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This paper presents a local- and global-statistics-based active contour model for image seg-
mentation by applying the globally convex segmentation method. We first propose a convex
energy functional with a local-Gaussian-distribution-fitting termwith spatially varyingmeans and
variances and an auxiliary global-intensity-fitting term. A weight function that varies dynamically
with the location of the image is applied to adjust the weight of the global-intensity-fitting term
dynamically. The weighted total variation norm is incorporated into the energy functional to
detect boundaries easily. The split Bregman method is then applied to minimize the proposed
energy functional more efficiently. Our model has been applied to synthetic and real images with
promising results. With the local-Gaussian-distribution-fitting term, our model can also handle
some texture images. Comparisons with other models show the advantages of our model.

1. Introduction

Active contour models have been widely used in image segmentation [1–6] with promising
results. Kass et al. proposed the first active contour model in [1]. Compared with the classical
image segmentation methods, active contour models have several desirable advantages. For
example, they can provide smooth and closed contours as segmentation results and achieve
subpixel accuracy of object boundaries [6]. Generally speaking, there are two main kinds of
active contour models: edge-based models [1, 3, 6–9] and region-based models [2, 10–14].

Edge-based models use the image gradient information to stop the evolving contours
on the object boundaries. Typical edge-based active contour models [3, 6] have an edge-
based stopping term to control the motion of the contour. These models are very sensitive
to noise and the initial curve. These drawbacks limit their applications in practice. Region-
based models use the region information of the image instead of the the edge information
to segment different regions. Region-based models do not utilize the image gradient and
therefore have better performance for images with weak object boundaries. Besides, they are
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less sensitive to initial contours. Two well-known region-based active contour models are the
piecewise constant (PC)models [2, 14]. In [2], Vese and Chan assumed that image intensities
are statistically homogeneous in each region and proposed the Chan-Vese (CV) model. Then
they extended the CVmodel to a multiphase level set formulation in [14]. The PCmodels and
other popular region-based active contour models [10–12] rely on intensity homogeneity and
thus always fail to segment images with intensity inhomogeneity.

Intensity inhomogeneity always exists in the real world. To overcome the disadvan-
tages of the PC models and deal with images with intensity inhomogeneity, two similar
region-based models for more general images are proposed independently by Vese and Chan
[14] and Tsai et al. [13]. These models are widely known as piecewise smooth (PS) models.
The PS models have exhibited certain capability of handling intensity inhomogeneity.
However, the PS models are computationally expensive.

Recently, Li et al. proposed a region-scalable-fitting (RSF) model [15, 16] to overcome
the difficulty caused by intensity inhomogeneity. The authors use the local intensity
information to cope with inhomogeneous images. Wang et al. [17] proposed an active
contour model driven by local-Gaussian-distribution-fitting (LGDF) energy model to use
more complete statistical characteristics of local intensities for more accurate segmentation.
Many other active models [18, 19] are also proposed to use more local information for
more accurate image segmentation. However, these models are to some extent sensitive to
initialization, which limits their practical applications. Then Wang et al. [20] proposed the
local- and global-intensity-fitting (LGIF) energy model to combine the advantages of the CV
model and the RSF model.

Yang et al. [21] applied the split Bregman method [22–25] to the RSF model to deal
with images with inhomogeneity efficiently. The efficiency of the split Bregman method has
been demonstrated in [21, 25].

In this paper, a local- and global-statistics-based active contour model is presented for
image segmentation. We first define a new energy functional taking both the local and global
information into consideration. The local information is described by Gaussian distribution
with different means and variances. We then apply the globally convex segmentation method
[26] to make the proposed energy functional convex. The new convex energy functional
is then modified by replacing the standard total variation (TV) norm with the weighted
TV norm to detect boundaries more easily. Different from [20], our model can balance the
weights between the local- and global-fitting terms dynamically by using a weight function
that varies with the location of the image. We then use the split Bregman method to deal with
the minimization problem in a more efficient way.

