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A novel inverse Lyapunov approach in conjunction with the energy shaping technique is applied
to derive a stabilizing controller for the ball on the beam system. The proposed strategy consists of
shaping a candidate Lyapunov function as if it were an inverse stability problem. To this purpose,
we fix a suitable dissipation function of the unknown energy function, with the property that
the selected dissipation divides the corresponding time derivative of the candidate Lyapunov
function. Afterwards, the stabilizing controller is directly obtained from the already shaped
Lyapunov function. The stability analysis of the closed-loop system is carried out by using the
invariance theorem of LaSalle. Simulation results to test the effectiveness of the obtained controller
are presented.

1. Introduction

The ball and the beam system (BBS) is a popular and important nonlinear system due to its
simplicity and easiness to understand and implement in the laboratory. It is also an unstable
system, and for this reason it has been widely used not only as a test bed for the effectiveness
of control design techniques offered by modern control theory [1, 2] but also to avoid the
danger that usually accompanies real unstable systems when brought to the laboratory. In
fact, the dynamics of this system are very similar to those found in aerospace systems.

The BBS system consists of a beam, which is made to rotate in a vertical plane by
applying a torque at the center of rotation, and a ball that is free to roll along the beam. Since
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the system does not have a well-defined relative degree at the origin, the exact input-output
linearization approach cannot be directly applied to stabilize it around the origin; that is, this
system is not feedback linearizable bymeans of static or dynamic state feedback. This obstacle
makes it difficult to design either a stabilizable or a tracking controller [2, 3]. Fortunately,
the system is locally controllable around the origin. Hence, it is possible to control it, if it is
initialized close enough to the origin by using the direct pole placement method.

Due to its importance several works related to the control of the BBS can be found
in the literature. A control strategy based on an approximate feedback linearization was
proposed by Hauser et al. in [2]. The main idea consists of discarding certain terms to avoid
singularities. The drawback of this strategy is that the closed-loop system behaves properly in
a small region, but it fails in a large one. In the same spirit, combined with suitable intelligent
switches, we mention the works of [4, 5]. In the first work the authors present a control
scheme that switches between exact and approximate input-output linearization control
laws; in the other work the use of exact input-output linearization in combination with fuzzy
dynamic control is proposed. A constructive approach based on the Lyapunov theory was
developed in [6], where a numerical approximation for solving one PDE was considered.
In the similar works of [7–10], energy matching conditions were used for the stabilization
of the BBS. They also used some numerical approximations in order to solve approximately
two matching conditions required to derive the candidate Lyapunov function. A major con-
tribution, rather similar to the matching energy-based approach, was considered in [11, 12].
In these works, the authors solved the twomatching conditions related with the potential and
kinetic energies of the closed-loop system. In [13], a nested saturation design was proposed
in order to bring the ball and the beam to the unstable equilibrium position. Following the
same idea, a global asymptotic stabilization was developed with state-dependent saturation
levels [14]. A novel work based on a modified nonlinear PD control strategy, tested in the
laboratory, was presented in [15]. Finally, many control strategies for the stabilization of
the BBS can be found in the literature, but most of them manage the physical model by
introducing some nonlinear approximations or switching through singularities (see [1, 3]).

In this paper we propose a novel inverse Lyapunov-based procedure in combination
with the energy shaping method to stabilize the BBS. Intuitively, the Lyapunov function
is found as if it were an inverse stability problem; that is, we first choose the dissipation
rate function of the time derivative of the unknown candidate Lyapunov function. For that
purpose, we shape a suitable candidate Lyapunov function, which is locally strictly positive
definite inside an admissible set of attraction. Afterwards, the control is proposed in such a
way that the time derivative of the obtained Lyapunov function is forced to be equal to the
proposed dissipation rate function. The proposed Lyapunov function is formed by adding
a kinetic energy function and a particular function, which can be considered as the corre-
sponding potential energy function. To carry this out, we found two restriction equations
related to the potential and kinetic energies. The main characteristic of our control strategy is
that we do not need to force the closed-loop system to follow another stable Euler-Lagrange
or Hamiltonian system, contrary to what was previously proposed in [7–11, 16, 17].

