1(t)TZδ1(t) +
τ − τi(t)
τi(t)

δ1(t)TZδ1(t)

+ δ2(t)TZδ2(t) +
τi(t)

τ − τi(t)
δ2(t)TZδ2(t).

(3.9)

It is clear that [49]

⎡
⎢⎢⎢⎢⎣

√
τ − τi(t)
τi(t)

δ1(t)

−
√

τi(t)
τ − τi(t)

δ2(t)

⎤
⎥⎥⎥⎥⎦

T

[
Z S
∗ Z

]
⎡
⎢⎢⎢⎢⎣

√
τ − τi(t)
τi(t)

δ1(t)

−
√

τi(t)
τ − τi(t)

δ2(t)

⎤
⎥⎥⎥⎥⎦ � 0, (3.10)
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which implies

τ − τi(t)
τi(t)

δ1(t)TZδ1(t) +
τi(t)

τ − τi(t)
δ2(t)TZδ2(t) � δ1(t)TSδ2(t) + δ2(t)TSTδ1(t)T . (3.11)

Then, we can get from (3.9) and (3.11) that

τ

∫ t

t−τ
ξ̇T (s)KTZKξ̇(s)ds � δ1(t)TZδ1(t) + δ2(t)TZδ2(t) + δ1(t)TSδ2(t) + δ2(t)TSTδ1(t)

=
[
δ1(t)
δ2(t)

]T[
Z S
∗ Z

][
δ1(t)
δ2(t)

]
.

(3.12)

Note that when τi(t) = 0 or τi(t) = τ , we have δ1(t) = 0 or δ2(t) = 0, respectively. So relation
(3.12) still holds. It is clear that (3.12) implies

−τ
∫ t

t−τ
ξ̇T (s)KTZKξ̇(s)ds � χT (t)Ωχ(t), (3.13)

where χ(t) = [ξT (t) ξT (t − τi(t))KT ξT (t − τ)KT ]T

Ω =

⎡
⎣−K

TZK KT (Z − S) KTS
∗ −2Z + S + ST Z − S
∗ ∗ −Z

⎤
⎦. (3.14)

The following equation is true for any matrix N with appropriate dimensions:

0 = 2ξ̇T (t)KTN

×
[
−Kξ̇(t) +KAijξ(t) +KA1ijKξ(t − τi(t)) +KA2ijK

∫ t

t−τi(t)
ξ(s)ds +KBijf(Kξ(t))

+KEijg(Kξ(t)) +KDijw(t)

]
.

(3.15)

From (2.4), it is clear that [2]

[
ξ(t)

f(Kξ(t))

]T[
KTM̂1K KTM̂2

∗ I

][
ξ(t)

f(Kξ(t))

]
� 0 (3.16)

[
ξ(t)

g(Kξ(t))

]T[
KTL̂1K KTL̂2

∗ I

][
ξ(t)

g(Kξ(t))

]
� 0, (3.17)
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where M̂1 = (1/2)(MT
1M2 + MT

2M1), M̂2 = (−1/2)(MT
1 + MT

2 ), L̂1 = (1/2)(LT
1L2 + LT

2L1),
L̂2 = −(1/2)(LT

1 + LT
2 ). It implies from (3.17) and (3.18) that there exist ε1 > 0 and ε2 > 0 such

that

−ε1
[

ξ(t)
f(Kξ(t))

]T[
KTM̂1K KTM̂2

∗ I

][
ξ(t)

f(Kξ(t))

]
� 0, (3.18)

−ε2
[

ξ(t)
g(Kξ(t))

]T[
KTL̂1K KTL̂2

∗ I

][
ξ(t)

g(Kξ(t))

]
� 0. (3.19)

We define

ηi(t) =

[
ξT (t) ξT (t − τi(t))KT ξT (t − τi)KT ξ̇T (t)KT ξT (t − τ)KT

∫ t

t−τi(t)
ξT (s)KTds fT (Kξ(t)) gT (Kξ(t))

]T
.