The remainder of this paper is organized as follows. Section 2 reviews some related
models and their limitations. We introduce the main work in Section 3. Our model is
proposed in Section 3.1. We explain how to choose the weight function in Section 3.2, while
the split Bregmanmethod is applied to ourmodel in Section 3.3. The experimental results and
some discussion of our model are given in Section 4. In Section 5 we give a brief conclusion.

2. Background

2.1. The CV Model

Chan and Vese [2] proposed the CVmodel without using the image gradient to theMumford-
Shah problem [27] for image segmentation. LetΩ ⊂ �2 be the image domain, and I : Ω → �
be a given gray level image. Their idea is to find a contour C that segments the given image
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I and two constants c1 and c2 that approximate the image intensities outside and inside the
contour C. The energy they proposed to minimize is as follows:

FCV(C, c1, c2) = λ1

∫
outside(C)

|I(x) − c1|2dx + λ2

∫
inside(C)

|I(x) − c2|2dx + ν|C|, (2.1)

where λ1, λ2, and ν are positive constants. outside(C) and inside(C) represent the regions
outside and inside the contour C, respectively. One of the most attractive properties of
the CV model is that it is much less sensitive to the initialization. However, the optimal
constants c1 and c2 will not be accurate if the intensities outside and inside the contour
C are not homogeneous. Local intensity information which is crucial for inhomogeneous
image segmentation is not considered in this model. This is the reason why the CV model
cannot handle image inhomogeneity. Similarly, more general piecewise constant models in
a multiphase level set framework [11, 14] are still not suitable for images with intensity
inhomogeneity.

2.2. The LGDF Model

Li et al. [15, 16] proposed the RSF model to segment images with intensity inhomogeneity
by using the local intensity information. Then Wang et al. [17] proposed the LGDF model by
considering more complete statistical characteristics of local intensities. In the LGDF model,
the local image intensities are described by Gaussian distributions with different means and
variances. The Gaussian-distribution-fitting energy they defined is:

ELGDF
(
φ, u1, u2, σ

2
1 , σ

2
2

)
=
∫
ELGDF
x

(
φ, u1(x), u2(x), σ1(x)2, σ2(x)2

)
dx, (2.2)

where

ELGDF
x

(
φ, u1(x), u2(x), σ1(x)2, σ2(x)2

)
= −

2∑
i=1

∫
ω(x − y) log pi,x(I(y))Mi

(
φ(y)

)
dy, (2.3)

pi,x(I(y)) =
1√

2πσi(x)
exp

(
− (ui(x) − I(y))2

2σi(x)2

)
, i = 1, 2, (2.4)

where φ is the level set function, ui(x), and σi(x) are local intensity means and standard
deviations, respectively. M1(φ) = H(φ) and M2(φ) = 1 −H(φ). H is the Heaviside function.
ω(x − y) is a nonnegative weighting function.
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By adding the arc length term L(φ) [2, 14] and the level set regularization term P(φ)
[9], the energy functional they proposed is

FLGDF
(
φ, u1, u2, σ

2
1 , σ

2
2

)
= ELGDF

(
φ, u1, u2, σ

2
1 , σ

2
2

)
+ νL(φ) + μP(φ),

L(φ) =
∫∣∣∇H(φ(x))∣∣dx,

P(φ) =
∫
1
2
(|∇φ(x)| − 1)2dx,

(2.5)

where ν and μ are two positive constants.
The LGDF model can distinguish regions with similar intensity means but different

variances by using the local-Gaussian-distribution-fitting energy. However, this model also
has the disadvantage just as the RSF model that it may introduce many local minimums
which has been deeply explained in [20]. Consequently, the result is more dependent on the
initialization of the contour.

3. The Main Work

3.1. Our Model

Our model first combines the advantages of the CV model and the LGDF model to propose a
new energy functional. Then we use the globally convex segmentation method [26] to give a
convex energy functional.

