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Vibrational conveyers with a centrifugal vibration exciter transmit their load based on the jumping
method. Common unbalanced-mass driver oscillates the trough. The motion is strictly related to
the vibrational parameters. The transition over resonance of a vibratory system, excited by rotating
unbalances, is important in terms of the maximum vibrational amplitude produced and the power
demand on the drive for the crossover. The mechanical system is driven by the DC motor. In
this study, the working ranges of oscillating shaking conveyers with nonideal vibration exciter
have been analyzed analytically for superharmonic and subharmonic resonances by the method of
multiple scales and numerically. The analytical results obtained in this study agree well with the
numerical results.

1. Introduction

The load-carrying element of a horizontal shaking conveyer performs, as a rule, linear
(or sometimes circular or elliptical) symmetrical harmonic oscillations—with a sinusoidal
variation of exciting force. In vertical shaking conveyers, the load-carrying element performs
double harmonic oscillations: linear along the vertical axis and rotational around that axis
(i.e., longitudinal and torsional oscillations). Conveyer drives with centrifugal vibration
exciters may have (1) a single unbalanced-mass, (2) two equal unbalancing masses, (3)
a pendulum-type unbalanced-mass, (4) four unbalanced-masses in two shafts, (5) four
rotating unbalanced-masses for three principal modes of oscillation, that is, linear, elliptical,
and circular. To induce strictly oriented linear oscillations of the load-carrying element, the
conveyer drive should be arranged so that the line of excitation force passes through the
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inertial centre of the entire oscillating system. Nonideal drives find application in suspended
and supported vibrational conveyers and feeders [1].

By the characteristics and adjustment of the elastic support elements (oscillating
system), we can distinguish between shaking conveyers with a resonant, subresonant, and
superresonant system.

A practical difficulty with unbalanced-mass exciters, observed as early as 1904 by A
Sommerfeld, is that local instabilities may occur in operating speed of such devices.

Rocard [2], Mazert [3], Panovko, and I. I. Gubanova [4] have studied the problem of
the stability of the unbalanced-mass exciter.

The first detailed study on the nonideal vibrating systems is presented by Kononenko.
He obtained satisfactory results by the comparison of the experimental analysis and the
approximated method [5].

After this publication, the nonideal problem was presented by Evan-Ivanowski [6] or
Nayfeh and Mook [7]. These authors showed that sometimes dynamical coupling between
energy sources and structural response that had not to be ignored in reel engineering
problems.

Theorical studies and computations of Ganapathy and Parameswaran have indicated
the beneficial effect of the “material load” during the starting and transition phase of an
unbalanced-mass-driven vibrating conveyor [8].

Bolla et al. analyzed through the multiple scales method a response of a simplified
nonideal and nonlinear vibrating system [9].

Götzendorfer in [10] presented amacromechanical model for the transport of granular
matter on linear and horizontal conveyors subject to linear, circular or elliptic oscillations and
compared it to experimental results [10].

2. The Governing Equations of the Motion

The equations of motion for themodified rocard systemmay be obtained by using Lagrange’s
equation

d

dt

(
∂T

∂q̇i

)
+
∂D

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= 0, (2.1)

where T , the kinetic energy, is

T =
1
2
Mẏ2 +

1
2
m
[(
ẏ + θ̇e cos θ

)2 + (
θ̇e sin θ

)2] + 1
2
Imotθ̇

2, (2.2)

where e is the eccentricity of the mass m, m is the unbalanced-mass, M is the mass of the
trough and the conveyed material on the trough of the conveyor, θ is the angle of rotation of
the shafts carrying unbalanced-masses, Imot is the moment of inertia of the rotating parts in
the motor, V , the potential energy, is

V =
1
2
k1y

2 +
1
4
k2y

4 +mge(1 + sin θ), (2.3)
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where the constants k1 and k2 are the linear and nonlinear elastic coefficients, respectively,D,
the Rayleigh dissipation function, is