(3.20)

From the above discussion, we have

LV
(
ξt, i, j

)
�
[
ηi(t)
w(t)

]T[
Σij Φ1ij

∗ 0

][
ηi(t)
w(t)

]

+
∫ t

t−τi(t)
ξT (s)KT

⎛
⎝∑

k∈S2

λjkQ1ik +
τ2i
2

∑
k /= j

λjkR1ik + π
(j)
ii Q1ij

⎞
⎠Kξ(s)ds

+
∫ t

t−τ
ξT (s)KT

⎡
⎣ ∑

l∈S1,l /= i

π
(j)
il

(
Q1lj +Q2lj +

τ2
l

2
R1lj

)
− R2

⎤
⎦Kξ(s)ds

+
∫ t

t−τi
ξT (s)KT

(∑
k∈S2

λjkQ2ik + π
(j)
ii Q2ij

)
Kξ(s)ds

+
∫ t

t−τ

∫ t

θ

ξT (s)KT(R1ij − R3
)
Kξ(s)dsdθ

+
∫0

−τ

∫ t

t+θ
ξT (s)KT

⎛
⎝ ∑

l∈S1,l /= i

π
(j)
il
G1i −G2

⎞
⎠Kξ(s)dsdθ,

(3.21)
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where

Σij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 Σ12 0
(
NKAij

)T
KTS PijA2ij Σ17 Σ18

∗ Σ22 0
(
NKA1ij

)T
Z − S 0 0

∗ ∗ −Q2ij 0 0 0 0 0
∗ ∗ ∗ Σ44 0 NKA2ij NKBij NKEij

∗ ∗ ∗ ∗ −Z 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Σ11 = PijAi +A
T

i Pij +
∑
l∈S1

π
(j)
il Plj +

∑
k∈S2

λjkPik

+KT

(
Q1ij +Q2ij + τR2 − Z +

1
2
τ2i R1ij +

1
2
τ2R3 + τiG1i +

1
2
τ2G2

)

×K − ε1K
TM̂1K − ε2K

TL̂1K,

Σ12 = PijA1ij +KT (Z − S), Σ17 = PijBij − ε1K
TM̂2, Σ18 = PijEij − ε2K

TL̂2,

Σ22 = − (1 − μi

)
Q1ij − 2Z + S + ST , Σ44 = τ2Z −N −NT,

Σ66 = − (1 − μi

)
R1ij − 1

τ
G1i, Φ1ij =

[
D

T

ijPij 0 0 D
T

ijK
TNT 0 0 0 0

]T
.

(3.22)

Therefore, we have the following result for the H∞ performance analysis.

Theorem 3.1. Given scalars τ , τi, and μi, the filtering error system (2.7) is stochastically stable with
anH∞ performance γ for any time delay τi(t) satisfying (2.5), if there exist matrices Pij > 0,Q1ij > 0,
Q2ij > 0, R1ij > 0, R2 > 0, R3 > 0, Z > 0, G1i > 0, G2 > 0, and matrices S, N such that for each
i ∈ S1, j ∈ S2

⎡
⎣Σij Φ1ij Φ2ij

∗ −γ2I 0
∗ ∗ −I

⎤
⎦ < 0, (3.23)

∑
k∈S2

λjkQ1ik +
τ2i
2

∑
k /= j

λjkR1ik + π
(j)
ii Q1ij < 0, (3.24)

∑
l∈S1,l /= i

π
(j)
il

(
Q1lj +Q2lj +

τ2l
2
R1lj

)
− R2 < 0, (3.25)
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∑
k∈S2

λjkQ2ik + π
(j)
ii Q2ij < 0, (3.26)

R1ij < R3, (3.27)
∑

l∈S1,l /= i

π
(j)
il
G1i < G2, (3.28)

where

Φ2ij =
[
Hi 0 0 0 0 0 0 0

]T
. (3.29)

Proof. Using the Schur complement formula to (3.23), it can be seen that inequality (3.23) is
equivalent to

[
Σij + Φ2ijΦT

2ij Φ1ij

∗ −γ2I

]
< 0, (3.30)

which implies Σij < 0. Now, we show that the filtering error system (2.7) with ω(t) = 0 is
stochastically stable. If ω(t) = 0, from (3.1), (3.21), (3.24)–(3.28), and Σij < 0, there exists a
scalar λ > 0 such that

LV
(
ξt, t, i, j

)
� −λ‖x(t)‖2. (3.31)

Therefore, for any T > 0, by Dynkin’s formula, we have

EV (ξt, t, i, j) − EV (ξ0, 0, 0, 0) � −λE
∫T

0
‖x(s)‖2ds, (3.32)

which yields

E
∫T

0
‖x(s)‖2ds � 1

λ
EV (ξ0, 0, 0, 0) < ∞. (3.33)

Thus, the filtering error system (2.7)with ω(t) = 0 is stochastically stable by Definition 2.4.
In the sequel, we will deal with theH∞ performance of the filtering error system (2.7).

