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With the increasing reliance on modeling optimization problems in practical applications, a
number of theoretical and algorithmic contributions of optimization have been proposed. The
approaches developed for treating optimization problems can be classified into deterministic
and heuristic. This paper aims to introduce recent advances in deterministic methods for
solving signomial programming problems and mixed-integer nonlinear programming problems.
A number of important applications in engineering and management are also reviewed to reveal
the usefulness of the optimization methods.

1. Introduction

The field of optimization has grown rapidly during the past few decades. Many new
theoretical, algorithmic, and computational contributions of optimization have been pro-
posed to solve various problems in engineering and management. Recent developments of
optimization methods can be mainly divided into deterministic and heuristic approaches.
Deterministic approaches take advantage of the analytical properties of the problem to
generate a sequence of points that converge to a global optimal solution. Heuristic approaches
have been found to be more flexible and efficient than deterministic approaches; however,
the quality of the obtained solution cannot be guaranteed. Moreover, the probability
of finding the global solution decreases when the problem size increases. Deterministic
approaches (e.g., linear programming, nonlinear programming, and mixed-integer nonlinear
programming, etc.) can provide general tools for solving optimization problems to
obtain a global or an approximately global optimum. With the increasing reliance on



2 Mathematical Problems in Engineering

modeling optimization problems in real applications, a number of deterministic methods for
optimization problems have been presented. This paper focuses on discussing and reviewing
the recent advances in deterministic optimization approaches.

Optimization methods have been applied in different fields, such as finance [1–3],
allocation and location problems [4–6], engineering design [7–12], system and database
design [13–17], chemical engineering design and control [18–22], and molecular biology
[23]. For additional literature on real-world applications or developments of optimization
methods, readers may refer to the following works. Mockus et al. [24] treated network
problems, knapsack, travelling salesman, flow-shop problems, and batch process scheduling
problems by Bayesian heuristic approaches. Grossmann [25] discussed the global opti-
mization algorithms and their applications in chemical engineering design. Bomze et al.
[26] investigated decision support systems and techniques for solving molecular structures,
queuing systems, image reconstruction, location analysis, and process network synthesis
problems. Migdalas et al. [27] presented multilevel optimization algorithms and their
applications. Mistakidis and Stavroulakis [28] studied engineering applications of the finite
element method. De Leone et al. [29] proposed various interesting applications of high-
performance software for nonlinear optimization. Hendrix [30] utilized global optimization
techniques on environmental management, geometric design, robust product design, and
parameter estimation. Corliss and Kearfott [31] presented a rigorous global search method
on industrial applications. Floudas and Pardalos [32] studied optimization approaches in
the fields of computational chemistry and molecular biology. Laguna and González-Velarde
[33] discussed advanced computing tools for tackling various challenging optimization
problems. Papalambros and Wilde [34] investigated the principles and practice of optimal
engineering design. Atkinson et al. [35] gave a detailed discussion on optimum experimental
design. Edgar et al. [36] explored the optimization methods of chemical processes. Pardalos
and Romeijn [37] provided a more complete and broad spectrum of approaches including
deterministic and heuristic techniques for dealing with global optimization problems.
Tawarmalani and Sahinidis [38] provided an insightful and comprehensive treatment
of convexification and global optimization of continuous and mixed-integer nonlinear
programs. Hadjisavvas et al. [39] investigated generalized convexity and generalized
monotonicity and offered an advanced and broad overview of the state of the field.
Moreover, Floudas et al. [40] presented an overview of the research progress in optimization
during 1998–2003, including the deterministic global optimization advances in mixed-integer
nonlinear programming and related applications. Pintér [41] illustrated the applicability of
global optimization modeling techniques and solution strategies to real-world problems such
as agroecosystem management, assembly line design, bioinformatics, biophysics, cellular
mobile network design, chemical product design, composite structure design, controller
design for induction motors, electrical engineering design, feeding strategies in animal
husbandry, the inverse position problem in kinematics, laser design, radiotherapy planning,
robot design, and satellite data analysis. Mishra and Giorgi [42] presented results on invex
function, and their properties in smooth and nonsmooth cases, pseudolinearity, and eta-
pseudolinearity. Mishra et al. [43] discussed the Kuhn-Tucker optimality, Karush-Kuhn-
Tucker necessary and sufficient optimality conditions in presence of various types of
generalized convexity assumptions. Floudas and Gounaris [44] also presented an overview
of the research progress in deterministic global optimization during the last decade (1998–
2008).