D =
1
2
cẏ2 +

1
2
K
(
ωs − θ̇

)
, (2.4)

and qi is the generalized coordinate. Applying Lagrange’s equation for the two coordinates
qi = y and qi = θ gives the differential equations of motion

Mÿ +mÿ + cẏ + k1y + k2y
3 = me

(
θ̇2 sin θ − θ̈ cos θ

)
,

⎛
⎜⎝Imot +me2︸ ︷︷ ︸

Isys

⎞
⎟⎠θ̈ +me

(
ÿ cos θ + g cos θ

)
=

1
2

[
∂K

∂θ̇

(
θ̇ −ωs

)
+K

]
.

(2.5)

Equation (2.5) can be rewritten as follows:

ÿ +ω2
0y = ε

[
−2μẏ − αy3 − eθ̈ cos θ

]
+ κ

(
θ̇2 sin θ

)
, (2.6)

θ̈ = ε
[−I cos θ(ÿ + g

)
+ E

(
θ̇
)]
, (2.7)

where

I =
(m +M)e

Isys
, κ =

me

m +M
, 2μ =

c

m
, α =

k2
m

,

k1
m +M

= ω2
0,

m

m +M
= ε, E

(
θ̇
)
=

(m +M)L
(
θ̇
)

mIsys
,

L
(
θ̇
)
=

1
2

[
∂K

∂θ̇

(
θ̇ −ωs

)
+K

]
,

(2.8)

where c is the damping coefficient of the vibrating conveyor, g is acceleration due to gravity,
Isys = (Im + IM + Imot) is the total moment of inertia of all the rotating parts in the system, and
ωs is the synchronous angular speed of the induction motor [9].K is the instantaneous drive
torque available at the shafts. Note that E contains L(θ̇) that is the active torque generated by
the electric circuit of the DC motor, shown in Figure 1.

3. Analytical Solution

Ideal system: if there is no coupling between motion of the rotor and vibrating system and
θ̇ = constant (θ = ωt, θ̈ = 0), (2.6) becomes

ÿ +ω2
0y = ε

[
−2μẏ − αy3

]
+ κω2 sinωt. (3.1)

On the right side of the equation, a function of time is present.
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Figure 1: Vibrating model of the system.

Nonideal system:

θ̈ = ε
[−I cos θ(ÿ + g

)
+ E

(
θ̇
)]
,

ÿ +ω2
ny = ε

[
−2μẏ − αy3 − eθ̈ cos θ

]
+ κ

(
θ̇2 sin θ

)
,

(3.2)

where E(θ̇) = Mm(θ̇) − H(θ̇) is the difference between the torque generated by the motor
and the resistance torque. Function E(θ̇) = u1 − u2θ̇ is approximated by a straight line, where
u1 is a control parameter that can be changed according to the voltage, and u2 is a constant
parameter, characteristic for the model of the motor.

We will obtain an approximate analytical solution to (3.2) by using the multiple scales
method:

θ(t, ε) ≈ θ0(T0, T1) + εθ1(T0, T1) + ε2θ2(T0, T1),

y(t, ε) ≈ y0(T0, T1) + εy1(T0, T1) + ε2y2(T0, T1),

Tn = εnt, n = 0, 1, . . . , T0 = t, T1 = εt

(3.3)

where the fast scale T0 = t and slow scale T1 = εt. The time derivatives transform according to

d

dt
=

dT0
dt

∂

∂T0
+
dT1
dt

∂

∂T1
+ · · · = D0 + εD1 + · · ·

d2

dt2
= D2

0 + 2εD0D1 + · · · ,
(3.4)

where Dn = ∂/∂Tn, (n = 0, 1, . . .); then,

θ̇ =
dθ

dt
≈ D0θ0 + ε(D1θ0 +D0θ1) + · · · ,

θ̈ =
d2θ

dt2
≈ D2

0θ0 + ε
(
2D0D1θ0 +D2

0θ1
)
+ · · · ,
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ẏ =
dy

dt
≈ D0y0 + ε

(
D1y0 +D0y1

)
+ · · · ,

ÿ =
d2y

dt2
≈ D2

0y0 + ε
(
2D0D1y0 +D2

0y1

)
+ · · · .