The rest of this paper is organized as follows. In Section 2 we present the control
model of the BBS. In Section 3 we briefly introduce the inverse Lyapunov method for solving
the stabilization of the BBS; we also discuss the asymptotic convergence of the closed-loop
system. In Section 4 we present some numerical simulations to assess the effectiveness of our
control strategy. In Section 5 some conclusions are given.
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2. System Dynamics

Consider the BBS shown in Figure 1, which consists of a beam that rotates in a vertical plane
when a torque is applied to its rotational center and a ball that freely moves forwards and
backwards along the beam with only a single degree of freedom. The BBS nonlinear model
is described by the following set of differential equations (see [1, 2]):

(
m +

JB
R3

)
r̈ −mrθ̇2 +mg sin θ + βṙ = 0,(

mr2 + JB + J
)
θ̈ + 2mrṙθ̇ +mgr cos θ = τ,

(2.1)

where r is the ball position along the beam, θ is the beam angle, J is the moment of inertia
of the beam around the rotating pivot, JB is the moment of inertia of the ball with respect to
its center, R is the radius ball, m is the ball mass, β > 0 is the friction coefficient, and τ is the
torque of the system. After applying the following feedback

τ = u
(
mr2 + JB + J

)
+ 2Mrṙθ̇ +mgr cos θ (2.2)

into system (2.1), it can be rewritten as

r̈ = drθ̇2 − n sin θ − bṙ,

θ̈ = u,
(2.3)

where

b =
β

m + JB/R3
, d =

m

m + JB/R3
, n =

mg

m + JB/R3
. (2.4)

Note that u can be seen as a virtual controller that acts directly on the actuated coordinate θ.
Naturally, the latter system equations can be written as

q̈ = S(x) + Fu, (2.5)

where qT = (r, θ) and xT = (q, q̇).1

3. Control Strategy

The control objective is to bring all the states of system (2.3) to the unstable equilibrium point
x = 0, restricting both the beam angle and the ball position to inside the admissible setQ ∈ R2,
defined by

Q =
{
q = (r, θ) : |r| ≤ L ∧ |θ| ≤ θ <

π

2

}
, (3.1)

where the positive constants L and θ are known. To this end, a suitable candidate Lyapunov
function is constructed by using the Inverse Lyapunov Approach.
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Figure 1: The ball and beam system.

3.1. Inverse Lyapunov Approach

A brief description of the inverse Lyapunov method, inspired in the previous work of Ortega
and Garcı́a-Canseco [18], is introduced next.

Let us propose a candidate Lyapunov function for the closed-loop system energy
function, of the form

V (x) =
1
2
q̇TKc(r)q̇ + Vp

(
q
)
, (3.2)

where the closed-loop inertia matrixKc(r) = KT
c (r) > 0, and the closed-loop potential energy

functions Vp(q) > 0, will be defined in the forthcoming developments. A straightforward
calculation shows that, along with the solutions of (2.5), V̇ is given by

V̇ (x) =
(∇qV

)T
q̇ +

(
∇q̇V

T
)
(S(x) + Fu(x)). (3.3)

Comment 1. In fact, Vp(q) is selected such that ∇xVp(x)|x=0 and ∇2
xVp(x)|x=0 > 0; that is, we

require that Vp be strictly locally convex around the origin.

Fixing the following auxiliary variable as η(x) = θ̇ + α(r)ṙ, with α(r)/= 0, for all r ∈ Q
(it is given in advance), we want to find u(x) ∈ R, Vp(q) ∈ R+ and Kc(r) > 0, with x ∈ D ⊂
Q × R2.2 Such that V̇ can be rewritten as

V̇ (x) = η(x)
(
β(x) + u(x)

)
+ R(x), (3.4)

where β(x) and R(x) are continuous functions. Then, we propose the control law as

u(x) = −kdη(x) − β(x), (3.5)

for some kd > 0, which evidently leads to

V̇ (x) = −kdη2(x) + R(x). (3.6)
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In order to guarantee that V̇ be semidefinite negative, we require that a kd exists, such that

−kdη2(x) + R(x) ≤ 0. (3.7)

Physically, we are choosing a convenient dissipation function, η(x), of the unknown
closed-loop energy function V (x), with the property that n divides (V̇ − R)(x). We must
underscore that the fixed η relies on the unactuated coordinate r, in agreement with the
structure of the closed-loop energy function.