Using (3.30) and H∞ performance, we have

E
{
LV

(
ξt, t, i, j

)
+ eT (t)e(t) − γ2ωT (t)ω(t)

}

�
[
ηi(t)
ω(t)

]T[Σij + Φ2ijΦT
2ij Φ1ij

∗ −γ2I

][
ηi(t)
ω(t)

]
< 0.

(3.34)
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Noting that the zero initial condition, then it follows from (3.34) that

J = E
{∫∞

0

[
eT(t)e(t) − γ2ωT (t)ω(t)

]
dt
}

� E
{∫∞

0

[
eT(t)e(t) − γ2ωT (t)ω(t) +LV

(
ξt, t, i, j

)]
dt
}

< 0.

(3.35)

Hence, if (3.23)–(3.28) hold, J < 0 can be guaranteed. That is, ‖e‖2 � γ‖ω‖2 for all
nonzero ω(t). Therefore, the filtering error system (2.7) is stochastically stable with the H∞
performance γ by Definition 2.5. This completes the proof.

Remark 3.2. A new stochastic stability criterion is obtained in Theorem 3.1 by constructing
a novel mode-dependent Lyapunov functional. The Lyapunov functional in this paper uses
all information about rt, σt and τ(t, rt). The Lyapunov matrices P(rt, σt), Q1(rt, σt), Q2(rt, σt),
and R1(rt, σt) depend on both the system mode rt and the higher-level Markovian chain σt.
Compared with the mode-independent Lyapunov matrices [40, 42], the mode-dependent
Lyapunov matrices can reduce the conservativeness since they provide additional degrees
of freedom which are very important for deriving LMIs solutions in general. Hence, the
Lyapunov functional in this paper is more general and the condition on stability is more
applicable.

Remark 3.3. It should be pointed out that the aim of the introduction of V3(ξt, t, i, j) is to
propose a stability condition which depends not only on the delay upper bound τ , but also
on the subsystems’ delay upper bounds τi, in other words, if V3(ξt, t, i, j) is not considered,
the obtained stability condition only depends on the delay upper bound τ . Hence, the
introduction of V3(ξt, t, i, j)may reduce some conservativeness.

Based on Theorem 3.1, the H∞ filter synthesis problem can be developed in terms of
LMIs for the system (2.1) with higher-level Markovian chain.

Theorem 3.4. Consider the systems (2.1). Given scalars τ , τi and μi, the filtering error system (2.7)
is stochastically stable with an H∞ performance γ for any time delay τi(t) satisfying (2.5), if there
exist matrices P1ij > 0, Q1ij > 0, Q2ij > 0, R1ij > 0, R2 > 0, R3 > 0, Z > 0, G1i > 0, G2 > 0, Sij > 0,
Ulij > 0, Vkij > 0, Slij , Tkij , AFij , BFij , CFij , and matrices S, N such that for each i ∈ S1, j ∈ S2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 Σ12 Σ13 0 (NAi)T S Σ14 Σ15 Σ16 Σ17 HT
i

∗ Σ22 Σ23 0 0 0 Σ24 SijBi BFij Ei Σ25 −CT

Fij

∗ ∗ Σ33 0
(
NA1i

)T
Z − S 0 0 0 0 0

∗ ∗ ∗ −Q2ij 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Σ55 0 NA2i NBi 0 ND1i 0
∗ ∗ ∗ ∗ ∗ −Z 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Σ77 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.36)
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∑
k∈S2

λjkQ1ik +
τ2i
2

∑
k /= j

λjkR1ik + π
(j)
ii Q1ij < 0, (3.37)

∑
l∈S1,l /= i

π
(j)
il

(
Q1lj +Q2lj +

τ2l
2
R1lj

)
− R2 < 0, (3.38)

∑
k∈S2

λjkQ2ik + π
(j)
ii Q2ij < 0, (3.39)

