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The problem of fault detection and isolation (FDI) on inertial measurement units (IMUs) has
received great attention in the last years, mainly with growing use of IMU strapdown platforms
using fiber optic gyros (FOG) or micro electro mechanical systems (MEMSs). A way to solve
this problem makes use of sensor redundancy and parity vector (PV) analysis. However, the
actual sensor outputs can include some anomalies, as impulsive noise which can be associated
with the sensors itself or data acquisition process, committing the elementary threshold criteria as
commonly used. Therefore, to overcome this problem, in this work, it is proposed an algorithm
based on median filter (MF) for prefiltering and chi-square cumulative sum (χ2-CUSUM) only for
fault detection (FD) applied to an IMU composed by four FOGs.

1. Introduction

The design of a FDI algorithm for applications on IMUs can, in general, be divided in
two types. The first one, named analytical redundancy, takes into account a mathematical
model of the system in which the IMU is used. This method generates a residue vector as a
result of the state observer [1–4] in order to indicate the IMU operational status. The second
one, named sensor redundancy, is based on specific geometrical configurations using extra
sensors and solving the FDI problem with the aid of the parity vector (PV) analysis [5, 6].
However, the actual sensor outputs can include some anomalies, as impulsive noise which
can be associated with the sensors itself or with the data acquisition process [7], violating
the elementary threshold criteria as commonly used. This work applies the second type of
algorithm to the FD problem. The use of four sensors (minimal redundancy) constrains the
algorithm to detect the fault not allowing the identification (isolation) of the faulty sensor [8].
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Figure 1: Tetrahedral base.

To overcome the anomalies addressed before, in this work is proposed an algorithm based
on MF that performs the prefiltering of FOG outputs and the use of the χ2-CUSUM for FD
problem.

2. Background

2.1. Geometry

The geometrical arrangement used in this work considers four gyros mounted on the faces of
a tetrahedral structure (tetrad), and three accelerometers in a triad configuration internally
fixed in the tetrahedral. The analysis performed here takes into account the gyros only,
and the extension for accelerometers is straightforward. The tetrad configuration and the
reference frame are shown in Figure 1. The mathematical representation of the arrangement
of the gyros is given in terms of direct cosine matrix (DCM), and is obtained from angular
relationship between sensor axes and the analytical triorthogonal axes (analytical triad).
Therefore, considering the schema shown in Figure 1, where α = 54.736◦, the DCM is given
by

H =
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. (2.1)

The matrix H relates the sensor measurements (gi) with the angular rate in the main axes in
the form of

go = Hω. (2.2)
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The estimate of the angular rate components in the main axes can be obtained from (2.2) in
the following manner:

ω̂ = H∗go, (2.3)

H∗ =
(
HTH

)−1
HT , (2.4)

where go = [g1 g2 g3 g4]
T is the vector of the gyro outputs,ω = [ωx ωy ωz]

T is the angular
rate vector about main axes, ω̂ is the angular rate estimate vector, and H∗ is the generalized
inverse of H.

Equation (2.4) provides the best state estimation in the least squares sense.

2.2. Parity Vector

The sensor equation considered in (2.2) can be rewritten by adding the faults, biases, and
noises components as follows:

g̃o = Hω + δgo + f + ηs, (2.5)

where δgo is the bias vector whose magnitude is constant, f is the fault vector, and ηs is a
random term vector (Gaussian noise). Applying the singular value decomposition (SVD)
on H, it can be obtained the range and null spaces from this matrix [9]. In addition, also is
computed the biases influence on the arrangement. Decomposing H as follows:

UTHV = Λ =
(
Σ
0

)
, (2.6)

H = UΛVT , (2.7)

where U, Λ, and VT are matrices obtained from SVD of H. The matrix Σ is a diagonal
matrix whose elements are the eigenvalues of H. The superscript (T ) indicates the transpose.
Applying (2.7) into (2.5) and multiplying both sides by UT , it can be obtained the following
relationship:

UT g̃o = ΛVTω +UT(δgo + f + ηs
)
. (2.8)

Partitioning U as follows:

U =
[
U1

... U2

]
, (2.9)
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where U1 ∈ R
4 × 3 and U2 ∈ R

4 × 1, and applying it into (2.8), the resulting equations are

UT
1 g̃o = (ΣV)ω +UT

1

(
δgo + f + ηs

)
, (2.10)

UT
2 g̃o = UT

2
(
δgo + f + ηs

)
= p, (2.11)

p = Cg̃o. (2.12)

Equation (2.10) leads to least squares estimate of ω, what is equivalent to (2.3), and can be
expressed by

ω̂LS = (ΣV)−1UT
1 g̃o. (2.13)

The meaning of (2.11) is that, if sensors faults and biases are zero, the resulting product of
parity vector with sensor measurements is a white noise with zero mean. Otherwise, if the
biases and/or faults values differ from zero, (2.11) is a “weighted” sensor errors summation.
Then, UT

2 (or C) is null space of H and p is the parity vector.

2.3. Median Filter

In the image processing field, it is very common to employ filters that preserve edges or
abrupt transitions between distinct parts of the image or remove salt and pepper noise. These
filters generally compare the pixel under observation with its neighbors at certain window
and take a decision based on a statistical or threshold criteria. The simplest filter that meets
these requirements is the median filter (MF). Being the MF not an optimal filter, it preserves
discontinuities as jumps [10] and is also a robust estimator [11], besides being an easy and
fast way to remove outliers from signals [7].

2.3.1. Recursive Median Filter

In the time sequence processing by MF, it is possible to process the samples in the filter
window in two ways. (a) Process the samples in the window to obtain the output at
discrete time (k), shift the window to process the time (k + 1) over the original data without
replacement; this is the nonrecursive processing. (b) Process the samples in the window to
obtain the output at discrete time (k), replace the original sample x(k) by the filter output
y(k), shift the window and process the new samples with replacement; this is the recursive
median filter. The nonrecursiveMF is shown by (2.14) and the recursiveMF is shown by (2.15),

y(k) = median{x(k −N), . . . , x(k), . . . , x(k +N)}, (2.14)

y(k) = median
{
y(k −N), . . . , y(k − 1), x(k), . . . , x(k +N)

}
, (2.15)

where x represents the time series and the filter window has 2N + 1 samples.
The recursive form of the MF presents an expressive noise attenuation capacity

comparing with the nonrecursive form, this property leads the signal to a fast convergence
[12].
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The appropriate size of the MF can be defined comparing the variance of the signal
filtered with the variance of the same signal filtered by an average filter. In this work it was
chosen the exponentially weighted moving average (EWMA) filter [13], setting the β factor
properly. The EWMA filter is defined as follows:

μn = βμn−1 +
(
1 − β

)
xn, (2.16)

where μ is the estimated mean of the random variable x at time n and β is the EWMA factor.
The absolute value of the difference between variances is defined as

Δvar
(
j
)
= abs

[
var

(
MF(j)

) − var
(
FExp(β)

)]
, (2.17)

where MF(j) is the size j MF output and FExp(β) is the EWMA filter output related to β factor.

2.4. χ2-CUSUM Algorithm

The cumulative sum (CUSUM) algorithm is widely used to detect changes in the mean value
of an independent Gaussian sequence. This algorithm is based on log-likelihood ratio and
defined as follows [14]:

s
(
y
)
= ln

pθ1
(
y
)

pθ0
(
y
) , (2.18)

where s(y) is the sufficient statistics, pθ(y) is probability density function with conditional
parameter θ.

Before a change, the parameter θ is constant and equals to θ0; after the variation it
assumes the value θ1.