In Section 2.1, the first two terms of the CV model [2] are called the global intensity
fitting (GIF) energy:

EGIF(φ, c1, c2) = λ1

∫
|I(x) − c1|2H

(
φ(x)

)
dx + λ2

∫
|I(x) − c2|2

(
1 −H(φ(x)))dx. (3.1)

The local-Gaussian-distribution-fitting (LGDF) energy [17] is defined as:

ELGDF
(
φ, u1, u2, σ

2
1 , σ

2
2

)
= −

2∑
i=1

λi

∫(∫
ω(x − y) log pi,x(I(y))Mi

(
φ(y)

)
dy
)
dx, (3.2)

where ω(x − y) is chosen as the Gaussian kernel Kσ(x − y) in this paper. pi,x(I(y)) (i = 1, 2) is
defined in (2.4).

Now we define the global and local-Gaussian-distribution-fitting (GLGDF) energy as
follows:

EGLGDF
(
φ, u1, u2, σ

2
1 , σ

2
2 , c1, c2

)
= ELGDF

(
φ, u1, u2, σ

2
1 , σ

2
2

)
+ωEGIF(φ, c1, c2), (3.3)

where ω (0 ≤ ω ≤ 1) is the weight of the global fitting term.
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Then the arc length term L(φ) =
∫ |∇H(φ(x))|dx is also needed to regularize the

contour C. The energy functional is now as follows:

FGLGDF
(
φ, u1, u2, σ

2
1 , σ

2
2 , c1, c2

)
= EGLGDF

(
φ, u1, u2, σ

2
1 , σ

2
2 , c1, c2

)
+ νL(φ). (3.4)

In practice, the Heaviside function H is approximated by a smooth function Hε

defined by:

Hε(z) =
1
2

[
1 +

2
π

arctan
(
z

ε

)]
, (3.5)

where ε is a positive constant.
The energy functional is then approximated by:

FGLGDF
ε

(
φ, u1, u2, σ

2
1 , σ

2
2 , c1, c2

)
= EGLGDF

ε

(
φ, u1, u2, σ

2
1 , σ

2
2 , c1, c2

)
+ νLε

(
φ
)
. (3.6)

By applying the standard gradient descent method, the optimal means u1, u2,
variances σ2

1 , σ2
2 , constants c1, c2, and level set function φ that minimize the energy

functional (3.6) are obtained by

ui(x) =

∫
Kσ(x − y)Mε

i

(
φ(y)

)
I(y)dy∫

Kσ(x − y)Mε
i

(
φ(y)

)
dy

, i = 1, 2,

σi(x)2 =

∫
Kσ(x − y)Mε

i

(
φ(y)

)
(ui(x) − I(y))2dy∫

Kσ(x − y)Mε
i

(
φ(y)

)
dy

, i = 1, 2,

ci =

∫
I(y)Mε

i

(
φ(y)

)
dy∫

Mε
i

(
φ(y)

)
dy

, i = 1, 2,

∂φ

∂t
= δε

(
φ
)
(F1 + F2) + νδε

(
φ
)
div

(
∇φ∣∣∇φ∣∣

)
,

(3.7)

where δε is the derivative of Hε: δε(z) = ε/(π(ε2 + z2)). F1 and F2 are defined as follows:

F1(x) = −λ1d1(x) + λ2d2(x),

F2(x) = ω
(
−λ1|I(x) − c1|2 + λ2|I(x) − c2|2

)
,

(3.8)

where di(i = 1, 2) is defined as:

di(x) =
∫
Kσ(y − x)

[
log
(√

2πσi(y)
)
+
(I(x) − ui(y))2

2σi(y)2

]
dy, i = 1, 2. (3.9)
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Now we consider the gradient flow equation in (3.7). We take ν = 1 without loss of
generality. Then the gradient flow equation in (3.7) becomes

∂φ

∂t
= δε

(
φ
)(

(F1 + F2) + div

(
∇φ∣∣∇φ∣∣

))
. (3.10)

