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We use the bifurcation method of dynamical systems to study the traveling wave solutions for
the generalized Zakharov equations. A number of traveling wave solutions are obtained. Those
solutions contain explicit periodic wave solutions, periodic blow-up wave solutions, unbounded
wave solutions, kink profile solitary wave solutions, and solitary wave solutions. Relations of the
traveling wave solutions are given. Some previous results are extended.

1. Introduction

The Zakharov equations

iut + uxx − uv = 0,

vtt − vxx +
(
|u|2
)
xx

= 0,
(1.1)

which is one of the fundamental models governing dynamics of nonlinear waves in
one-dimensional systems. It describes the interaction between high-frequency and low-
frequency waves. The physically most important example involves the interaction between
the Langmuir and ion-acoustic waves in plasmas [1]. The equations can be derived from
a hydrodynamic description of the plasma [2, 3]. However, some important effects such as
transit-time damping and ion nonlinearities, which are also implied by the fact that the values
used for the ion damping have been anomalously large from the point of view of linear ion-
acoustic wave dynamics, have been ignored in (1.1). This is equivalent to saying that (1.1)
is a simplified model of strong Langmuir turbulence. Thus we have to generalize (1.1) by
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taking more elements into account. Starting from the dynamical plasma equations with the
help of relaxed Zakharov simplification assumptions, and through making use of the time-
averaged two-time-scale two-fluid plasma description, (1.1) are generalized to contain the
self-generated magnetic field [4, 5], and the first related study on magnetized plasmas in
[6, 7]. The generalized Zakharov equations are a set of coupled equations and may be written
as [8]

iut + uxx − 2λ|u|2u + 2uv = 0,

vtt − vxx +
(
|u|2
)
xx

= 0.
(1.2)

Malomed et al. [8] analyzed internal vibrations of a solitary wave in (1.2) by means of
a variational approach.Wang and Li [9] obtained a number of periodic wave solutions of (1.2)
by using extended F-expansion method. Javidi and Golbabai [10] used the He’s variational
iteration method to obtain solitary wave solutions of (1.2). Zhang [11] obtained the exact
traveling wave solutions of (1.2) by using the direct algebraic method. Zhang [12] used He’s
semi-inverse method to search for solitary wave solutions of (1.2). Javidi and Golbabai [13]
obtained the exact and numerical solutions of (1.2) by using the variational iteration method.
Li et al. [14] used the Exp-function method to seek exact solutions of (1.2). Borhanifar et al.
[15] obtained the generalized solitary solutions and periodic solutions of (1.2) by using the
Exp-function method. Khan et al. [16] used He’s variational approach to obtain new soliton
solutions of (1.2).

The aim of this paper is to study the traveling wave solutions and their limits for
(1.2) by using the bifurcation method and qualitative theory of dynamical systems [17–
24]. Through some special phase orbits, we obtain many smooth periodic wave solutions
and periodic blow-up solutions. Their limits contain kink-profile solitary wave solutions,
unbounded wave solutions, periodic blow-up solutions, and solitary wave solutions.

The remainder of this paper is organized as follows. In Section 2, by using the
bifurcation theory of planar dynamical systems, two-phase portraits for the corresponding
traveling wave system of (1.2) are given under different parameter conditions. The relations
between the traveling wave solutions and the Hamiltonian h are presented. In Section 3, we
obtain a number of traveling wave solutions of (1.2) and give the relations of the traveling
wave solutions. A short conclusion will be given in Section 4.

2. Phase Portraits and Qualitative Analysis

We assume that the traveling wave solutions of (1.2) is of the form

u(x, t) = eiηϕ(ξ), v(x, t) = ψ(ξ), η = px + qt, ξ = k
(
x − 2pt

)
, (2.1)

where ϕ(ξ) and ψ(ξ) are real functions; p, q, and k are real constants.
Substituting (2.1) into (1.2), we have

k2ϕ′′ + 2ϕψ −
(
p2 + q

)
ϕ − 2λϕ3 = 0,

k2
(
4p2 − 1

)
ψ ′′ + k2

(
ϕ2
)′′

= 0.
(2.2)
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Integrating the second equation of (2.2) twice, and letting the first integral constant be
zero, we have