R1ij < R3, (3.40)
∑

l∈S1,l /= i

π
(j)
il
G1i < G2, (3.41)

where

Σ11 = P1ijAi +AT
i P1ij + BFijCi + CT

i B
T

Fij
+
∑
l∈S1

π
(j)
il P1lj +

∑
k∈S2

λjkP1ik +Q1ij +Q2ij

+
1
2
τ2i R1ij + τR2 +

1
2
τ2R3 − Z + τiG1i +

1
2
τ2G2 − ε1M̂1 − ε2L̂1,

Σ12 = AFij +AT
i S

T
ij + CT

i B
T

Fij
+
(
π

(j)
ii + λjj

)
Sij +

∑
l /= i

π
(j)
il Slij +

∑
k /= j

λjkTkij ,

Σ13 = P1ijA1i + BFijC1i + Z − S, Σ14 = P1ijA2i + BFijC2i, Σ15 = P1ijBi − ε1M̂2,

Σ16 = BFijEi − ε2L̂2, Σ17 = P1ijD1i + BFijD2i,

Σ22 = AFij +A
T

Fij
+
(
π

(j)
ii + λjj

)
Sij +

∑
l∈S1,l /= i

π
(j)
il Ulij +

∑
k∈S2,k /= j

λjkVkij ,

Σ23 = SijA1i + BFijC1i, Σ24 = SijA2i + BFijC2i, Σ25 = SijD1i + BFijD2i,

Σ33 = − (1 − μi

)
Q1ij − 2Z + S + ST , Σ55 = τ2Z −N −NT, Σ77 = −(1 − μi

)
R1ij − 1

τ
G1i.

(3.42)

In this case, the parameters of the desired filter can be chosen by

AFij = S−1
ij AFij , BFij = S−1

ij BFij , CFij = CFij . (3.43)

Proof. For each rt = i ∈ S1, σt = j ∈ S2, we define a matrix Pij > 0 by Pij =[
P1ij P2ij

∗ P3ij

]
. By invoking a small perturbation, if necessary, we can assume that P2ij and P3ij are

nonsingular. Thus, we can introduce the following invertible matrix J =
[
I 0
0 P−1

3ij P
T
2ij

]
. Pre- and
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postmultiplying (3.23) by diag [JT , I, I, I, I, I, I, I, I, I, I] and its transpose, respectively. Then,
we define

Sij = P2ijP
−1
3ij P

T
2ij , AFij = P2ijAFij P

−1
3ij P

T
2ij , BFij = P2ijBFij , CFij = CFij P

−1
3ij P

T
2ij ,

Slij = P2ljP
−1
3ij P

T
2ij (l /= i), Tkij = P2ikP

−1
3ij P

T
2ij

(
k /= j

)
, Ulij = P2ijP

−T
3ij P3ljP

−1
3ij P

T
2ij (l /= i),

Vkij = P2ijP
−T
3ij P3ikP

−1
3ij P

T
2ij

(
k /= j

)
.

(3.44)

It is easy to obtain (3.36).
On the other hand, according to (3.44), we have

AFij = P−1
2ijAFij P

−T
2ij P3ij , BFij = P−1

2ij BFij , CFij = CFij P
−T
2ij P3ij . (3.45)

From (2.6), the transfer function from measured output y(t) to estimated signal ẑ(t) can be
described by

Tẑy = CFij

(
sI −AFij

)−1
BFij

= CFij P
−T
2ij P3ij

(
sI − P−1

2ijAFij P
−T
2ij P3ij

)−1
P−1
2ij BFij

= CFij

(
sI − S−1

ij AFij

)−1
S−1
ij BFij .

(3.46)

Therefore, we can conclude from (3.46) that the parameters of the filter in (2.6) can be
constructed by (3.43). This completes the proof.

Remark 3.5. It should be pointed out that some existing work in control and filter design
of Markovian jump systems, the Lyapunov matrix Pi is assumed to be diagonal matrix, for
example, see [42]. It is well known that such assumption can lead to much more conservative
result. Although the first diagonal element Σ11 in (3.23) includes Pij , Plj , and Pik in this paper,
Pij is not assumed to be diagonal matrices.

Remark 3.6. In [30–32, 38], the authors have achieved some excellent work of Markovian
jump singular systems. Due to the presence of the singular matrix E, the issues of stability
and control of such systems are more difficult and complicated. However, there is no results
on piecewise homogeneous Markovian jump singular systems in the existing work, and the
problem of control for such system is an interesting issue.