(3.5)

Substituting (3.5) into (3.2), we will obtain

D2
0θ0 = ε

[
−2D0D1θ0 −D2

0θ1 − I cos θ
(
D2

0y0 + g
)
+ E

(
θ̇
)]
,

D2
0y0 + ε

(
2D0D1y0 +D2

0y1

)
+ω2

n

(
y0 + εy1

)

= ε
[
−2μD0y0 − α

(
y0
)3 − eD2

0θ0 cos θ
]
+ κ[D0θ0 + ε(D1θ0 +D0θ1)]

2 sin θ
]
,

(3.6)

and equating coefficients of a like powers ε, we obtain
(i) for ε0

D2
0θ0 = 0,

D2
0y0 +ω2

0y0 = κ(D0θ0)
2 sin θ,

(3.7)

(ii) for ε1

D2
0θ1 = −2D0D1θ0 − I cos θ

(
D2

0y0 + g
)
+ E

(
θ̇
)
, (3.8)

D2
0y1 +ω2

0y1 = −2D0D1y0 − 2μD0y0 − α
(
y0
)3 − eD2

0θ0 cos θ

+ κ 2D0θ0(D1θ0 +D0θ1) sin θ.
(3.9)

The solution of (3.7) can be written as

θ0 = BT0 + σT1, (3.10)

y0 = Λ sin(T0Ω) +A(T1)eiω0T0 +A(T1)e−iω0T0 , (3.11)

where

cos(θ0 + εθ1) = cos(θ0) +O(ε), sin(θ0 + εθ1) = sin(θ0) +O(ε),

Λ =
−κΩ2(

Ω2 −ω2
0

) . (3.12)
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Table 1: Vibrational conveyer parameters in SI units.

ε α μ c I e(m) E1 E0 g ω0 k1 k2 m M

0.05 0.01 0.01 1 0.9 0.2 1.5 1.6 9.81 1 2 000 100 5 200

3.1. Subharmonic Resonances Ω ≈ 3ω0 (Table 1)

Near resonance:

D0θ0 = Ω, (3.13)

Ω = 3ω0 + εσ. (3.14)

The solution of (3.13) can be written as

θ0 = ΩT0 = 3ω0T0 + σT1. (3.15)

Taking

A[T1, T2] =
a[T1]
2

eiβ[T1], (3.16)

where a and β are real, and substituting it into (3.11), we will obtain

y0 =
1
2
e−iT0ω0−iβ(T1)a(T1) +

1
2
eiT0ω0+iβ(T1)a(T1) + Λ sin(T0Ω),

θ1 =
1

8
(
Ω3 −Ωω2

0

)2 e−i(T0ω0+β(T1))

× I
(
− 4Ω2ω2

0a(T1)

×
((

1 + e2i(T0ω0+β(T1))
)(

Ω2 +ω2
0

)
cos(T0Ω) − 2i

(
−1 + e2i(T0ω0+β(T1))

)
Ωω0 sin(T0Ω)

)

−2ei(T0ω0+β(T1))
(
Ω2 −ω2

0

)
cos(T0Ω)

(
−4g +

(
−κΩ2 + Λω2

0

)
sin(T0Ω)

))
,

y1 =
(
e−i(3T0Ω+4T0ω0+3β(T1))

×
(
−8e3iβ(T1)Ω

(
Ω3 + 3Ω2ω0 −Ωω2

0 − 3ω3
0

)

×
(
ieiT0(4Ω+3ω0)ω2

0

(
3αΛ3 + 8iΛμΩ + Iκ2Ω2 − IκΛω2

0

)(
36Ω4 − 13Ω2ω2

0 +ω4
0

)