Figure 1 gives an overview of the problem types related to optimization problems.
Each type of problems has received substantial attention from the practitioners and the
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Figure 1: Overview of problem types related to optimization problems.

researchers in the last few decades. In this paper, we investigate the advances in deterministic
global optimization of nonconvex nonlinear programming (NLP) problems and nonconvex
mixed-integer nonlinear programming (MINLP) problems. For NLP problems, we focus on
signomial programming problems that are an important class of NLP problems and have
played a crucial role in applications.

The rest of this paper is organized as follows. Section 2 discusses the deterministic
methods for signomial programming problems. Section 3 reviews the theoretical and
algorithmic developments of mixed-integer nonlinear programming problems. Conclusions
are made in Section 4.

2. Signomial Programming

Signomial programming (SP) is an optimization technique for solving a class of nonconvex
nonlinear programming problems. Although SP problems occur frequently in engineering
and management science, SP problems with nonconvex functions are still difficult to be
solved to obtain a global optimum. The term geometric program (GP) was introduced by
Duffin et al. [7] since the analysis of geometric programs relied heavily upon geometric-
arithmetic mean inequality. The early work by Duffin and Peterson [45] solved the
posynomial geometric program analytically via the dual problem. Then, Duffin [46]
developed a numerical method for GPs based on solving a sequence of linear programs
[47]. For solving SP problems, Duffin and Peterson [48] reformulated an SP problem as
a geometric program with reversed constraints. The reversed constraints give rise to a
nonconvex feasible region that the local minima for SP problems are not guaranteed to be
global minima [49]. The developed methods for SP can be divided into two approaches.
The first class of SP approaches includes various heuristic techniques such as genetic
algorithms, simulated annealing, tabu search, ant colony optimization, and particle swarm
optimization. Although the heuristic methods have the advantage of easy implementation
and offer a better potential for complex problems, the obtained solution is not guaranteed
to be a globally optimal solution. The second class of SP approaches is the deterministic
method. For example, Maranas and Floudas [50], Floudas and Pardalos [51], Maranas and
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Floudas [22], and Floudas [19–21] developed global optimization algorithms for solving
SP problems based on the exponential variable transformation, the convex relaxation, and
the branch and bound type algorithm. These methods transform the original nonconvex
problem into a convex problem and then solve it to obtain the global optimum. The use of the
logarithmic/exponential transformation in global optimization algorithms on SP problems
restricts these exponential-based methods to handle the problems with strictly positive
variables. Although positive variables are employed frequently to represent engineering
and scientific systems, it is also common to introduce nonpositive variables in modeling
the management problems or the system behavior, such as investment decisions, stresses,
temperatures, electrical currents, velocities, and accelerations. For treating free variable
x, Pörn et al. [52] suggested a simple translation, x + τ = eX . However, inserting the
transformed result into the original signomial termwill bring additional signomial terms and
therefore increase the computation burden. Tsai et al. [11] proposed an approach to treat zero
boundary signomial discrete programming problems and suggested some convexification
rules. Li and Tsai [53], Tsai and Lin [54–56], Tsai et al. [57], Tsai [58], and Li and Lu
[59] applied convexification strategies and piecewise linearization techniques to solve SP
problems with free discrete/continuous variables. However, the optimal solution obtained is
an approximate solution by the piecewise linearization approach. Lin and Tsai [60] presented
a generalized method to solve signomial discrete programming problems with free variables
for finding exactly alternative optima. Tsai and Lin [61] also integrated the convexification
techniques and the bounding schemes to solve a posynomial geometric program with
separable functions for finding a global optimal solution efficiently.