On the other hand, R(x) is the work of the friction forces, which act over the
unactuated coordinate.

Closed-Loop System Stability

If we are able to shape the candidate Lyapunov function (3.2), such that its time derivative,
along the trajectories of system (2.3), can be expressed as (3.4) under the assumption that
(3.7) holds, then V qualifies as a Lyapunov function, because it is a nonincreasing and
positive definite function in the neighborhood of the origin and proper on its sub-level (i.e.,
there exists a c > 0, such that V (x) ≤ c defines a compact set, with closed level curves).
Consequently, x is stable in the Lyapunov sense.

3.2. Solving the BBS Stabilization Problem by Applying
the Inverse Lyapunov Approach

In this section we explain how to take the original expression of V̇ , defined in (3.3), to the
desired form (3.4) for the particular case of the BBS.

Defining, Kc, as3

Kc =

[
k1 k2

k2 k3

]
, (3.8)

and according to (3.3), we have that V̇ can be expressed as

V̇ (x) = q̇T
(
υp

(
q
)
+ υd(x) +KcFu

)
+ Rυ(x), (3.9)

where

υd(x) = {vdi}2i=1 =
1
2
∇q

(
q̇TKcq̇

)
+Kc

[
drθ̇2

0

]
, (3.10)

υp

(
q
)
=

{
vpi

}2
i=1 = ∇qVp

(
q
)
+Kc

[−n sin θ

0

]
. (3.11)
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Equating equation (3.9)with (3.3), we obtain, after some simple algebraic manipulations, the
following:

T0︷ ︸︸ ︷
Rυ(x) − R(x) +

T1︷ ︸︸ ︷(
q̇TKcF − η(x)

)
u +

T2︷ ︸︸ ︷
q̇T

(
υp(q) + υd(x)

) − η(x)β(x)= 0.
(3.12)

From the above we have that Rv(x) = R(x). Now, as the matrixKc and functions vp(q)
and vd(x) can be seen as free control parameters, we can select them, such that the following
equalities hold:

q̇TKcF = n(x), (3.13)

q̇T
(
υp

(
q
)
+ υd(x)

)
= η(x)β(x). (3.14)

This implies that Ti = 0, with i = 0, 1, 2. Indeed, it is justified because Kc is constituted
by three free parameters.

Note that this equation has two unknown parameters, given by k1 and Vp. Hence, in
order to solve it, we require that

q̇Tυp

(
q
)
= ζp

(
q
)
n(x), q̇Tυd(x) = ζd(x)n(x), (3.15)

where the continuous functions ζp and ζd will be computed later by using simple polynomials
factorization. Consequently, β(x) is directly computed by:

β(x) = ζp
(
q
)
+ ζd(x). (3.16)

Finally, ζp and ζd are obtained according to the following remark.

Remark 3.1. Notice that q̇Tυp(q) and q̇Tυd(q) are polynomials with respect to variables (ṙ, θ̇).
Consequently, thefollowing equalities

q̇Tυp

(
q
)∣∣∣

θ̇=−α(r)ṙ
= 0, (3.17)

q̇Tυd(x)
∣∣∣
θ̇=−α(r)ṙ

= 0 (3.18)

imply that functions ζp(q) and ζd(x) satisfy the restrictions in (3.15). In other words, the
selected η must divide the two scalar functions q̇Tυp(q) and q̇Tυd(q).
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3.2.1. Computing the Needed Candidate Lyapunov Function