Considering (2.18) and a sampling set of size N, the following decision function can
be established:

Sk
j =

k∑
i=j

si,

si = ln
pθ1

(
yi

)

pθ0
(
yi

) ,
(2.19)

where the decision is stated as,

d =

{
0 if SN

1 < λ, H0 is chosen
1 if SN

1 ≥ λ, H1 is chosen
(2.20)
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and the hypothesis test is defined as,

H0 : θ = θ0,

H1 : θ = θ1,
(2.21)

where λ is a suitable threshold.
The alarm time (ta) after a change is defined by the following stopping rule:

ta = N ·min{K : dK = 1}. (2.22)

In this form, the CUSUM algorithm requires prior knowledge about the parameter θ1 and
cannot be processed recursively. So, for online applications and considering the parameter
θ1 as unknown, it is required a modified version of the CUSUM algorithm. It is presented in
this work a modified version of the CUSUM based upon the weighted likelihood ratio and
the sequential probability ratio test (SPRT) to suit the unknown θ1 and allow for the online
processing as in [14]:

Λ̃k
j =

∫∞

−∞

pθ1
(
yj , . . . , yk

)

pθ0
(
yj , . . . , yk

)dF(θ1), (2.23)

where the stopping time (or alarm time) ta is defined as

ta = min
{
k : max

1≤j≤k
ln Λ̃k

j ≥ λ

}
(2.24)

and dF(θ1) is a weighting function.
Considering the prior knowledge about σ2 and μ0 of a Gaussian sequence with

distribution F(θ1) = F(μ) concentrated on two points μ0−ν, and μ0+ν the weighted likelihood
ratio becomes

Λ̃k
j =

∫∞

−∞
exp

[
bS̃k

j −
b2

2
(
k − j + 1

)]
dF(ν), (2.25)

where b = ν/σ is the signal-to-noise ratio (SNR), ν = μ1 − μ0, and

S̃k
j =

1
σ

k∑
i=j

(
yi − μ0

)
. (2.26)

Solving (2.25),

Λ̃k
j = cosh

(
bS̃k

j

)
e−(b

2/2)(k−j+1)

= cosh
[
b
(
k − j + 1

)
χk
j

]
e−(b

2/2)(k−j+1),
(2.27)
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where

χk
j =

1
k − j + 1

∣∣∣S̃k
j

∣∣∣. (2.28)

Equation (2.27) is the probability ratio to noncentral parameter test of a χ2 distribution with
one degree-of-freedom between values 0 and (k − j + 1)b2. So, by using this approach, we
reach χ2-CUSUM algorithm.

As a consequence of the previous derivation, ta is now defined as

ta = min
{
k : gk ≥ λ

}
, (2.29)

where

gk = max
1≤j≤k

[
ln cosh

(
bS̃k

j

)
− b2

2
(
k − j + 1

)]
. (2.30)

By making a slight modification and considering the CUSUM algorithm as a repeated SPRT
[14] with lower and upper thresholds fixed in 0 and λ, respectively, the recursive form of the
χ2-CUSUM algorithm takes the following form:

gk =
(
S̆k
k−Nk+1

)+
,

S̆k
k−Nk+1

= −1
2
Nkb

2 + ln cosh
(
bS̃k

k−Nk+1

)
,

S̃k
k−Nk+1

= Sk,

Sk = Sk−11{gk−1>0} +
yk − μ0

σ
,

(2.31)

where Nk = Nk−11{gk−1>0} + 1.

3. Fault Detection Algorithm

3.1. FD Algorithm Structure

The detection of faults in a IMU with redundant sensors can be performed by PV analysis.
Under normal conditions, that is, bias and faults with null values, the PV should present a
normal distribution N(0, σ2). However, in actual systems, impulsive noise may occur. This
situation is described in [7]. As stated above, the MF is used in order to remove those
impulses and to improve the detection performed by χ2-CUSUM algorithm. In Figure 2, it
is shown the FD processing structure. Again, in this form, the algorithm only alarms the
fault occurrence because it is not possible to define which sensor is under fault condition.
After processing the signal from gyros by a data acquisition system, the data are filtered by
a recursive MF (2.15) of size 3 or 5 in order to remove the spikes (or outliers) generated in
this phase. In the sequence, the information (in mV/deg/s) is converted by a scale factor, SF
(in deg/s). The SF block makes a polynomial conversion, whose degree is 7. The PV block
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Figure 2: Gyro processing and fault detection block diagram. MF: median filter (MF(1): size 3//MF(2):
size 11); SF: scale factor; GN&C: guidance, navigation, and control; PV: parity vector.
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Figure 3: Absolute value of the difference between variances of the FM(j) and FExp(0.95).