Remark 3.7. Theorem 3.4 solves the filtering problem of a class of piecewise homogeneous
Markovian jump nonlinear systems. The obtained conditions are formulated in terms of
LMIs, which could be easily checked by using the LMI toolbox in Matlab. The feasible
solutions to the conditions presented in Theorem 3.4 will depend on both the mode rt and the
higher-level Markovian chain σt, which ensure that the error system is stochastically stable.
A numerical example verifies the validity of the designed filter in Section 4.
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4. A Numerical Example

In this section, a numerical example will be presented to show the validity of the main results
derived above.

Example 4.1. Let us consider the stochastic system (2.1)with the following system of matrices:

A(1) =
[−8 0
1 −12

]
, A1(1) =

[
1 0.3
1 1

]
, A2(1) =

[
0.4 0
0 −0.4

]
,

B(1) =
[
0.7 0.8
0.1 0.6

]
, D1(1) =

[
0.7
0.1

]
, M1 = L1 =

[
0.01 0.01
0.01 0.02

]
,

M2 = L2 =
[−0.01 0.01
−0.03 −0.02

]
, C(1) =

[
1.9 −2.1], C1(1) =

[
1.5 0

]
,

C2(1) =
[
1 1

]
, E(1) =

[
0.8 0.6

]
, D2(1) = 0.8, H(1) =

[
0.4 0.2

]
,

A(2) =
[−9 0
0 −9

]
, A1(2) =

[
0.8 0.6
1 0.8

]
, A2(2) =

[−0.8 0
0 −0.6

]
,

B(2) =
[
0.9 1
2.3 0.6

]
, D1(2) =

[
0.2
0.2

]
, M1 = L1 =

[
0.01 0.01
0.01 0.02

]
,

M2 = L2 =
[−0.01 0.01
−0.03 −0.02

]
, C(2) =

[
1.8 −2.2], C1(2) =

[
1.2 0.1

]
,

C2(2) =
[
1 −0.8], E(2) =

[
0.8 0.6

]
, D2(2) = 1, H(2) =

[
0.9 0.1

]
.

(4.1)

The piecewise homogeneous TP matrices are given as

Π1 =
[−0.5 0.5
0.6 −0.6

]
, Π2 =

[−0.7 0.7
0.4 −0.4

]
, Π3 =

[−0.8 0.8
0.6 −0.6

]
. (4.2)

The HTP matrix for the Markovian chain is considered as follows:

Λ =

⎡
⎣−0.8 0.4 0.4

0.4 −0.9 0.5
0.7 0.8 −1.5

⎤
⎦. (4.3)
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Figure 1: Variation of TP matrices subject to HTP.

In this example, we assume τ1 = τ2 = 1, μ1 = 0.8, μ2 = 0.5. For γ = 1.2. By solving LMIs
(3.36)–(3.41), the filter matrices are obtained as

AF11 =
[−7.6750 −2.3822
−3.7133 −4.8336

]
, BF11 =

[
0.0496
0.3182

]
, CF11 =

[
0.0037 1.3061

]
,

AF12 =
[−10.9509 −3.4284
−2.9982 −4.2265

]
, BF12 =

[
0.7322
0.1760

]
, CF12 =

[−0.0053 −0.0017],

AF13 =
[−11.2973 −4.8499
−5.0689 −5.7131

]
, BF13 =

[
1.0209
0.7196

]
, CF13 =

[−0.0041 −0.0029],

AF21 =
[−5.5850 −6.2702
−4.3917 −15.3643

]
, BF21 =

[
0.4144
0.9799

]
, CF21 =

[
0.0002 1.2670

]
,

AF22 =
[−6.2896 −4.2309
−4.7375 −10.6039

]
, BF22 =

[−0.0779
−0.3519

]
, CF22 =

[−0.0142 −0.0107]

AF23 =
[−7.9621 −6.4413
−6.1046 −16.3128

]
, BF23 =

[−0.0841
−0.3711

]
, CF23 =

[−0.0150 −0.0117].