ψ =
ϕ2

1 − 4p2
+ g, p /=

1
2
, (2.3)

where g is integral constant.
Substituting (2.3) into the first equation of (2.2), we have

k2ϕ′′ +
(
2g − p2 − q

)
ϕ + 2

(
1

1 − 4p2
− λ
)
ϕ3 = 0. (2.4)

Letting ϕ′ = y, α = (2/k2)(λ − 1/(1 − 4p2)), and β = (2g − p2 − q)/k2, then we get the
following planar system

dϕ
dξ

= y,

dy
dξ

= αϕ3 − βϕ.
(2.5)

Obviously, the above system (2.5) is a Hamiltonian system with Hamiltonian function

H
(
ϕ, y
)
= y2 − 1

2
αϕ4 + βϕ2. (2.6)

In order to investigate the phase portrait of (2.5), set

f
(
ϕ
)
= αϕ3 − βϕ. (2.7)

Obviously, f(ϕ) has three zero points, ϕ−, ϕ0, and ϕ+, which are given as follows:

ϕ− = −
√
β

α
, ϕ0 = 0, ϕ+ =

√
β

α
. (2.8)

Letting (ϕi, 0) be one of the singular points of system (2.5), then the characteristic
values of the linearized system of system (2.5) at the singular points (ϕi, 0) are

λ± = ±
√
f ′(ϕi

)
. (2.9)

From the qualitative theory of dynamical systems, we know that:

(1) if f ′(ϕi) > 0, (ϕi, 0) is a saddle point;

(2) if f ′(ϕi) < 0, (ϕi, 0) is a center point;

(3) if f ′(ϕi) = 0, (ϕi, 0) is a degenerate saddle point;
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Figure 1: The phase portraits of system (2.5). (a) α > 0, β > 0, (b) α < 0, β < 0.

Therefore, we obtain the phase portraits of system (2.5) in Figure 1.
Let

H
(
ϕ, y
)
= h, (2.10)

where h is Hamiltonian.
Next, we consider the relations between the orbits of (2.5) and the Hamiltonian h.
Set

h∗ =
∣∣H(ϕ+, 0

)∣∣ = ∣∣H(ϕ−, 0
)∣∣ = β2

2|α| . (2.11)

According to Figure 1, we get the following propositions.

Proposition 2.1. Suppose that α > 0 and β > 0, we have the following.

(1) When h < 0 or h > h∗, system (2.5) does not have any closed orbit.

(2) When 0 < h < h∗, system (2.5) has three periodic orbits Γ1, Γ2, and Γ3.

(3) When h = 0, system (2.5) has two periodic orbits Γ4 and Γ5.

(4) When h = h∗, system (2.5) has two heteroclinic orbits Γ6 and Γ7.

Proposition 2.2. Suppose that α < 0 and β < 0, we have the following.

(1) When h � −h∗, system (2.5) does not have any closed orbit.

(2) When −h∗ < h < 0, system (2.5) has two periodic orbits Γ8 and Γ9.

(3) When h = 0, system (2.5) has two homoclinic orbits Γ10 and Γ11.

(4) When h > 0, system (2.5) has a periodic orbit Γ12.

From the qualitative theory of dynamical systems, we know that a smooth solitary
wave solution of a partial differential system corresponds to a smooth homoclinic orbit of
a traveling wave equation. A smooth kink wave solution or an unbounded wave solution
corresponds to a smooth heteroclinic orbit of a traveling wave equation. Similarly, a periodic
orbit of a traveling wave equation corresponds to a periodic traveling wave solution of a
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partial differential system. According to the above analysis, we have the following proposi-
tions.

Proposition 2.3. If α > 0 and β > 0, we have the following.

(1) When 0 < h < h∗, (1.2) has two periodic wave solutions (corresponding to the periodic
orbit Γ2 in Figure 1) and two periodic blow-up wave solutions (corresponding to the periodic
orbits Γ1 and Γ3 in Figure 1).

(2) When h = 0, (1.2) has two periodic blow-up wave solutions (corresponding to the periodic
orbits Γ4 and Γ5 in Figure 1).

(3) When h = h∗, (1.2) has two kink-profile solitary wave solutions and two unbounded wave
solutions (corresponding to the heteroclinic orbits Γ6 and Γ7 in Figure 1).