Convexification strategies for signomial terms are important techniques in global
optimization for SP problems. With different convexification approaches, an SP problem can
be reformulated into another convex program solvable to obtain an approximately global
optimum. For solving SP problems, Pörn et al. [52] integrated the exponential transformation
and piecewise linear approximations for reformulating nonconvex signomial problems. The
results were extended by Björk [62], Björk et al. [63], and Pörn et al. [64], by including certain
power transformations for convexification of nonconvex signomial terms. They discussed
that the right choice of transformation for convexifying nonconvex signomial terms has
a clear influence on the efficiency of the optimization approach. The concept of power
convex functions is introduced to improve the solution efficiency for certain SP problems.
T. Westerlund and J. Westerlund [65] proposed the generalized geometric programming
extended cutting plane (GGPECP) algorithm for nonconvex optimization problems by using
the cutting plane and transformation techniques. The GGPECP algorithm was described in
more detail inWesterlund [66]. Lundell andWesterlund [67] and Lundell et al. [68] combined
the GGPECP algorithm with an optimization framework for the transformations used to
convexify the signomial terms into a signomial global optimization algorithm. The signomial
global optimization algorithm was further extended by Lundell and Westerlund [69, 70]. Lin
and Tsai [71] and Tsai and Lin [56] also presented similar reformulation and range reduction
techniques to enhance the computational efficiency for solving SP problems.

For solving an SP problem, the above-mentioned convexification techniques are
used to reformulate the original SP problem into a convex and underestimating problem
solvable by a standard mixed-integer nonlinear programming (MINLP) solver [72–81].
Different transformations for positive and negative signomial terms have been proposed
and discussed by Björk et al. [63], Westerlund [66], Lundell and Westerlund [67], Pörn et al.
[64], Lundell et al. [68], and Lundell and Westerlund [69, 70]. For a positive signomial term
cxα1

1 xα2
2 · · ·xαm

m xαm+1
m+1 · · ·xαn

n (c > 0, α1, . . . , αm > 0 and αm+1, . . . , αn < 0), they suggested either the
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exponential transformation (ET) or the power convex transformation (PCT) is applied based
on the characteristics of the problems. The ET strategy and the PCT strategy are described as
follows [63].

The ET strategy:

cxα1
1 xα2

2 · · ·xαm
m xαm+1

m+1 · · ·xαn
n ⇐⇒

⎧
⎪⎨

⎪⎩

xi = eXi , i = 1, . . . , m,

c
eα1X1+···+αmXm

x
|αm+1|
m+1 · · ·x|αn|

n

.
(2.1)

The PCT strategy: this technique aims at constructing 1-convex signomial terms. First,
transform all variables with positive exponents by an inverse transformation (IT), x = X−1,
except the one with the greatest exponent denoted as αmax. Let S be defined as S =

∑n
i=1 |αi| −

αmax. If αmax < S + 1, then transform the variable with the exponent αmax to that with the
exponent S + 1. If αmax > S + 1, then change one of the ITs, with the exponent αj to xj = X−τ

j ,
where τ > 1 so that αmax = S + 1 + (τ − 1)αj .

Since some negative signomial terms may exist in SP problems, they suggested the
potential transformation (PT) for a negative signomial term cxα1

1 xα2
2 · · ·xαm
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n (c <
0, α1, . . . , αm > 0 and αm+1, . . . , αn < 0) expressed as follows.
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(2.2)

In addition to convexification strategies, convex envelopes and convex underestima-
tors of nonconvex functions are frequently applied in global optimization algorithms such
as the αBB algorithm [19, 82, 83] to underestimate the nonconvex functions. A good convex
underestimator should be as tight as possible and contain minimal number of new variables
and constraints thus to improve the computational effect of processing a node in a branch-
bound tree [40].

Tawarmalani and Sahinidis [84] developed the convex envelope and concave envelope
for x/y over a unit hypercube, proposed a semidefinite relaxation of x/y, and suggested convex
envelopes for functions of the form f(x)y2 and f(x)/y. Ryoo and Sahinidis [85] studied the
use of arithmetic intervals, recursive arithmetic intervals, logarithmic transformation, and
exponential transformation for multilinear functions. Tawarmalani et al. [86] studied the
role of disaggregation in leading to tighter linear programming relaxations. Tawarmalani
and Sahinidis [38] introduced the convex extensions for lower semicontinuous functions,
proposed a technique for constructing convex envelopes for nonlinear functions, and studied
the maximum separation distance for functions such as x/y. Tawarmalani et al. [87] studied
0-1 hyperbolic programs and developed eight mixed-integer convex reformulations. Liberti
and Pantelides [88] proposed a nonlinear continuous and differentiable convex envelope for
monomials of odd degree, derived its linear relaxation, and compared to other relaxations.
Björk et al. [63] studied convexifications for signomial terms, introduced properties of power
convex functions, compared the effect of the convexification schemes for heat exchanger
network problems, and studied quasiconvex convexifications. Meyer and Floudas [89]