(4.4)

For simulation purposes, we assume the initial condition x(0) = [0.1 0.1]T andω(t) = 1/(0.5+
1.2t). The time delays are τ1(t) = 0.2+0.8 sin(t), τ2(t) = 0.5+0.5 cos(t). The nonlinear functions
f(x(t)) and g(x(t)) are selected as

f(x(t)) = g(x(t)) =
[
0.02x1(t)sin2(x1(t)) − 0.01(x1(t) − x2(t))

−0.01x1(t)

]
, (4.5)

Figures 1–5 illustrate the simulation results. A case for stochastic variation with HTP
matrix is shown in Figure 1, and possible realizations of the Markov jumping mode of system
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Figure 2: System jumping mode.
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Figure 3: The state responses of x1(t) and x̂1(t).

and delay are plotted in Figure 2, where the initial modes are assumed to be r0 = 1 and σ0 = 1.
Figure 3 shows the state responses of real states x1(t) and its estimate x̂1(t). Figure 4 shows
the state responses of real states x2(t) and its estimate x̂2(t). Figure 5 is the simulation result
of the estimation error response of e(t). The simulation results demonstrate that the designed
H∞ filters are feasible and effective.
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Figure 4: The state responses of x2(t) and x̂2(t).
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Figure 5: The estimation error response of e(t).

5. Conclusion

The problem of H∞ filtering for a class of Markovian jump nonlinear systems is investigated
in this paper. The piecewise homogeneous Markovian chain and mode-dependent time-
varying delays are considered in the model. By using the Lyapunov-Krasovskii functional,
mixed mode-dependent sufficient conditions are developed to design stable filters. A
numerical example demonstrates the effectiveness of the given method.



Mathematical Problems in Engineering 21

Acknowledgments

This work was supported by the fund of Sichuan Provincial Key Laboratory of signal and
INFORMATION PROCESSING, Xihua University (SZJJ2009-002), the Fundamental Research
Funds for the Central Universities (103.1.2E022050205), and the National Basic Research
Program of China (2010CB732501).

References

[1] Z. Wang and K. Burnham, “Robust filtering for a class of stochastic uncertain nonlinear timedelay
systems via exponential state estimation,” IEEE Transactions on Signal Process, vol. 49, pp. 794–804,
2001.

[2] Z. Wang, Y. Liu, and X. Liu, “H∞ filtering for uncertain stochastic time-delay systems with sector-
bounded nonlinearities,” Automatica, vol. 44, no. 5, pp. 1268–1277, 2008.

[3] D. Zhang and L. Yu, “H∞ filtering for linear neutral systems with mixed time-varying delays and
nonlinear perturbations,” Journal of the Franklin Institute, vol. 347, no. 7, pp. 1374–1390, 2010.

[4] M. S. Mahmoud, “New filter design for linear time-delay systems,” Linear Algebra and Its Applications,
vol. 434, no. 4, pp. 1080–1093, 2011.

[5] C. E. de Souza and D. F. Coutinho, “Parameter-dependent robust H∞ filtering for linear systems
with time-varying delay and rational parameter uncertainty,” IMA Journal of Mathematical Control and
Information, vol. 28, no. 2, pp. 203–224, 2011.

[6] X.-G. Guo and G.-H. Yang, “Delay-dependent reliable H∞ filtering for sector-bounded nonlinear
continuous-time systems with time-varying state delays and sensor failures,” International Journal of
Systems Science, vol. 43, no. 1, pp. 117–131, 2012.

[7] M. S. Mahmoud and P. Shi, Methodologies for Control of Jump Time-Delay Systems, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 2003.

[8] H. Shao, “Delay-range-dependent robust H∞ filtering for uncertain stochastic systems with mode-
dependent time delays and Markovian jump parameters,” Journal of Mathematical Analysis and
Applications, vol. 342, no. 2, pp. 1084–1095, 2008.

[9] Q. X. Zhu and J. D. Cao, “Exponential stability of stochastic neural networks with both Markovian
jump parameters and mixed time delays,” IEEE Transactions on Systems, Man, and Cybernetics B, vol.
41, pp. 341–353, 2011.

[10] X.-G. Yan, S. K. Spurgeon, and C. Edwards, “Sliding mode control for time-varying delayed systems
based on a reduced-order observer,” Automatica, vol. 46, no. 8, pp. 1354–1362, 2010.

[11] K. Ramakrishnan and G. Ray, “Robust stability criterion for Markovian jump systems with nonlinear
perturbations and mode-dependent time delays,” International Journal of General Systems, vol. 41, pp.
373–393, 2012.

[12] X. Mao, “Exponential stability of stochastic delay interval systems with Markovian switching,” IEEE
Transactions on Automatic Control, vol. 47, no. 10, pp. 1604–1612, 2002.