Proposition 2.4. If α < 0 and β < 0, we have the following.

(1) When −h∗ < h < 0, (1.2) has two periodic wave solutions (corresponding to the periodic
orbits Γ8 and Γ9 in Figure 1).

(2) When h = 0, (1.2) has two solitary wave solutions (corresponding to the homoclinic orbits
Γ10 and Γ11 in Figure 1).

(3) When h > 0, (1.2) has two periodic wave solutions (corresponding to the periodic orbit Γ12
in Figure 1).

3. Traveling Wave Solutions and Their Relations

Firstly, we will obtain the explicit expressions of traveling wave solutions for the (1.2) when
α > 0 and β > 0.

(1) From the phase portrait, we note that there are three periodic orbits Γ1, Γ2, and
Γ3 passing the points (ϕ1, 0), (ϕ2, 0), (ϕ3, 0), and (ϕ4, 0). In (ϕ, y) plane the expressions of the
orbits are given as

y = ±
√
α

2

√(
ϕ − ϕ1

)(
ϕ − ϕ2

)(
ϕ − ϕ3

)(
ϕ − ϕ4

)
, (3.1)

where ϕ1 = −
√
(β +

√
β2 − 2αh)/α, ϕ2 = −

√
(β −

√
β2 − 2αh)/α, ϕ3 =

√
(β −

√
β2 − 2αh)/α,

ϕ4 =
√
(β +

√
β2 − 2αh)/α, and 0 < h < h∗.

Substituting (3.1) into dϕ/dξ = y and integrating them along Γ1, Γ2, and Γ3, we have

±
∫∞

ϕ

1√(
s − ϕ1

)(
s − ϕ2

)(
s − ϕ3

)(
s − ϕ4

)ds =
√
α

2

∫ ξ
0
ds,

±
∫ϕ
0

1√(
s − ϕ1

)(
s − ϕ2

)(
s − ϕ3

)(
s − ϕ4

)ds =
√
α

2

∫ ξ
0
ds.

(3.2)
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Completing above integrals we obtain

ϕ = ± ϕ4

sn
(
ϕ4
√
α/2 ξ, ϕ3/ϕ4

) ,

ϕ = ±ϕ3sn

(
ϕ4

√
α

2
ξ,
ϕ3

ϕ4

)
.

(3.3)

Noting that (2.1) and (2.3), we get the following periodic wave solutions:

u1(x, t) = ± eiηϕ4

sn
(
ϕ4
√
α/2 ξ, ϕ3/ϕ4

) ,

v1(x, t) =
ϕ2
4

(
1 − 4p2

)(
sn
(
ϕ4
√
α/2 ξ, ϕ3/ϕ4

))2 + g,

u2(x, t) = ±eiηϕ3sn

(
ϕ4

√
α

2
ξ,
ϕ3

ϕ4

)
,

v2(x, t) =

(
ϕ3sn

(
ϕ4
√
α/2 ξ, ϕ3/ϕ4

))2

1 − 4p2
+ g,

(3.4)

where η = px + qt and ξ = k(x − 2pt).
(2) From the phase portrait, we note that there are two special orbits Γ4 and Γ5, which

have the same hamiltonian as that of the center point (0, 0). In (ϕ, y) plane the expressions of
the orbits are given as

y = ±
√
α

2
ϕ
√(

ϕ − ϕ5
)(
ϕ − ϕ6

)
, (3.5)

where ϕ5 = −√2β/α and ϕ6 =
√
2β/α.

Substituting (3.5) into dϕ/dξ = y, and integrating them along the two orbits Γ4 and
Γ5, it follows that

±
∫+∞

ϕ

1

s
√(

s − ϕ5
)(
s − ϕ6

)ds =
√
α

2

∫ ξ
0
ds. (3.6)

Completing above integrals we obtain

ϕ = ±
√

2β
α
csc
√
βξ. (3.7)
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Noting (2.1) and (2.3), we get the following periodic blow-up wave solutions:

u3(x, t) = ±eiη
√

2β
α
csc
√
βξ,

v3(x, t) =
2β
(
csc
√
βξ
)2

α
(
1 − 4p2

) + g,

(3.8)

where η = px + qt and ξ = k(x − 2pt).
(3) From the phase portrait, we see that there are two heteroclinic orbits Γ6 and