6 Mathematical Problems in Engineering

studied trilinear monomials with positive or negative domains, derived explicit expressions
for the facets of the convex and concave envelopes, and showed that these outperform
the previously proposed relaxations based on arithmetic intervals or recursive arithmetic
intervals. Meyer and Floudas [90] presented explicit expressions for the facets of convex
and concave envelopes of trilinear monomials with mixed-sign domains. Tardella [91]
studied the class of functions whose convex envelope on a polyhedron coincides with the
convex envelope based on the polyhedron vertices and proved important conditions for
a vertex polyhedral convex envelope. Meyer and Floudas [92] described the structure of
the polyhedral convex envelopes of edge-concave functions over polyhedral domains using
geometric arguments and proposed an algorithm for computing the facets of the convex
envelopes.

Caratzoulas and Floudas [93] proposed novel convex underestimators for trigonomet-
ric functions, which are trigonometric functions themselves. Akrotirianakis and Floudas [94,
95] introduced a new class of convex underestimators for twice continuously differentiable
nonlinear programs, studied their theoretical properties, and proved that the resulting convex
relaxation is improved compared to the αBB one. Meyer and Floudas [90] proposed two new
classes of convex underestimators for general C2 nonlinear programs, which combine the
αBB underestimators within a piecewise quadratic perturbation, derived properties for the
smoothness of the convex underestimators, and showed the improvements over the classical
αBB convex underestimators for box-constrained optimization problems.

Three popular convex underestimationmethods, arithmetic intervals (AIs) [96], recur-
sive arithmetic intervals (rAIs) [50, 85, 96], and explicit facets (EFs) for convex envelopes of
trilinear monomials [89, 90], are effective to underestimate a trilinear term x1x2x3 for xi to
be bounded variables. However, these existing methods have difficulty to treat a posynomial
function. According to Ryoo and Sahinidis [85], for underestimating a multilinear function

x1x2 · · ·xn with n variables, the AI scheme needs to use
∏n−1

k=2Θ
(nk)
k

∑�n/2�
i=1 (n2i) linear constraints

maximally. Θk denotes the number of linear functions that the AI scheme generates to lower
bound k-cross-product terms, k = 2, 3, . . . , n − 1. Since the number of linear constraints of
convex envelopes for a multilinear function with n variables grows doubly exponentially
in n, AI bounding scheme may only treat n ≤ 3 cases. It is more difficult for AI to treat
a posynomial function for n > 3 cases. Moreover, applying rAI scheme to underestimate
a multilinear function x1x2 · · ·xn needs to use the maximum of exponentially many 2n−1

linear inequalities. Therefore, the rAI bounding scheme has difficulty to treat posynomial
functions as well as the AI scheme. EF [89, 90] provided the explicit facets of the convex
and concave envelopes of trilinear monomials and demonstrated that these result in tighter
bounds than the AI and rAI techniques. An important difference between EF and other
bounding schemes is that these explicit facets are linear cuts, which were proven to
define the convex envelope. Explicit facets (EFs) of the convex envelope are effective in
treating general trilinear monomials, but the derivation of explicit facets for the convex
envelope of general multilinear monomials and signomials is an open problem. Li et al.
[97] and Lu et al. [98] proposed a novel method for the convex relaxation of posynomial
functions. The approach is different from the work of Maranas and Floudas [50], which
provided an alternative way of generating convex underestimators for generalized geometric
programming problems via the exponential transformation and linear underestimation of the
concave terms. Applications of this approach include the area of process synthesis and design
of separations, phase equilibrium, nonisothermal complex reactor networks, and molecular
conformation problems (e.g., [99–101]).
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3. Mixed-Integer Nonlinear Programming