[13] L. Hu, P. Shi, and B. Huang, “Stochastic stability and robust control for sampled-data systems with
Markovian jump parameters,” Journal of Mathematical Analysis and Applications, vol. 313, no. 2, pp.
504–517, 2006.

[14] L. Zhang and E.-K. Boukas, “Stability and stabilization of Markovian jump linear systems with partly
unknown transition probabilities,” Automatica, vol. 45, no. 2, pp. 463–468, 2009.

[15] W. Han, Y. Liu, and L. Wang, “Robust exponential stability of Markovian jumping neural networks
with mode-dependent delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 15,
no. 9, pp. 2529–2535, 2010.

[16] X. Zhao, M. Ling, and Q. Zeng, “Delay-dependent stability criterion and H∞ analysis for Markovian
jump systems with time-varying delays,” Asian Journal of Control, vol. 13, no. 2, pp. 232–239, 2011.

[17] Z. Fei, H. Gao, and P. Shi, “New results on stabilization of Markovian jump systems with time delay,”
Automatica, vol. 45, no. 10, pp. 2300–2306, 2009.

[18] H. Li, Q. Zhou, B. Chen, and H. Liu, “Parameter-dependent robust stability for uncertain Markovian
jump systems with time delay,” Journal of the Franklin Institute, vol. 348, no. 4, pp. 738–748, 2011.

[19] S. Xu, J. Lam, and X. Mao, “Delay-dependentH∞ control and filtering for uncertain Markovian jump
systems with time-varying delays,” IEEE Transactions on Circuits and Systems. I, vol. 54, no. 9, pp.
2070–2077, 2007.



22 Mathematical Problems in Engineering

[20] J. Dong and G. Yang, “Fuzzy controller design for Markovian jump nonlinear systems,” International
Journal of Control, Automation and Systems, vol. 5, pp. 712–717, 2007.

[21] Y. Guo and F. Zhu, “New results on stability and stabilization of Markovian jump systems with partly
known transition probabilities,” Mathematical Problems in Engineering, vol. 2012, Article ID 869842, 11
pages, 2012.

[22] P. Balasubramaniam, V. Vembarasan, and R. Rakkiyappan, “Delay-dependent robust exponential
state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-
varying delays,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 4, pp. 2109–
2129, 2011.

[23] Z. Shu, J. Lam, and J. Xiong, “Static output-feedback stabilization of discrete-time Markovian jump
linear systems: a system augmentation approach,” Automatica, vol. 46, no. 4, pp. 687–694, 2010.

[24] Z. Wang, L. Huang, and X. Yang, “H∞ performance for a class of uncertain stochastic nonlinear
Markovian jump systemswith time-varying delay via adaptive control method,”AppliedMathematical
Modelling, vol. 35, no. 4, pp. 1983–1993, 2011.

[25] J. Xia, C. Sun, and B. Zhang, “New robust H∞ control for uncertain stochastic Markovian jumping
systems with mixed delays based on decoupling method,” Journal of the Franklin Institute, vol. 349, no.
3, pp. 741–769, 2012.

[26] G. Chen and Y. Shen, “Robust ReliableH∞ control for nonlinear stochastic Markovian jump systems,”
Mathematical Problems in Engineering, vol. 2012, Article ID 431576, 16 pages, 2012.

[27] H. Zhao, Q. Chen, and S. Xu, “H∞ guaranteed cost control for uncertain Markovian jump systems
with mode-dependent distributed delays and input delays,” Journal of the Franklin Institute, vol. 346,
no. 10, pp. 945–957, 2009.

[28] H. R. Karimi, “Robust delay-dependent H∞ control of uncertain time-delay systems with
mixed neutral, discrete, and distributed time-delays and Markovian switching parameters,” IEEE
Transactions on Circuits and Systems. I, vol. 58, no. 8, pp. 1910–1923, 2011.

[29] Z. Wu, P. Shi, H. Su, and J. Chu, “Passivity analysis for discrete-time stochastic Markovian jump
neural networks with mixed time-delays,” IEEE Transactions on Neural Networks, vol. 22, pp. 1566–
1575, 2011.

[30] L. Wu, P. Shi, and H. Gao, “State estimation and sliding-mode control of Markovian jump singular
systems,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1213–1219, 2010.