performs the multiplication of the null space of the actual H̃matrix (3.1)with the gyro output
vector in deg/s, forming the parity vector. This PV is filtered, again, by another recursive MF
of size 11. This size was obtained using (2.16) and (2.17), setting β = 0.95. The results obtained
by processing (2.17) are shown in Figure 3. It can be seen that difference from the results
obtained for sizes 9 to 15 is negligible. So, after some tests, it was concluded that size 11 is the
best choice. The actual parameters used in the algorithm were obtained from the calibration
of the IMU and are presented in [7]. The values and operations associated to blocks in the
Figure 2 are given as follows.
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Figure 4: Ratios for b varying from 0.1 to 5.

For the actual sensor matrix (this matrix is obtained from calibration process) (H̃) and
respective null space matrix (C̃) and generalized inverse (H∗),

H̃ =

⎛
⎜⎜⎝

0.57868624 −0.00432436 0.81553879
0.57733766 0.70734792 −0.40784817
0.57695344 −0.70679030 −0.40935582
0.99999805 0.00100995 0.00169158

⎞
⎟⎟⎠, (3.1)

C̃ =
[−0.40955 −0.40903 −0.40585 0.70729

]
,

C̃H̃ = 0,

H∗ =
(
H̃TH̃

)−1
H̃T .

(3.2)

For the scale factor block, the polynomials of degree 7 are,

go1

(◦
s

)
= 0.0657g7

v − 3.64 × 10−4g6
v − 7.799 × 10−2g5

v + 9.911 × 10−4g4
v

+ 1.200g3
v + 3.085 × 10−4g2

v + 37.432gv − 3.724 × 10−3,

go2

(◦
s

)
= 0.09452g7

v + 1.083 × 10−5g6
v − 0.1965g5

v − 2.041 × 10−3g4
v

+ 1.5219g3
v + 6.910 × 10−3g2

v + 38.305gv − 4.615 × 10−3,

go3

(◦
s

)
= 0.0761g7

v − 2.898 × 10−4g6
v − 0.13277g5

v − 8.253 × 10−4g4
v

+ 1.3711g3
v + 2.326 × 10−3g2

v + 38.234gv − 1.1713 × 10−2,

go4

(◦
s

)
= 0.0814g7

v − 1.0544 × 10−4g6
v − 0.18366g5

v − 1.3751 × 10−3g4
v

+ 1.4068g3
v + 3.9596 × 10−3g2

v + 37.282gv − 4.1806 × 10−3,

(3.3)
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Figure 5: χ2-CUSUM results for 20000 samples of a movement sequence without faults with (SNR) b = 0.1.
(a) PV; (b) Sk ; (c) S̆k ; (d) gk .

and the PV block processes the following operation:

p = C̃g̃o, (3.4)

where p is filtered by MF(2) and applied to χ2-CUSUM algorithm (2.31) in the form of yk.
The filtering block in the Figure 2 is an optional filter to comply with the GN&C block

requirements.