Γ7 connected at saddle points (ϕ−, 0) and (ϕ+, 0). In (ϕ, y) plane the expressions of the
heteroclinic orbits are given as

y = ±
√
α

2

√(
ϕ − ϕ−

)2(
ϕ − ϕ+

)2
. (3.9)

Substituting (3.9) into dϕ/dξ = y, and integrating them along the heteroclinic orbits
Γ6 and Γ7, it follows that

±
∫ϕ
0

1(
s − ϕ−

)(
ϕ+ − s

)ds =
√
α

2

∫ ξ
0
ds,

±
∫+∞

ϕ

1(
s − ϕ−

)(
s − ϕ+

)ds =
√
α

2

∫ ξ
0
ds.

(3.10)

Completing above integrals we obtain

ϕ = ±
√
β

α
tanh

√
β

2
ξ,

ϕ = ±
√
β

α
coth

√
β

2
ξ.

(3.11)

Noting (2.1) and (2.3), we get the following kink profile solitary wave solutions:

u4(x, t) = ±eiη
√
β

α
tanh

√
β

2
ξ,

v4(x, t) =
β
(
tanh

√
βξ
)2

α
(
1 − 4p2

) + g,

(3.12)
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and unbounded wave solutions

u5(x, t) = ±eiη
√
β

α
coth

√
β

2
ξ,

v5(x, t) =
β
(
coth

√
βξ
)2

α
(
1 − 4p2

) + g,

(3.13)

where η = px + qt and ξ = k(x − 2pt).
Secondly, we will obtain the explicit expressions of traveling wave solutions for (1.2)

when α < 0 and β < 0.
(1) From the phase portrait, we see that there are two closed orbits Γ8 and Γ9 passing

the points (ϕ7, 0), (ϕ8, 0), (ϕ9, 0), and (ϕ10, 0). In (ϕ, y) plane the expressions of the closed
orbits are given as

y = ±
√
−α
2

√(
ϕ − ϕ7

)(
ϕ − ϕ8

)(
ϕ − ϕ9

)(
ϕ10 − ϕ

)
, (3.14)

where ϕ7 = −
√
(β −

√
β2 − 2αh)/α, ϕ8 = −

√
(β +

√
β2 − 2αh)/α, ϕ9 =

√
(β +

√
β2 − 2αh)/α,

ϕ10 =
√
(β −

√
β2 − 2αh)/α, and −h∗ < h < 0.

Substituting (3.14) into dϕ/dξ = y, and integrating them along Γ8 and Γ9, we have

±
∫ϕ
ϕ7

1√(
ϕ10 − s

)(
ϕ9 − s

)(
ϕ8 − s

)(
s − ϕ7

)ds =
√
−α
2

∫ ξ
0
ds,

±
∫ϕ
ϕ10

1√(
s − ϕ7

)(
s − ϕ8

)(
s − ϕ9

)(
ϕ10 − s

)ds =
√
−α
2

∫ ξ
0
ds.

(3.15)

Completing above integrals we obtain

ϕ =

(
ϕ10 − ϕ8

)
ϕ7 +

(
ϕ8 − ϕ7

)
ϕ10

(
sn
(
ω
√
−(α/2) ξ, κ

))2

ϕ10 − ϕ8 +
(
ϕ8 − ϕ7

)(
sn
(
ω
√
−(α/2) ξ, κ

))2 ,

ϕ =

√√√√√√ϕ2
10 −
(
ϕ2
10 − ϕ2

9

)
⎛
⎜⎝sn

⎛
⎜⎝ϕ10

√
−α
2
ξ,

√
ϕ2
10 − ϕ2

9

ϕ10

⎞
⎟⎠

⎞
⎟⎠

2

,

(3.16)

where ω =
√
(ϕ10 − ϕ8)(ϕ9 − ϕ7)/2 and κ =

√
(ϕ10 − ϕ9)(ϕ8 − ϕ7)/(ϕ10 − ϕ8)(ϕ9 − ϕ7).
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Noting (2.1) and (2.3), we get the following periodic wave solutions:

u6(x, t) =
eiη
((
ϕ10 − ϕ8

)
ϕ7 +

(
ϕ8 − ϕ7

)
ϕ10

(
sn
(
ω
√
−(α/2) ξ, κ

))2)