Mixed-integer nonlinear programming (MINLP) problems involving both continuous and
discrete variables arise in many applications of engineering design, chemical engineering,
operations research, andmanagement. Biegler and Grossmann [102] provided a retrospective
on optimization techniques that have been applied in process systems engineering. They
indicated that design and synthesis problems have been dominated by NLP and MINLP
models. With the increasing reliance on modeling optimization problems in practical prob-
lems, a number of theoretical and algorithmic contributions of MINLP have been proposed.
Many deterministic methods for convexMINLP problems have been reviewed by Biegler and
Grossmann [102], Grossmann [103], and Grossmann and Biegler [104]. The methods include
branch-and-bound (BB) [53, 72, 77], generalized benders decomposition (GBD) [76], outer-
approximation (OA) [73, 74, 79], extended cutting plane method (ECP) [81], and generalized
disjunctive programming (GDP) [78]. The BB method can find the global solution only when
each subproblem can be solved to global optimality. The GBD method, the OA method,
and the ECP method cannot solve optimization problems with nonconvex constraints or
nonconvex objective functions because the subproblems may not have a unique optimum in
the solution process. The GDP models address discrete/continuous optimization problems
that involve disjunctions with nonlinear inequalities and logic propositions. The objective
functions and the constraints in the GDP problem are assumed to be convex and bounded
[56].

For deterministic optimization methods, these optimization problems are character-
ized by the convexity of the feasible domain or the objective function and may involve
continuous and/or discrete variables. Although continuous and discrete optimization
problems constitute two classes of global optimization problems, they primarily differ in
the presence or absence of convexity rather than other features. Since the convexity of the
objective function or the feasible domain is very important, understanding how to convexify
the nonconvex parts is an essential area of research. As long as the formulated problem is a
convex problem, efficient numerical methods are available to treat the optimization problem.
However, optimization problems often include nonconvex functions that cannot be dealt with
by the standard local optimization techniques to guarantee global optimality efficiently. For
solving nonconvex or large-scale optimization problems, deterministic methods may not be
easy to derive an optimal solution within reasonable time due to the high complexity of the
problem.

Sherali et al. [105] presented an extension of the reformulation linearization technique
(RLT) that is designed to exploit special structures and explored the strengthening of the RLT
constraints through conditional logical expressions. Sinha et al. [106] studied a solvent design
problem that is constructed as a nonconvex MINLP problem. They identified the sources of
nonconvexities in the properties and solubility parameter design constraints and proposed
linear underestimators based on a multilevel representation approach for the functions.
A reduced space branch-and-bound global optimization algorithm was then presented for
solving a single component blanket wash design problem. Pörn et al. [52] introduced
different convexification strategies for nonconvex MINLP problems with both posynomial
and negative binomial terms in the constraints. Harjunkoski et al. [107] studied the trim
loss minimization problem for the paper converting industry and formulated the model as
a nonconvex MINLP. They also proposed transformations for the bilinear terms based on
linear representations and convex expressions. Pörn andWesterlund [108] proposed a cutting
plane method for addressing global MINLP problems with pseudoconvex objective function
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and constraints and tested the proposed method on several benchmark problems arising in
process synthesis and scheduling applications. Parthasarathy and El-Halwagi [109] studied
a systematic framework for the optimal design of condensation, which is an important
technology for volatile organic compounds, and formulated the problem as a nonconvex
MINLP model. They also proposed an iterative global optimization approach based on
physical insights and active constraint principles that allow for decomposition and efficient
solution and applied it to a case study for the manufacture of adhesive tapes. Adjiman et
al. [82, 83, 110, 111] proposed two global optimization approaches, SMIN-αBB and GMIN-
αBB, for nonconvex MINLP problems based on the concept of branch-and-bound. These
two approaches rely on optimization or interval-based variable-bound updates to enhance
efficiency. Although one possible approach to circumvent nonconvexities in nonlinear
optimization models is reformulation, for instance, using the exponential transformation
to treat the generalized geometric programming problems in which a signomial term
xα
1x