We then apply the globally convex segmentation idea of Chan et al. [26], the stationary
solution of (3.10) coincides with the stationary solution of

∂φ

∂t
=

(
(F1 + F2) + div

(
∇φ∣∣∇φ∣∣

))
. (3.11)

We now propose a new energy functional as follows:

E(φ) =
∫∣∣∇(φ(x))∣∣dx +

∫
φ(x)r(x)dx, (3.12)

where r(x) = −(F1(x) + F2(x)).
It can be clearly seen that the simplified flow (3.11) is just the gradient descent flow of

the new proposed energy functional (3.12). Thus the minimization problem we want to solve
is

min
a0≤φ≤b0

E(φ) = min
(∫∣∣∇(φ(x))∣∣dx +

∫
φ(x)r(x)dx

)
. (3.13)

Here the solution is restricted to lie in a finite interval a0 ≤ φ ≤ b0 to guarantee the
global minimum.

The segmented region can be found by thresholding the level set function for some
α ∈ (a0, b0) if the optimal φ is found:Ω1 = {x : φ(x) > α}. In this paper the thresholding value
α is chosen as α = (a0 + b0)/2.

We then replace the standard total variation (TV) norm TV(φ) =
∫ |∇φ(x)|dx = |∇φ|1

with the weighted TV norm TVg(φ) =
∫
g(|∇I(x)|)|∇φ(x)|dx = |∇φ|g by adding an edge

detector function g which is defined as [28]: g(ξ) = 1/(1 + β|ξ|2). β is a parameter that
determines the detail level of the segmentation.

Thus the proposed minimization problem becomes

min
a0≤φ≤b0

E(φ) = min
a0≤φ≤b0

(∣∣∇φ∣∣g + 〈φ, r〉
)
, (3.14)

where 〈φ, r〉 = ∫ φ(x)r(x)dx.
Remark 3.1. The proposed model is different from the model in our previous paper [29]. The
local information in the new proposedmodel is describedwith differentmeans and variances,
while the model in [29] only considers different means as the local information. There the
variances σ2

1 and σ2
2 are both considered to be equal to 0.5. Thus our new proposedmodel here
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can distinguish regions with similar intensity means but different variances, for example, our
model can handle some texture images while the model in [29] cannot. Besides the energy
functionals are also different.

3.2. The Choice for ω

The parameter ω is the weight of the global-intensity-fitting term. When the images are
corrupted by severe intensity inhomogeneity, the parameter value ω should be chosen small
enough. Otherwise, larger ω should be chosen. In [20], ω is chosen as a constant for a given
image. Wang et al. need to choose an appropriate value for ω according to the degree of
inhomogeneity.

In our paper, we choose ω in a different way as [30]. Instead of a constant value for
ω, a weight function that varies dynamically with the location of the image is chosen in this
paper. The weight function ω is defined as follows:

ω = γ · average(LCRW) · (1 − LCRW), (3.15)

where γ is a fixed parameter and LCRW represents the local contrast ratio of the given image,
which is defined as

LCRW(x) =
Vmax − Vmin

Vg
, (3.16)

whereW denotes the size of the local window, Vmax and Vmin are themaximum andminimum
of the intensities within this local window, respectively. Vg represents the intensity level of
the image. For gray images, it is usually 255. LCRW(x) varies between 0 and 1. It reflects how
rapidly the intensity changes in a local region. It is larger in regions close to boundaries and
smaller in smooth regions.

In the above weight function (3.15), average(LCRW) is the average value of LCRW

over the whole image. It can reflect the overall contrast information of the image. For an
image with a strong overall contrast, we should increase the weight of the global term on the
whole. (1−LCRW) can adjust the weight of the global term dynamically in all regions, making
it larger in regions with low local contrast and smaller in regions with high local contrast.
Thus the weight value can vary dynamically with different locations. It’s determined by the
intensity of the given image.