+ ieiT0(2Ω+3ω0)ω2
0

(
−3αΛ3 + 8iΛμΩ − Iκ2Ω2 + IκΛω2

0

)(
36Ω4 − 13Ω2ω2

0 +ω4
0

)

+ 4eiT0(Ω+3ω0)gIκω2
0

(
9Ω4 − 10Ω2ω2

0 +ω4
0

)
+ 4eiT0(5Ω+3ω0)gIκω2

0
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×
(
9Ω4 − 10Ω2ω2

0 +ω4
0

)
+ 8e3iT0(Ω+ω0)gIκ

(
36Ω6 − 49Ω4ω2

0 + 14Ω2ω4
0 −ω6

0

)

− ie3iT0(2Ω+ω0)ω2
0

(
4Ω4 − 5Ω2ω2

0 +ω4
0

)(
αΛ3 + Iκ

(
κΩ2 −Λω2

0

))

−ie3iT0ω0ω2
0

(
4Ω4 − 5Ω2ω2

0 +ω4
0

)(
−αΛ3 + Iκ

(
−κΩ2 + Λω2

0

)))

+ 2e2iβ(T1)ω2
0

(
36Ω5 + 108Ω4ω2

0 − 39Ω2ω3
0 + Ωω4

0 + 3ω5
0

)

×
(
eiT0(5Ω+2ω0)(Ω +ω0)2

(
2IκΩω2

0 + 3αΛ2(−Ω +ω0)
)

+ ei(T0(Ω+4ω0)+2β(T1))(Ω +ω0)2
(
2IκΩω2

0 + 3αΛ2(−Ω +ω0)
)

+ ei(T0(Ω+2ω0)(Ω −ω0)2
(
2IκΩω2

0 − 3αΛ2(Ω +ω0)
)
+ ei(5T0Ω+4T0ω0+2β(T1))

×(Ω −ω0)2
(
2IκΩω2

0 − 3αΛ2(Ω +ω0)
))

a(T1) + 24iei(T0(2Ω+ω0)+β(T1))α

×ΛΩω2
0

(
−
(
−1 − 2e2i(T0ω0+β(T1)) + 2e2i(T0(Ω+ω0)+β(T1)) + e2i(T0(Ω+2ω0)+2β(T1))

)
Ω

+
(
−1 + 6e2i(T0ω0+β(T1)) − 6e2i(T0(Ω+ω0)+β(T1)) + e2i(T0(Ω+2ω0)+2β(T1))

)
ω0

)

×
(
36Ω6 − 49Ω4ω2

0 + 14Ω2ω4
0 −ω6

0

)
a(T1)2 + e3iT0Ω

(
1 + e6i(T0ω0+β(T1))

)
αΩ

×
(
Ω2 −ω2

0

)2(
36Ω5 + 108Ω4ω0 − 13Ω3ω2

0 − 39Ω2ω2
0 + Ωω4

0 + 3ω5
0

)
a(T1)3

)

× (cos(T0ω0) + i sin(T0ω0)))/
(
64Ω

(
6Ω2 − 5Ωω0 +ω2

0

)

×
(
−Ω2ω0 +ω3

0

)2

×
(
6Ω3 + 23Ω2ω0 + 16Ωω2

0 + 3ω3
0

))
.

(3.17)

Secular terms will be eliminated from the particular solution of (3.8) if we choose A to be a
solution of

−2εσ ′ + E
(
θ̇
)
. (3.18)

In addition to the terms proportional to e(±iω0T0) or proportional to e[±i(Ω−2ω0)T0] there is
another term that produces a secular term in (3.9). We express (Ω − 2ω0)T0 in terms of ω0T0
according to

(Ω − 2ω0)T0 = ω0T0 + εσT0 = ω0T0 + σT1. (3.19)
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Table 2: Vibrational conveyer parameters in SI units.