β

2 is transferred into an exponential term eα lnx1+β lnx2 , the exponential transformation
technique can only be applied to strictly positive variables and is thus unable to deal with
nonconvex problems with free variables. Tsai et al. [11] proposed an approach to treat zero
boundary optimization problems and suggested some convexification rules for the signomial
terms with only three nonnegative discrete/integer variables. Björk and Westerlund [112]
studied the global optimization of heat exchanger network synthesis through the simplified
superstructure representation that allows only series and parallel schemes and applied
convexification approaches for signomials by piecewise linear approximations. They also
formulated convex MINLP lower bounding models using the Patterson formula for the
log mean temperature difference considering both isothermal and nonisothermal mixing.
Ostrovsky et al. [113] studied nonconvex MINLP models in which most variables are in
the nonconvex terms and the number of linear constraints is much larger than the number
of nonlinear constraints for solvent design and recovery problems. The work presents a
tailored branch-and-bound approach using linear underestimators for tree functions based
on a multilevel function representation and shows that there is a significant reduction in
the branching variable space. Tawarmalani and Sahinidis [114] developed a branch and
bound framework for the global optimization of MINLP problems. The framework involves
novel linear relaxation schemes, a Lagrangian/linear duality-based theory for domain
and range reduction, and branching strategies that guarantee finiteness of the solution
sequence for certain classes of problems. They also discuss implementation issues and present
computational results with a variety of benchmark problems. Kesavan et al. [115] presented
outer-approximation algorithms for finding an optimal solution of a separable nonconvex
MINLP program. Emet and Westerlund [116] conducted a computational comparison of
solving a cyclic chromatographic separation problem using MINLP methods and reported
that the extended cutting plane method compares favourably against traditional outer-
approximation and branch-and-bound methods. A review of the recent advances in MINLP
optimization of planning and design problems in the process industry was presented by
Kallrath [117]. Tawarmalani and Sahinidis [118] introduced a polyhedral branch-and-cut
approach in global optimization. Their algorithm exploits convexity in order to generate the
polyhedral cuts and relaxations for multivariate nonconvex problems. Meyer and Floudas
[119] studied superstructures of pooling networks, which are important to the petrochemical,
chemical, and wastewater treatment industries, and formulated this generalized pooling
problem as a nonconvex MINLP problem that involves many bilinear terms in the constraint
functions. They proposed a global optimization algorithm based on a novel piecewise linear
reformulation-linearization technique (RLT) formulation. Karuppiah and Grossmann [120]
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addressed the problem of optimal synthesis of an integrated water system, where water
using processes and water treatment operations are jointly considered. The designed MINLP
model was solved with a new deterministic spatial branch and contract algorithm, in
which piecewise under- and overestimators are used for constructing the relaxations at
each node. Bergamini et al. [121] formulated an MINLP model for the global optimization
of heat exchanger networks and presented a new solution methodology that is based on
outer-approximation and utilizes piecewise underestimation. Rigorous constraints obtained
from physical insights are also included in the formulation, and the authors reported
computationally efficient global solutions for problems with up to nine process streams.
Tsai and Lin [54, 56] proposed a method for solving a signomial MINLP problem with free
variables by the convexification strategies and piecewise linearization techniques. However,
the optimal solution obtained is an approximate solution by the piecewise linearization
approach. Karuppiah et al. [122] presented an outer-approximation algorithm to globally
solve a nonconvexMINLP formulation that corresponds to the continuous time scheduling of
refinery crude oil operations. The solution procedure relies on effective mixed-integer linear
relaxations that benefit from additional cuts derived after spatially decomposing the network.
Foteinou et al. [123] presented a mixed-integer optimization framework for the synthesis
and analysis of regulatory networks. Their approach integrates prior biological knowledge
regarding interactions between genes and corresponding transcription factors, in an effort to
minimize the complexity of the problem. Misener et al. [124] proposed an extended pooling
problem to maximize the profit of blending reformulated gasoline on a predetermined
network structure of feed stocks, intermediate storage tanks, and gasoline products subject to
applicable environmental standards. They formulated the problem as a nonconvex MINLP
model due to the presence of bilinear, polynomial, and fractional power terms. A mixed-
integer linear programming relaxation of the extended pooling problem is proposed for
several small- to large-scale test cases. Misener et al. [125] introduced a formulation for
the piecewise linear relaxation of bilinear functions with a logarithmic number of binary
variables and computationally compared their performance of this new formulation to the
best performing piecewise relaxations with a linear number of binary variables. They also
unified the new formulation into the computational tool APOGEE that globally optimizes
standard, generalized, and extended pooling problems. Westerlund et al. [126] considered
some special but fundamental issues related to convex relaxation techniques in nonconvex
MINLP optimization, especially for optimization problems including nonconvex inequality
constraints and their relaxations.