3.3. Application of the Split Bregman Method to Our Model

The efficiency of the split Bregman method for image segmentation has been demonstrated
in [21, 25]. We now apply the split Bregman method to solve the proposed minimization
problem (3.14) in a more efficient way. We introduce an auxiliary variable, �d ← ∇φ. We add
a quadratic penalty function to weakly enforce the resulting equality constraint and get the
unconstrained problem as follows:

(
φ∗, �d∗

)
= arg min

a0≤φ≤b0

(∣∣∣ �d
∣∣∣
g
+
〈
φ, r
〉
+
λ

2

∥∥∥ �d − ∇φ
∥∥∥2
)
. (3.17)
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We then apply the Bregman iteration to strictly enforce the constraint �d = ∇φ. The
optimization problem becomes

(
φk+1, �dk+1

)
= arg min

a0≤φ≤b0

(∣∣∣ �d
∣∣∣
g
+
〈
φ, r
〉
+
λ

2

∥∥∥ �d − ∇φ − �bk
∥∥∥2
)
,

�bk+1 = �bk +∇φk+1 − �dk+1.

(3.18)

When �d is fixed, the Euler-Lagrange equation of the optimization problem (3.18)with
respect to φ is

Δφ =
r

λ
+∇ ·

(
�d − �b

)
, whenever a0 ≤ φ ≤ b0. (3.19)

For (3.19), we use the central difference for the Laplace operator and the backward
difference for the divergence operator, and the numerical scheme is

αi,j = dx
i−1,j − dx

i,j + d
y

i,j−1 − d
y

i,j −
(
bxi−1,j − bxi,j + b

y

i,j−1 − b
y

i,j

)
,

βi,j =
1
4

(
φi−1,j + φi+1,j + φi,j−1 + φi,j+1 − r

λ
+ αi,j

)
,

φi,j = max
{
min
{
βi,j , b0

}
, a0
}
.

(3.20)

When φ is fixed, we minimize (3.18) with respect to �d and obtain

�dk+1 = shrinkg
(
�bk +∇φk+1,

1
λ

)
= shrink

(
�bk +∇φk+1,

g

λ

)
, (3.21)

where

shrink
(
x, γ
)
=

⎧⎨
⎩

x
|x| max

(|x| − γ, 0) , x/= 0,

0, x = 0.
(3.22)

The algorithm for the proposed minimization problem (3.14) is similar to the
algorithm in our previous work [21] except when updating r. Thus we do not give the
algorithm in detail here. In this paper r is updated by rk = −(Fk

1 + Fk
2 ), where Fk

1 and Fk
2

are updated through (3.8). The means ui(x), variances σi(x)
2 and constants ci are updated at

every iteration according to (3.7) before the update of the level set function φ.

4. Experimental Results

Synthetic and real images have been tested with our model in this section. We compare
our model with other models with different images. We also discuss the influences of the
parameters β and γ on the segmentation results. In this paper, the level set function φ is
simply initialized as a binary step function which takes a constant value b0 inside a region
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(a) (b) (c)

(d) (e) (f)

Figure 1: Results of a synthetic image with different methods. (a) The original image. (b) The initial
contour. (c) The CV model. (d) The RSF model. (e) The SBRSF model. (f) Our model.

and another constant value a0 outside. The following parameters are used for all images in
this paper: a0 = −2, b0 = 2, σ = 3.0, ε = 1, γ = 0.1, and λ = 0.001. Unless otherwise specified, we
use β = 100 for gray images and β = 1 for color images. The values chosen for the parameters
λ1 and λ2 are specified in each figure.

4.1. Comparisons with Other Models

Figure 1 compares the results for a synthetic image with different methods. In our previous
work [21], we have proposed a convex model by applying the split Bregman method to the
RSF model. We call it the SBRSF model here. The object and the background of this image
have the same intensity means but different variances. Figures 1(a) and 1(b) give the original
image and the initial contour. Figures 1(c)–1(f) show the results of the CV model, the RSF
model, the SBRSF model, and our model, respectively. It can be seen that our model can
get the correct segmentation result while other models fail. This is because that our model
considers not only the intensity mean but also the intensity variance. We choose λ1 = λ2 =
1e − 5 for this image.