ε α μ c I e(m) E1 E0 g ω0 k1 k2 m M

0.05 0.01 0.01 1 0.9 0.2 1.5 1.6 9.81 10 200 000 100 5 200

3.2. Superharmonic Resonances Ω ≈ (1/3)ω0 (Table 2)

We consider

3Ω = ω0 + εσ. (3.20)

In addition to the terms proportional to e(±iω0T0) in (3.9), there is another term that
produces a secular term in (3.9). This is −αΛ3e(±3iΩT0). T0 eliminate the secular terms, we
express 3ΩT0 in terms of ω0T0 according to

3ΩT0 = (ω0 + εσ)T0 = ω0T0 + σεT0 = ω0T0 + σT1. (3.21)

Eliminating secular terms in equations, taking (3.16), and separating real and imaginary
parts, the system of equations solved it is as follows [11]:

y0 =
1
2
e−iT0ω0−iβ(T1)a(T1) +

1
2
eiT0ω0+iβ(T1)a(T1) + Λ sin(T0Ω),

θ1 =
1

8(Ω3 −Ωω2
0)

2
e−i(T0ω0+β(T1))

× I
(
−4Ω2ω2

0a(T1)

×
((

1 + e2i(T0ω0+β(T1))
)(

Ω2 +ω2
0

)
cos(T0Ω) − 2i

(
−1 + e2i(T0ω0+β(T1))

)
Ωω0 sin(T0Ω)

)

−2ei(T0ω0+β(T1))
(
Ω2 −ω2

0

)
cos(T0Ω)

(
−4g +

(
−κΩ2 + Λω2

0

)
sin(T0Ω)

))
,

y1 =
(
e−i(2T0Ω+5T0ω0+3β(T1))

×
(
−8e3iβ(T1)Ω

(
Ω4 − 10Ω2ω2

0 + 9ω4
0

)

×
(
4eiT0(4Ω+5ω0)gIκω2

0

(
Ω2 −ω2

0

)
− 4e5iT0ω0gIκω2

0

(
−Ω2 +ω2

0

)

+ ieiT0(3Ω+5ω0)ω2
0

(
4Ω2 −ω2

0

)(
3αΛ3 + 8iΛμΩ + Iκ2Ω2 − IκΛω2

0

)

+ eiT0(Ω+5ω0)ω2
0

(
−4Ω2 +ω2

0

)(
3iαΛ3 + 8ΛμΩ + iIκ2Ω2 − iIκΛω2

0

)

+ 8eiT0(2Ω+5ω0)gIκ
(
4Ω4 − 5Ω4ω2

0 +ω4
0

))
+ 2e2iβ(T1)ω2

0

(
4Ω4 − 37Ω2ω2

0 + 9ω0

)
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×
(
e4iT0(Ω+ω0)(Ω +ω0)2

(
2IκΩω2

0 + 3αΛ2(−Ω +ω0)
)
+ e2i(3T0ω0+β(T1))(Ω +ω0)2

×
(
2IκΩω2

0 + 3αΛ2(−Ω +ω0) + e4iT0ω0(Ω −ω0)2
(
2IκΩω2

0 − 3αΛ2(Ω +ω0)
)

+ e2i(2T0Ω+3T0ω0+β(T1))(Ω −ω0)2
(
2IκΩω2

0 − 3αΛ2(Ω +ω0)
))

a(T1)

− 24ieiβ(T1)αΛΩω2
0

(
4Ω4 − 5Ω2ω2

0 +ω4
0

)

×
(
2ei(3T0Ω+5T0ω0+2β(T1))

(
Ω2 − 9ω2

0

)
− 2ei(T0(Ω+5ω0)+2β(T1))

(
Ω2 − 9ω2

0

)

− eiT0(Ω+3ω0)
(
Ω2 − 4Ωω0 + 3ω2

0

)
+ ei(3T0Ω+7T0ω0+4β(T1))

(
Ω2 − 4Ωω0 + 3ω2

0

)

+ e3iT0(Ω+ω0)
(
Ω2 + 4Ωω0 + 3ω2

0

)
− ei(T0(Ω+7ω0)+4β(T1))

×
(
Ω2 + 4Ωω0 + 3ω2

0

))
a(T1)2

+
(
e2iT0(Ω+ω0) + e2i(T0(Ω+4ω0)+3β(T1))

)
αΩ

(
Ω2 −ω2

0

)2

×
(
4Ω4 − 37Ω2ω2

0 + 9ω4
0

)
a(T1)3

))
/

(
64
(
−Ω2ω0+ω3

0

)2(
4Ω5−37Ω3ω2

0+9Ωω4
0

))
.