3.2. Calibration of the FD Algorithm

The calibration of the FD algorithm was performed offline by using a time series extracted
from the IMU movement on a 2DOF rotating table. The first parameter to be determined is
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Figure 6: χ2-CUSUM results for 20000 samples of a movement sequence without faults with (SNR) b = 3.5.
(a) PV; (b) Sk ; (c) S̆k ; (d) gk .

the threshold (λ), obtained by use of the Kullback information [14] as follows:

l ≈ λ

K(ν)
,

K(ν) =
ν2

2σ2
=

1
2
b2,

(3.5)

λ ≈ 1
2
b2l, (3.6)

where l is the average number of samples until the alarm time (ta).
Of course, the parameters b and l in (3.6) are unknown. So, to overcome this condition,

it is assumed the SNR (b) equals to 1 and lwith properly size. In this work, it was considered
l equals to 60. Thus, the threshold is fixed as

λ =
1
2
12 × 60 = 30. (3.7)
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Figure 7: PV with step fault for sample 10000. (a) PV nonfiltered (red) and filtered by MF of size 11 (blue);
(b) PV filtered by MF of size 11 (blue) and by FExp with β = 0.95 (red); the zoom in (b) indicates the
difference between MF and FExp during the transition time.

Once the threshold value is set and considered the actual values associated to the PV (σ
and μ0) as given in Table 1, it was performed the following computation the χ2-CUSUM
algorithm:

% = 100 × Total of gk > λ

Total number of samples
. (3.8)

The ratio in (3.8) is used to determine the actual value of b that reach 0% of samples crossing
the threshold in normal condition (without fault). In other words, 0% of false alarms. It is
shown in Figure 4 the ratios for b varying from 0.1 to 5, in whose range from 3.5 for SNR
meets the objective. The efficiency of the calibration can be seen in Figures 5 and 6, it is shown
the algorithm outputs for (SNR) b = 0.1 and b = 3.5, respectively. The main information is
presented in Figures 5 and 6(d), where it is illustrated the behavior of the decision function
with respect to the threshold (λ = 30).
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Figure 8: χ2-CUSUM results for 20000 samples of a movement sequence with a step fault at sample 10000
and magnitude 0.15◦/s; (SNR) b = 3.5. (a) PV; (b) Sk ; (c) S̆k ; (d) gk .

4. Results

After the calibration phase, it was injected a step bias fault of magnitude 0.15 deg/s into one
of sensors for the sample 10000. This fault generated a step variation in the PV according to
Figures 7 and 8(a) and slopes as a result of the χ2-CUSUMalgorithm processing in the Figures
8(b)–8(d). In the Figure 7(a), it is shown the efficiency of the median filter in impulsive
noise reduction process, and in letter (b) is shown a comparison between MF and FExp
in terms of filtering delay. In the decision function curve Figure 8(d), it is illustrated the
difference between actual time occurrence of the fault (t0 = 10000) and the actual time alarm
(ta = 10054), whose delay is 54 samples. In addition, there are another delays that should
be computed which are associated to median filters (MF(1) and MF(2)). The total processing
delay of the filters and algorithm is summarized in Table 2. In this table, it is presented the
processing of the step faults with values 0.10, 0.15, 0.20, and 0.30 deg/s in order to compare
the effect of the fault level on the detection delay. Considering the case of this work, where
the FOGs are sampled at 100Hz, the delay is less than 0.15 seconds for the fault level higher
than 0.20 deg/s.
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Table 1: Tuning parameters for χ2-CUSUM algorithm.

σ(◦/s) μ0(◦/s) b λ

0.022 0.002 0.1 to 5 30

Table 2: Fault detection delay as a function of fault magnitude given in number of samples with respect to
the parameters b = 3.5 and λ = 30.

Step fault 1st MF delay 2nd MF delay Detection Total delay
(◦/s) (MF3) (MF11) delay (ta − t0)
0.10 1 5 430 436
0.15 1 5 54 60
0.20 1 5 9 15
0.30 1 5 4 10

5. Conclusions

In this paper, a method based on χ2-CUSUM algorithm combined with median filter was
applied to detect faults in inertial measurement units with minimal redundancy of fiber
optics gyros. The effectiveness of algorithm in case of low level step faults was demonstrated
achieving the requirements of short delay to alarm with high reliability. In addition, the
calibration technique presented here also proved to be efficient.
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