In Figure 2 we show the results for another synthetic inhomogeneous image using
different methods. Both the background and the two objects are corrupted by severe intensity
inhomogeneity. λ1 = 1.1e − 5 and λ2 = 1e − 5 are chosen for this image. Figure 2(a)
shows the original image with the initial contour. Figure 2(b) shows the result of the CV
model, which fails to segment the background correctly. The RSF model will trap into local
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(a) (b) (c)

(d) (e) (f)

Figure 2: Results of a synthetic inhomogeneous image with different methods. (a) The original image with
the initial contour. (b) The CV model. (c) The RSF model. (d) The LGDF model. (e) The LGIF model. (f)
Our model.

minimum as shown in Figure 2(c). Figure 2(d) shows the result of the LGDFmodel, the active
contour moves slowly and can not reach the right boundary using only the local information.
Figure 2(e) shows that the LGIF model can not get the correct segmentation with a constant
value for ω. our model can segment this image correctly as shown in Figure 2(f).

Figure 3 shows the comparison of the results with different methods for a real image.
λ1 = λ2 = 1e − 5 is used for this image. The original image with the initial contour, the final
contours with the CV model, the RSF model, the LGIF model, and our model are shown in
Figures 3(a)–3(e), respectively. From this example, we can observe that the result obtained by
our model is the best.

Results of another real imagewith differentmethods are shown in Figure 4. Figure 4(a)
shows the original image with the initial contour, while Figures 4(b)–4(e) show the
segmentation results of the CV model, the RSF model, the LGIF model, and our model,
respectively. It can seen clearly that our model can handle this inhomogeneous image well
while other models fail to segment it. We choose λ1 = λ2 = 1e − 7 and β = 10 for this image.

Figure 5 shows an application of our model to a real image of bird. λ1 = 1.1e − 6, λ2 =
1e−6 and β = 1 are used for this image. Row 1 shows the active contour evolving process from
the initial contour to the final contour. Our model can segment this image correctly which can
be seen from Figure 5(d). Row 2 shows the corresponding fitting images f =

∑2
i=1 M

ε
i (φ)ui

at different iterations. We can see that the final fitting image Figure 5(h) can fit the original
image well.
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(a) (b) (c) (d) (e)

Figure 3: Comparison of different methods for a real image. (a) The original image with the initial contour.
(b) The CV model. (c) The RSF model. (d) The LGIF model. (e) Our model.

(a) (b) (c) (d) (e)

Figure 4: Results of a real inhomogeneous image with different methods. (a) The original image with the
initial contour. (b) The CV model. (c) The RSF model. (d) The LGIF model. (e) Our model.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Results of our model for an image of bird. Row 1: the curve evolution process from the initial
contour to the final contour. Row 2: the corresponding fitting images f =

∑2
i=1 M

ε
i (φ)ui at different

iterations.
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(a) (b) (c) (d)

Figure 6: The active contour evolving process from the initial contour to the final contour for a tiger image
with our model.

4.2. Applications to Texture Images and Color Images

By considering the comprehensive local statistic, our model can be applied to some texture
images. The active contour evolving process for an image of tiger with our model is shown in
Figure 6. It can been observed that the variances of the tiger and the background are different
which enables our model to detect the boundary. We choose λ1 = λ2 = 1e − 5 for this image.
This image has also been used in [17], it can be seen that our model can obtain similar result
as [17].