The alternative global optima of an MINLP problem can be found if more than one
solution satisfies the same optimal value of the objective function. In practice, alternative
optima are useful because they allow the decision maker to choose from many solutions
without experiencing any deterioration in the objective function. For the case involving only
0-1 variables, Balas and Jeroslow [127] introduced the well-known binary cut with only
one constraint and no additional variables. Duran and Grossmann [73] used this binary
cut in their OA algorithm to exclude binary combinations. Tawarmalani and Sahinidis [38]
mentioned that BARON can identify the K best solutions for a mixed-integer nonlinear
program, whereK is an option specified by the user. Tsai et al. [57] proposed a general integer
cut to identify all alternative optimal solutions of a general integer linear programming
problem. Lin and Tsai [60] proposed a generalized method to find multiple optimal
solutions of an MINLP problem with free variables by means of variable substitution
and convexification strategies. The problem is first converted into another convex MINLP
problem solvable to obtain an exactly global optimum. Then, a general cut is utilized to



10 Mathematical Problems in Engineering

exclude the previous solution and an algorithm is developed to locate all alternative optimal
solutions.

4. Conclusions

Given the rapid advances in computing technology over the past decades, large optimization
theories and algorithms have been proposed to solve various real-world engineering and
management problems. Therefore, to give a systematic overview of the extant literature
is a challenge and motivates this study, particularly for that the field of optimization
has grown and evolved rapidly. This work first reviewed methods for continuous
variable optimization and survey advances in signomial programming. Then, mixed-integer
nonlinear programming methods for optimization problems with discrete components were
introduced. Contributions related to theoretical and algorithmic developments, formulations,
and applications for these two classes of optimization problems were also discussed.

Although deterministic approaches take advantage of analytical properties of the
problem to generate a sequence of points that converge to a global solution, heuristic
approaches have been found to be more flexible and efficient than deterministic approaches.
For solving nonconvex or large-scale optimization problems, deterministic methods may
not be easy to derive a globally optimal solution within reasonable time due to the high
complexity of the problem. Heuristic approaches therefore are presented to reduce the
computational time of solving an optimization problem, but the obtained solution is not
guaranteed to be a feasible or globally optimal solution. These two types of optimization
methods have different pros and cons. Therefore, integrating deterministic and heuristic
approaches may be a good way of solving large-scale optimization problems for finding a
global optimum. It is hoped that this paper will stimulate further research on developing
more advanced deterministic and heuristic methods to enhance the computational efficiency
of finding a globally optimal solution for various real application problems.

Acknowledgment

The research is supported by Taiwan NSC Grants NSC 99-2410-H-158-010-MY2 and NSC 99-
2410-H-027-008-MY3.

References

[1] W. Sharpe, “A linear programming approximation for the general portfolio analysis,” Journal of
Financial and Quantitative Analysis, vol. 6, pp. 1263–1275, 1971.

[2] B. Stone, “A linear programming formulation of the general portfolio selection model,” Journal of
Financial and Quantitative Analysis, vol. 8, pp. 621–636, 1973.

[3] M. R. Young, “A minimax portfolio selection rule with linear programming solution,” Management
Science, vol. 44, no. 5, pp. 673–683, 1998.

[4] C. S. Chen, S. M. Lee, and Q. S. Shen, “An analytical model for the container loading problem,”
European Journal of Operational Research, vol. 80, no. 1, pp. 68–76, 1995.

[5] L. Faina, “A global optimization algorithm for the three-dimensional packing problem,” European
Journal of Operational Research, vol. 126, no. 2, pp. 340–354, 2000.

[6] H. L. Li, C. T. Chang, and J. F. Tsai, “Approximately global optimization for assortment problems
using piecewise linearization techniques,” European Journal of Operational Research, vol. 140, no. 3,
pp. 584–589, 2002.

[7] R. J. Duffin, E. L. Peterson, and C. Zener, Geometric programming: Theory and application, John Wiley
& Sons Inc., New York, 1967.



Mathematical Problems in Engineering 11

[8] J. S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, NY, USA, 1989.
[9] E. Sandgren, “Nonlinear integer and discrete programming in mechnical design optimization,”

Journal of Mechanisms, Transmissions, and Automation in Design, vol. 112, no. 2, pp. 223–229, 1990.
[10] J. F. Fu, R. G. Fenton, and W. L. Cleghorn, “A mixed integer-discrete -continuous programming

method and its application to engineering design optimization,” Engineering Optimization, vol. 17,
pp. 263–280, 1991.