In this section we obtain the unknown control variables Kc and Vp. We begin by solving the
restriction equation (3.13). For simplicity, we set α(r) = 1 and η = −ṙ + θ̇. Therefore, from
(3.13) and (3.8)we evidently have that

q̇TKcF = k2ṙ + k3θ̇ = −ṙ + θ̇, (3.19)

which leads to k2 = −1 and k3 = 1. Now, substituting the fixed values k2 and k3 (3.10), we
have that

[
υd1

υd2

]
=

1
2
∇q

(
q̇TKcq̇

)
+Kc

[
drθ̇2

0

]
=

⎡
⎣k

′
1

2
ṙ2 +dk1rθ̇2

−drθ̇2

⎤
⎦. (3.20)

Next, substituting the above vd1 and vd2 in (3.17), we obtain

vd2(x) + υd1(x)|θ̇=ṙ = ṙ2
(

k
′
1

2
+ dr(k1 − 1)

)
= 0, (3.21)

which produces the following equation; k′
1 = −2rd(k1 − 1) and whose solution is given by

k1 = 1 + k1e
−dr2 , where k1 > 0. Hence, matrix Kc can be taken as

Kc =

[
1 + k1e

−dr2 −1
−1 1

]
. (3.22)

According with (3.22), we have that det(Kc) = k1e
−dr2 > 0; that is, Kc > 0, when r is finite.

Now, to obtain Vp(q), we proceed to substitute the obtainedKc into the relation (3.11),
having

[
υp1

υp2

]
= ∇qVp +Kc

[−n sin θ

0

]
=

⎡
⎢⎢⎣
−
(
1 + k1e

−dr2
)
n sin θ +

∂Vp

∂r

n sin θ +
∂Vp

∂θ

⎤
⎥⎥⎦. (3.23)

From (3.18), we have that

0 = υp2

(
q
)
+ υp1

(
q
)
= −nk1e

−dr2 sin θ +
∂Vp

∂r
+
∂Vp

∂θ
, (3.24)

whose solution is given by

Vp

(
q
)
= nk1

∫ r

0
sin(θ − r + s)e−ds

2
ds + Ω(r − θ), (3.25)
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where Ω(∗) must be selected such that Vp has a local minimum at the origin q = 0. To assure
this condition, it is enough to define Ω(s) = kps

2/2, where kp > nk1. Therefore, Vp reads as

Vp

(
q
)
= nk1

∫ r

0
sin(θ − r + s)e−ds

2
ds +

kp

2
(r − θ)2, (3.26)

where the integral term can be exactly computed as

∫ r

0
sin(θ − r + s)e−ds

2
ds = cos(θ − r)Isin r + sin(θ − r)Icos r , (3.27)

where

Icos r =
∫ r

0
cos(s)e−ds

2
ds = α1φs(r),

Isin r =
∫ r

0
sin(s)e−ds

2
ds = α1

(
α0 + φc(r)

)
,

(3.28)

and4

α0 = 2 Im
[
erf

(
i

2
√
d

)]
, α1 =

√
π exp(−1/4d)

4
√
d

,

φs(r) = 2Re
[
erf

(
i + 2dr

2
√
d

)]
, φc(r) = −2 Im

[
erf

(
i + 2dr

2
√
d

)]
.

(3.29)

Remark 3.2. Notice that relation (3.7) can be rewritten as Rd(x) = q̇THq̇, where

H =

[ −kd kd + bk1/2

kd + bk1/2 −bk1 − kd

]
q̇, (3.30)

so that q̇THq̇ < 0, if the parameter kd is selected such that −b + 4(k1 − 1)kd > 0; recall that
k1 > 1.

Hence, the needed controller, defined by (3.5) and (3.16), is given that5

u = −kd
(−ṙ + θ̇

) −
(
n sin θ +

∂Vp

∂θ

)
−
(
−drθ̇2 + dk1rṙ

(
ṙ + θ̇

)
e−dr

2
)
, (3.31)

where k1 > 0 and kd > 0.
We end this section introducing the following important remark.