ϕ10 − ϕ8 +
(
ϕ8 − ϕ7

)(
sn
(
ω
√
−(α/2) ξ, κ

))2 ,

v6(x, t) =

(
(ϕ10 − ϕ8)ϕ7 + (ϕ8 − ϕ7)ϕ10

(
sn
(
ω
√
−(α/2) ξ, κ

))2)2

(
1 − 4p2

)(
ϕ10 − ϕ8 + (ϕ8 − ϕ7)

(
sn
(
ω
√
−(α/2) ξ, κ

))2)2
+ g,

u7(x, t) = eiη

√√√√√√ϕ2
10 −
(
ϕ2
10 − ϕ2

9

)
⎛
⎜⎝sn

⎛
⎜⎝ϕ10

√
−(α/2) ξ,

√
ϕ2
10 − ϕ2

9

ϕ10

⎞
⎟⎠

⎞
⎟⎠

2

,

v7(x, t) =
ϕ2
10 −
(
ϕ2
10 − ϕ2

9

)(
sn
(
ϕ10
√
−(α/2) ξ,

√
ϕ2
10 − ϕ2

9/ϕ10

))2

1 − 4p2
+ g,

(3.17)

where η = px + qt and ξ = k(x − 2pt).
(2) From the phase portrait, we see that there are two symmetric homoclinic orbits Γ10

and Γ11 connected at the saddle point (0, 0). In (ϕ, y) plane the expressions of the homoclinic
orbits are given as

y = ±
√
−α
2
ϕ
√(

ϕ − ϕ11
)(
ϕ12 − ϕ

)
, (3.18)

where ϕ11 = −√2β/α and ϕ12 =
√
2β/α.

Substituting (3.18) into dϕ/dξ = y, and integrating them along the orbits Γ10 and Γ11,
we have

±
∫ϕ
ϕ11

1

s
√(

s − ϕ11
)(
ϕ12 − s

)ds =
√
−α
2

∫ ξ
0
ds,

±
∫ϕ
ϕ12

1

s
√(

s − ϕ11
)(
ϕ12 − s

)ds =
√
−α
2

∫ ξ
0
ds.

(3.19)
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Completing above integrals we obtain

ϕ =

√
2β
α
sech

√
−βξ,

ϕ = −
√

2β
α
sech

√
−βξ.

(3.20)

Noting (2.1) and (2.3), we get the following solitary wave solutions:

u8(x, t) = eiη
√

2β
α
sech

√
−βξ,

v8(x, t) =
2β
(
sech

√−βξ
)2

α
(
1 − 4p2

) + g,

u9(x, t) = −eiη
√

2β
α
sech

√
−βξ,

v9(x, t) =
2β
(
sech

√−βξ
)2

α
(
1 − 4p2

) + g,

(3.21)

where η = px + qt and ξ = k(x − 2pt).
(3) From the phase portrait, we see that there is a closed orbit Γ12 passing the points

(ϕ13, 0) and (ϕ14, 0). In (ϕ, y) plane the expressions of the closed orbits are given as

y = ±
√
−α
2

√(
ϕ14 − ϕ

)(
ϕ − ϕ13

)(
ϕ − c1

)(
ϕ − c1

)
, (3.22)

where ϕ14 =
√
(β −

√
β2 − 2αh)/α, ϕ13 = −

√
(β −

√
β2 − 2αh)/α, c1 = i

√
(−β −

√
β2 − 2αh)/α,

c1 = −i
√
(−β −

√
β2 − 2αh)/α, and h > 0.

Substituting (3.22) into dϕ/dξ = y, and integrating them along the orbit Γ12, we have

±
∫ϕ
ϕ13

1√(
ϕ14 − s

)(
s − ϕ13

)
(s − c1)(s − c1)

ds =
√
−α
2

∫ ξ
0
ds,

±
∫ϕ14

ϕ

1√(
ϕ14 − s

)(
s − ϕ13

)
(s − c1)(s − c1)

ds =
√
−α
2

∫ ξ
0
ds.