[31] L. Wu and D.W. C. Ho, “Sliding mode control of singular stochastic hybrid systems,” Automatica, vol.
46, no. 4, pp. 779–783, 2010.

[32] L. Wu, X. Su, and P. Shi, “Sliding mode control with bounded L2 gain performance of Markovian
jump singular time-delay systems,” Automatica, vol. 48, no. 8, pp. 1929–1933, 2012.

[33] S. K. Nguang, W. Assawinchaichote, and P. Shi, “H∞ filter for uncertain Markovian jump nonlinear
systems: an LMI approach,” Circuits, Systems, and Signal Processing, vol. 26, no. 6, pp. 853–874, 2007.

[34] Z. Wu, H. Su, and J. Chu, “Delay-dependent H∞ filtering for singular Markovian jump time-delay
systems,” Signal Process, vol. 90, pp. 1815–1824, 2010.

[35] L. Wu, P. Shi, H. Gao, and C. Wang, “H∞ filtering for 2D Markovian jump systems,” Automatica, vol.
44, no. 7, pp. 1849–1858, 2008.

[36] H. Liu, D. W. C. Ho, and F. Sun, “Design of H∞ filter for Markov jumping linear systems with non-
accessible mode information,” Automatica, vol. 44, no. 10, pp. 2655–2660, 2008.

[37] X. M. Yao, L. G. Wu, and W. X. Zheng, “Quantized H∞ filtering for Markovian jump LPV systems
with intermittent measurements,” International Journal of Robust and Nonlinear Control. In press.

[38] X. Yao, L. Wu, and W. X. Zheng, “Fault detection filter design for Markovian jump singular systems
with intermittent measurements,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3099–3109,
2011.

[39] Y. Ding, H. Zhu, S. Zhong, and Y. Zhang, “L2 − L∞ filtering for Markovian jump systems with time-
varying delays and partly unknown transition probabilities,” Communications in Nonlinear Science and
Numerical Simulation, vol. 17, pp. 3070–3081, 2012.

[40] G.Wang, “Partially mode-dependent design ofH∞ filter for stochastic Markovian jump systems with
mode-dependent time delays,” Journal of Mathematical Analysis and Applications, vol. 383, no. 2, pp.
573–584, 2011.

[41] Z. Lin, Y. Lin, and W. Zhang, “H∞ filtering for non-linear stochastic Markovian jump systems,” IET
Control Theory & Applications, vol. 4, no. 12, pp. 2743–2756, 2010.

[42] H. Yan, M. Q.-H. Meng, H. Zhang, and H. Shi, “Robust H∞ exponential filtering for uncertain
stochastic time-delay systems withMarkovian switching and nonlinearities,”Applied Mathematics and
Computation, vol. 215, no. 12, pp. 4358–4369, 2010.



Mathematical Problems in Engineering 23

[43] H. Shen, S. Xu, J. Zhou, and J. Lu, “Fuzzy H∞ filtering for nonlinear Markovian jump neutral
systems,” International Journal of Systems Science, vol. 42, no. 5, pp. 767–780, 2011.

[44] L. Zhang, “H∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems,”
Automatica, vol. 45, no. 11, pp. 2570–2576, 2009.

[45] L. J. Chen, Y. Leng, H. F. Guo, P. Shi, and L. X. Zhang, “H∞ control of a class of discrete-time Markov
jump linear systems with piecewise-constant TPs subject to average dwell time switching,” Journal of
The Franklin Institute, vol. 349, pp. 1989–2003, 2012.

[46] Z. Wu, J. Park, H. Su, and J. Chu, “Stochastic stability analysis of piecewise homogeneous Markovian
jump neural networks with mixed time-delays,” Journal of The Franklin Institute, vol. 349, pp. 2136–
2150, 2012.

[47] M. Iosifescu, Finite Markov Processes and Their Applications, John Wiley & Sons, Chichester, UK, 1980,
Wiley Series in Probability and Mathematical Statistics.

[48] K. Q. Gu, “An integral inequality in the stability problem of time-delay systems,” in Proceedings of the
39th IEEE Conference on Decision Control, pp. 2805–2810, Sydney, Australia, 2000.

[49] P. Park, J. W. Ko, and C. Jeong, “Reciprocally convex approach to stability of systems with time-
varying delays,” Automatica, vol. 47, no. 1, pp. 235–238, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