Remark 3.3. Notice that we can always compute

c̃ = max
c>0

q ∈ Q : Vp

(
q
)
= c; such that Vp

(
q
)
= c̃ is a closed curve. (3.32)
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Figure 2: Level curves of the function Φ(q) around the origin, for two sets of values: ηk = 1, δ = 0.015 and
kp = 2.5 (a) and ηk = 1, δ = 0.015 and kp = 1.3 (b) with restrictions on |r| ≤ 0.6 (m) and |θ| ≤ 0.5 (rad).

To illustrate the geometrical estimation of the bound “c̃”, we fix the parameter values
kp = 2.5 and kp = 1.3, the other physical parameter values were set as nk1 = 1 and d = 0.015,
and the admissible restricted set was chosen as |r| ≤ 0.6 [m] and |θ| ≤ 0.5 [rad]. This setup
allows us to give an estimated c, which evidently guaranties that the level curves of Vp are
closed. By a thorough numerical inspection, we found that c̃=̃0.108 for kp = 2.5 and c̃ = 0.05
for kp = 1.3. Figure 2 shows the corresponding level curves.

3.3. Asymptotic Convergence of the Closed-Loop System

Since the obtained V is a non-increasing and positive definite function in some neighborhood
that contains the origin, then the closed-loop system is, at least, locally stable in the Lyapunov
sense. To assure that the trajectories of the closed-loop system asymptotically converge to the
origin, restricted to q(t) ∈ Q, for t > 0, we must define the set Ωc̃ ∈ R4, where

Ωc̃ =
{(

q, q̇
)
: q ∈ Q ∧ V

(
q, q̇

)
< c̃

}
. (3.33)

The set Ωc̃ defines a compact invariant set because, for any initial conditions x0 = (q0, q̇0),
with q0 ∈ Q, provided that V (x0) < c̃, then V (x) < c̃, with q ∈ Q.

The rest of the stability proof is based on LaSalle’s invariant theorem [19, 20]. To apply
this theorem we need to define a compact (closed and bounded) set Ωc̃, which must satisfy
that every solution of system (2.3), in closed-loop with (3.31), starting in Ωc̃ remains in Ωc̃,
for all future time. Then, we define the following invariant set S, as:

S =
{
x ∈ Ωc̃ : V̇ (x) = 0

}
=

{(
q, q̇

) ∈ Ωc̃ : Rd(x) = q̇THq̇ = 0
}
, (3.34)
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where H < 0. Let M be the largest invariant set in S. Because the theorem of LaSalle claims
that every solution starting in a compact set Ωc̃ approaches M, as t → ∞, we compute the
largest invariant set M ⊂ S. Clearly, we have that ṙ = 0 and θ̇ = 0, on the set S. Therefore,
we must have that r̈ = 0 and θ̈ = 0, on the set S. Similarly, we must have that r = r∗ and
θ = θ∗, with r∗ and θ∗ being constants. Hence, on the set S, the first equation of (2.3) is written
as 0 = −n sin θ∗, then θ∗ = kπ , where k is an integer. However, θ∗ ∈ (−π/2, π/2) because
(q, q̇) ∈ Ωc̃; consequently θ = 0, on the set S. In a similar way, we can show that r∗ = 0. Then,
on the set S, we have that q = 0 and q̇ = 0. Therefore, the largest invariant set M contained
inside set S is given by the single point x = (q = 0, q̇ = 0). Thus, according to the theorem
of LaSalle [19], all the trajectories starting in Ωc̃ asymptotically converge towards the largest
invariant setM ⊂ S, which is the equilibrium point x = 0.

We finish this section by presenting the main proposition of this paper.

Proposition 3.4. Consider system (2.3) in closed-loop with (3.31), under conditions of Remarks 3.2
and 3.3. Then the origin of the closed-loop system is locally asymptotically stable with the domain of
attraction defined by (3.33).