(3.23)
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Completing above integrals we obtain

ϕ = ϕ13cn

(√
−βξ,−ϕ13

√
α

2β

)
,

ϕ = ϕ14cn

(√
−βξ, ϕ14

√
α

2β

)
.

(3.24)

Noting (2.1) and (2.3), we get the following periodic wave solutions:

u10(x, t) = eiηϕ13cn

(√
−βξ,−ϕ13

√
α

2β

)
,

v10(x, t) =

(
ϕ13cn

(√−βξ,−ϕ13
√
α/2β

))2

1 − 4p2
+ g,

u11(x, t) = eiηϕ14cn
(√

−βξ, ϕ14

√
α/2β

)
,

v11(x, t) =

(
ϕ14cn

(√−βξ, ϕ14
√
α/2β

))2

1 − 4p2
+ g,

(3.25)

where η = px + qt and ξ = k(x − 2pt).
Thirdly, we will give the relations of the traveling wave solutions.

(1) Letting h → h∗−, it follows that ϕ4 → √
β/α, ϕ3 → √

β/α, ϕ3/ϕ4 → 1 and
sn(
√
βξ, 1) = tanh

√
βξ. Therefore, we obtain u1(x, t) → u5(x, t), v1(x, t) → v5(x, t),

u2(x, t) → u4(x, t) and v2(x, t) → v4(x, t).

(2) Letting h → 0+, it follows that ϕ4 → √
2β/α, ϕ3 → 0, ϕ3/ϕ4 → 0 and sn(

√
βξ, 0) =

sin
√
βξ. Therefore, we obtain u1(x, t) → u3(x, t) and v1(x, t) → v3(x, t).

(3) Letting h → 0−, it follows that ϕ10 → √
2β/α, ϕ9 → 0, ϕ8 → 0, ϕ7 → −√2β/α,

ω → √
β/2α, k → 1 and sn((

√−β/2)ξ, 1) = tanh(
√−β/2)ξ. Therefore, we obtain

u6(x, t) → u8(x, t) and v6(x, t) → v8(x, t).

(4) Letting h → 0−, it follows that ϕ10 → √
2β/α, ϕ9 → 0, ϕ8 → 0, ϕ7 → −√2β/α,√

ϕ2
10 − ϕ2

9/ϕ10 → 1 and sn(
√−βξ, 1) = tanh

√−βξ. Therefore, we obtain u7(x, t) →
u9(x, t) and v7(x, t) → v9(x, t).

(5) Letting h → 0+, it follows that ϕ14 → √
2β/α, ϕ13 → −√2β/α, −ϕ13

√
α/2β → 1,

ϕ14
√
α/2β → 1 and cn(

√−βξ, 1) = sech
√−βξ. Therefore, we obtain u10(x, t) →

u9(x, t), v10(x, t) → v9(x, t), u11(x, t) → u8(x, t) and v11(x, t) → v8(x, t).

Finally, we will show that the periodic wave solutions u2(x, t) evolute into the kink-
profile solitary wave solutions u4(x, t) when the Hamiltonian h → h∗− (corresponding to
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Figure 2: The real part of the periodic wave solution u2(x, t) evolutes into the kink-profile solitary wave
solutions u4(x, t) with the conditions (3.26). (a) h = 0.5; (b) h = 0.749; (c) h = 0.75.

the changes of phase orbits of Figure 1 as h varies). We take some suitable choices of the
parameters, such as

λ = 1, k = 1, p = 1, q = 1, g = 2, (3.26)

as an illustrative sample and draw their plots (see Figures 2 and 3).

4. Conclusion

In this paper, we obtain phase portraits for the corresponding traveling wave system of (1.2)
by using the bifurcation theory of planar dynamical systems. Furthermore, a number of exact
traveling wave solutions are also obtained, and their relations are given. The method can be
applied to many other nonlinear evolution equations, and we believe that many new results
wait for further discovery by this method.
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Figure 3: The imaginary part of the periodic wave solution u2(x, t) evolutes into the kink-profile solitary
wave solutions u4(x, t) with the conditions (3.26). (a) h = 0.5; (b) h = 0.749; (c) h = 0.75.
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