(3.22)

4. Stability Analysis

We analyzed in this system the stability (a, γ) in the equilibrium point, using (4.1), where F is
the Jacobianmatrix of (4.2), and γsub = 3β[T1]−T1σ[T1], γsup = [β[T1]−T1σ[T1]]. Stability of the
approximate solutions depends on the value of the eigenvalues of the Jacobian matrix F [12].
The solutions are unstable if the real part of the eigenvalues is positives Figures 2(a1) and
2(a2). Figure 2 shows the frequency-response curves for the subharmonic and superharmonic
resonance of the unbalanced vibratory conveyor:

a′
sub = −μa − 3

8ω0
αΛa2 cos

[
γ
]
,

γ ′sub = −3
(
2IκΩ2ω2

0 + 3αΛ2(−Ω2 +ω2
0

))
4
(
Ω2 −ω2

0

)
ω0

+
9

8ω0
αa2 − 9

8ω0
αΛa sin

[
γ
] − σ,

a′
sub = −μa − 3

8ω0

(
αΛ3 + Iκ

(
κΩ2 −Λω2

0

))
cos

[
γ
]
,

γ ′sub = −
(
2IκΩ2ω2

0 + 3αΛ2(−Ω2 +ω2
0

))
4
(
Ω2 −ω2

0

)
ω0

+
3αa2

8ω0
+

(
αΛ3 + Iκ

(
κΩ2 −Λω2

0

))
sin

[
γ
]

8ω0a
− σ,

(4.1)

F =
{
∂af1, ∂γf1

}
,
{
∂af2, ∂γf2

}
, f1 = a′, f2 = γ ′. (4.2)
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Figure 2: Subharmonic resonance and superharmonic resonance. (a) Frequency-response curves with
stability, — stable, · · · unstable {(a1) : a = 2.78–10, σ = 0.43258–2.62092 and (a2): a = 2.73–7.21,
σ = 0.6782–0.986448}, (b) effect of detuning parameter, and (c) effect of damping parameter.
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Figure 3: Subharmonic resonance: (a) power spectrum and superharmonic resonance, (b) power spectrum,
(c) phase portrait, and (d) Poincaré sections.

5. Numerical Results

The numerical calculations of the vibrating system are performed with the help of the
software Mathematica [13, 14]. We analyze the subharmonic resonance Ω ≈ 3ω0 and
superharmonic resonance 3Ω ≈ ω0. Figure 3 shows the power spectrum, phase portrait and
the Poincaré map for superharmonic resonance and Figure 3 shows the power spectrum for
superharmonic resonance.

6. Conclusions

The vibrating system is analyzed, analytically, and numerically for superharmonic and
subharmonic resonance by the method of multiple scales. Very often in the motion of the
system near resonance the jump phenomenon occurs. The frequency-response curves of the
subharmonic resonance consist of two branches; the left one is stable and the right one is
unstable (saddle node bifurcation). The frequency-response curves of the superharmonic
resonance consist of three branches; the left one is stable, the middle one is unstable, and
the right one is stable (pitchfork bifurcation). The stable motions of the oscillator are shown
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with one peaks in the power spectrum for superharmonic resonance and with two peaks in
the power spectrum for subharmonic resonance. Both analytical and numerical results that
we have obtained are in good agreement. The system studied here exhibits chaotic behaviour
in case of strong nonlinearity. This will be reported in the forthcoming paper. Furthermore,
control methods in the passage through resonance await for future publication.
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