4. Numerical Simulations

To show the effectiveness of the proposed nonlinear control strategy we have carried
out some numerical simulations by means of the Matlab program. The original system
p,arameters, with their respective physical restrictions, were set as

m = 0.1 kg, R = 0.015m, Jb = 2.25 × 10−5 kg ·m2, θ = 0.5 rad,

M = 0.2 kg, L = 0.6m, J = 0.36 kg ·m2, β = 0.2New ·m/s
(4.1)

From the above, we have that b = 0.029, d = 0.01477, and n = 0.1448. The physical control
parameters were fixed as kp = 2.5, k1 = 1/n and kd = 0.5, while the initial conditions
were fixed; as x0 = (0.55m; 0; 0.45 rad; 0). Notice that the proposed set of parameters
{d, kp, k1, n} are in agreement with the computation of the restricted stability domain, which
has been done in the previous section (see Figure 2(a)); besides the initial conditions satisfy
the inequality V (x0) < c̃ = 1.08.6

Figure 3 shows the corresponding response of system (2.3) in closed-loop with (3.31),
under the conditions in the Remark 3.3. From this figure one can see that both the system
position coordinates and the system torque asymptotically converge to the origin, assuring
that |θ| ≤ θ and |r| ≤ L.

In order to provide an intuitive idea of how good our nonlinear control strategy (ACL)
is in comparison with the control techniques proposed by Yu in [15] and Hauser et al. in [2],
here respectively referred as (YCL) and (HCL), we carried out a second experiment using the
same setup as before and assuming that β = 0. The obtained characteristic polynomial of our
control strategy of the linearized system is given by

p(s) = 0.0634 + 0.255s + 0.88s2 + 1.72s3 + s4. (4.2)

The control parameters of the YNC and theHNCwere selected, such that their corresponding
characteristic polynomials coincided with the polynomial (4.2). The initial conditions were
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Figure 3: Closed-loop response of the BBS to the initial conditions: (a) x0 = (0.55m; 0; 0.45 rad; 0).
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Figure 4: Closed-loop response of the BBS to the proposed ANC in comparison with YNC and HNC.

fixed as (0.3m; 0.18m/s; 0.35 rad; 0.18 rad/s). The simulation results are shown in Figure 4.
As we can see, our control strategy outperforms the closed-loop responses of the YNC and
HNC control strategies.

Comment 2. A comparative study between our control strategy and other control strategies
presented in the literature for solving the stabilization of the BBS, is beyond the scope of this
work.
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5. Conclusions

In this work we proposed a novel procedure to stabilize the BBS by using the inverse
Lyapunov approach in conjunction with the energy shaping technique. This procedure
consists of finding the candidate Lyapunov function as if it were an inverse stability problem.
To carry it out, we chose a convenient dissipation function of the unknown closed-loop
energy function. Then, we proceeded to obtain the needed energy function, which is the
addition of the positive potential energy and the positive kinetic energy. Afterwards, we
directly derived the stabilizing controller from the already-obtained time derivative of
the Lyapunov function. The corresponding asymptotic convergence analysis was done by
applying the theorem of LaSalle. To assess the performance and effectiveness of the proposed
control strategy, we carried out some numerical simulations. The simulation results allow
us to conclude that our strategy behaves quite well in comparison with other well-known
control strategies. It is worth mentioning that, to our knowledge, the procedure used here to
obtain the needed Lyapunov function has not been used before to control the BBS.
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Endnotes

1. Evidently,

S(x) =
[
δrθ̇2 − n sin θ − bṙ 0

]T
F =

[
0 1

]T
. (5.1)

2. The set D is related with the region of attraction of the closed-loop system.

3. For simplicity, we use Kc = K(r), ki = ki(r), k′
i = d/drki(r), for i = {1, 2, 3}.

4. Symbol erf stands for the Gauss error function, defined by

erf(x) =
2√
π

∫x

0
exp

(
−s2

)
ds. (5.2)

5. After some simple algebraic manipulations it is easy to show that

ζp = n sin θ +
∂Vp

∂θ
; ζd = −drθ̇2 + dk1rṙ

(
ṙ + θ̇

)
e−dr

2 (5.3)

6. For this particular case, the condition of Remark 3.2 is satisfied, because

−b + 4(k1 − 1)kd = b + 2 exp
(
−d ∗ L2

)
= 13.7 > 0. (5.4)
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