[11] J. F. Tsai, H. L. Li, and N. Z. Hu, “Global optimization for signomial discrete programming problems
in engineering design,” Engineering Optimization, vol. 34, no. 6, pp. 613–622, 2002.

[12] J. F. Tsai, “Global optimization for signomial discrete programming problems in engineering
design,” Engineering Optimization, vol. 42, no. 9, pp. 833–843, 2010.

[13] D. Rotem, G. A. Schloss, and A. Segev, “Data allocation for multidisk databases,” IEEE Transactions
on Knowledge and Data Engineering, vol. 5, no. 5, pp. 882–887, 1993.

[14] X. Lin and M. Orlowska, “An integer linear programming approach to data allocation with the
minimum total communication cost in distributed database systems,” Information Sciences, vol. 85,
no. 1–3, pp. 1–10, 1995.

[15] R. Sarathy, B. Shetty, and A. Sen, “A constrained nonlinear 0-1 program for data allocation,” European
Journal of Operational Research, vol. 102, no. 3, pp. 626–647, 1997.

[16] J. F. Tsai and H. L. Li, “Technical note—on optimization approach for multidisk vertical allocation
problems,” European Journal of Operational Research, vol. 165, no. 3, pp. 835–842, 2005.

[17] M. H. Lin, “An optimal workload-based data allocation approach for multidisk databases,”Data and
Knowledge Engineering, vol. 68, no. 5, pp. 499–508, 2009.

[18] H. S. Ryoo and N. V. Sahinidis, “Global optimization of nonconvex NLPs and MINLPs with
applications in process design,” Computers and Chemical Engineering, vol. 19, no. 5, pp. 551–566, 1995.

[19] C. A. Floudas, “Global optimization in design and control of chemical process systems,” Journal of
Process Control, vol. 10, no. 2, pp. 125–134, 2000.

[20] C. A. Floudas, “Recent advances in global optimization for process synthesis, design and control:
enclosure of all Solutions,” Computers and Chemical Engineering, vol. 23, no. 1, pp. S963–S973, 1999.

[21] C. A. Floudas, Deterministic Global Optimization: Theory, Methods and Application, Kluwer Academic
Publishers, Boston, Mass, USA, 2000.

[22] C. D. Maranas and C. A. Floudas, “Global optimization in generalized geometric programming,”
Computers and Chemical Engineering, vol. 21, no. 4, pp. 351–369, 1997.

[23] J. G. Ecker, M. Kupferschmid, C. E. Lawrence, A. A. Reilly, and A. C. H. Scott, “An application of
nonlinear optimization in molecular biology,” European Journal of Operational Research, vol. 138, no.
2, pp. 452–458, 2002.

[24] J. Mockus, W. Eddy, L. Mockus, and G. Reklaitis, Bayesian Heuristic Approach to Discrete and Global
Optimization, Kluwer Academic Publishers, London, UK, 1996.

[25] I.E. Grossmann, Global Optimization in Engineering Design, Kluwer Academic Publishers, London,
UK, 1996.

[26] I. M. Bomze, T. Csendes, R. Horst, and P. M. Pardalos, Developments in Global Optimization, Kluwer
Academic Publishers, London, UK, 1997.

[27] A. Migdalas, P. M. Pardalos, and P. Varbrand, Multilevel Optimization: Algorithms and Applications,
Kluwer Academic Publishers, London, UK, 1997.

[28] E. S. Mistakidis and G. E. Stavroulakis, Nonconvex Optimization in Mechanics: Algorithm, Heuristics
and Engineering Applications by the F.E.M, Kluwer Academic Publishers, London, UK, 1997.

[29] R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo, High Performance Software for Nonlinear
Optimization, Kluwer Academic Publishers, London, UK, 1998.

[30] E. M. T. Hendrix, Global optimization at work, Ph.D. thesis, Agriculture University Wageningen,
Wageningen, The Netherlands, 1998.

[31] G. F. Corliss and R. B. Kearfott, “Rigorous global search: industrial applications,” in Developments in
Reliable Computing, T. Csendes, Ed., pp. 1–16, Kluwer Academic Publishers, London, UK, 1999.

[32] C. A. Floudas and P. M. Pardalos,Optimization in Computational Chemistry and Molecular Biology-Local
and Global Approaches, Kluwer Academic Publishers, London, UK, 2000.
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