Our model can also be easily extended to be applied to color images. Figures 7 and 8
show the results of our model for two color images of birds and flowers. We choose λ1 = λ2 =
1e−6 for the image of birds and λ1 = λ2 = 1e−7 for the image of flowers. In Figure 7 the active
contour evolving process is shown in Column (a). Column (b) and Column (c) show the
evolutions of twomeans u1 and u2. The fitting images f =

∑2
i=1 M

ε
i (φ)ui at different iterations

are shown in Column (d). Figure 8 shows the curve evolution and the corresponding fitting
image evolution for the color image of flowers in Row 1 and Row 2, respectively. These two
examples demonstrate that our model can be applied to color images well.

4.3. Discussion on the Parameters β and γ

In our proposed model we have replaced the standard TV norm with the weighted TV norm
by using an edge detector function g(ξ) = 1/(1+β|ξ|2). We have declared that β is a parameter
that determines the detail level of the segmentation. Now we show how the parameter β can
influence the details of segmentation in Figure 9. Figures 9(a) and 9(b) show the original
image and the initial contour. Figures 9(c)–9(f) show the results by applying our model with
different parameters β = 1, 10, 20, 50, respectively. We choose λ1 = λ2 = 1e−6 for this image. It
can be observed that with the increase of β, more details of the image will be detected. Thus if
we want to detect more details, larger β should be used. Otherwise if we only want to detect
the outline, smaller β should be chosen.

In Figure 10 we apply our model to a synthetic inhomogeneous image. The original
image with the initial contour is shown in Figure 10(a). The final contour and the final level
set function φ are shown in Figures 10(b) and 10(c), respectively. λ1 = λ2 = 1e − 5 is used for
this image.

From (3.15), the parameter γ can influence the weight function ω of the global-
intensity-fitting term. To see how the parameter γ can influence the change of the total
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(a) (b) (c) (d)

Figure 7: Results of our model for a real color image. Column (a): the active contour evolving process from
the initial contour to the final contour. Columns (b) and (c): the evolution processes of two means u1 and
u2. Column (d): the corresponding evolution of the fitting image f =

∑2
i=1 M

ε
i (φ)ui.

energy, we show the energy change figures with different values for γ in Figure 11. For
the same image with the same initial contour in of Figure 10(a), we will obtain the same
segmentation result shown in of Figure 10(b) when using different values for γ . However,
the energy change figures are different. The energy change figures with different γ = 0.1, 1, 5
are shown in Figures 10(a), 10(b), and 10(c), respectively. From Figure 11, we can see that
when γ = 0.1, the energy change curve is a little irregular and has some fluctuation which can
be seen in Figure 11(a). When larger values of γ are used, the energy change curves become
more regular as shown in Figures 11(b) and 11(c).

Our model is a little sensitive to the parameters λ1 and λ2 which can be seen from the
experimental results. In fact, the SBRSF model also has this problem. It may be caused by the
application of the split Bregman method. This is what we should study more in the future
work.

5. Conclusion

In this paper, we propose a local- and global-statistics-based active contour model for image
segmentation in a variational level set formulation. Both the local and global information
are taken into consideration to get better segmentation results. Local Gaussian distribution
information is used to identify regions with similar intensity means but different variances.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Results of our model for another color image. Row 1: the curve evolution process. Row 2: The
evolution process of the corresponding fitting image f .

(a) (b) (c)

(d) (e) (f)

Figure 9: Influence of the parameter β on the detail level of segmentation. (a) The original image. (b) The
initial contour. (c) β = 1. (d) β = 10. (e) β = 20. (f) β = 50.
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Figure 10: Results of our model for a synthetic inhomogeneous image. (a) The original image with the
initial contour. (b) The final contour. (c) The final level set function φ.
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Figure 11: Influence of the parameter γ on the energy change. (a) γ = 0.1. (b) γ = 1. (c) γ = 5.

A weight function that varies dynamically with the location of the image is applied in this
paper. The split Bregman method is then used to minimize the proposed energy functional in
a more efficient way. Our model has been compared with other models for different images.
Experimental results have shown the advantages of our model for image segmentation. Our
model can also be applied to some texture images and color images. A short discussion on
the parameters β and γ is also given.
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