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When using interior methods for solving semidefinite programming (SDP), one needs to solve a
system of linear equations at each iteration. For problems of large size, solving the system of linear
equations can be very expensive. In this paper, based on a semismooth equation reformulation
using Fischer’s function, we propose a filter method with trust region for solving large-scale SDP
problems. At each iteration we perform a number of conjugate gradient iterations, but do not need
to solve a system of linear equations. Under mild assumptions, the convergence of this algorithm
is established. Numerical examples are given to illustrate the convergence results obtained.

1. Introduction

Semidefinite programming (SDP) is convex programming over positive semidefinite
matrices. For early application, SDP has beenwidely used in control theory and combinatorial
optimization (see, e.g., [1–3]). Since some algorithms for linear optimization can be extended
to many general SDP problems, that aroused much interest in SDP. In the past decade, many
algorithms have been proposed for solving SDP, including interior-point methods (IPMs) [4–
7], augmented methods [8–10], new Newton-type methods [11], modified barrier methods
[12], and regularization approaches [13].

For small and medium sized SDP problems, IPMs are generally efficient. But for
large-scale SDP problems, IPMs become very slow. In order to improve this shortcoming,
[9, 14] proposed inexact IPMs using an iterative solver to compute a search direction at each
iteration. More recently, [13] applied regularization approaches to solve SDP problems. All
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of these methods are first-order based on a gradient, or inexact second-order based on an
approximation of Hessian matrix methods [15].

In this paper, we will extend filter-trust-region methods for solving linear (or
nonlinear) programming [16] to large-scale SDP problems and use Lipschitz continuity.
Furthermore, the accuracy of this method is controlled by a forcing parameter. It is shown
that, under mild assumptions, this algorithm is convergent.

The paper is organized as follows. Some preliminaries are introduced in Section 2.
In Section 3, we propose a filter-trust-region method for solving SDP problems, and we
study the convergence of this method in Section 4. In Section 5, some numerical examples
are presented to demonstrate the convergence results obtained in this paper. Finally, we give
some conclusions in Section 6.

In this paper, we use the following common notation for SDP problems: Xn and Rm

denote the space of n×n real symmetric matrices and the space of vectors withm dimensions,
respectively; X � 0(X � 0) denotes that X ∈ Xn is positive semidefinite (positive definite),
and X � 0(X ≺ 0) is used to indicate that X ∈ Xn is negative semidefinite (negative definite).
A superscript T represents transposes of matrices or vectors. For X,Y ∈ Xn, the standard
scalar product on the space ofXn is defined by

〈X,Y〉 := X • Y = trace(XY ) =
n∑

i,j=1

Xi,jYi,j . (1.1)

If X ∈ Xn and x ∈ Rm, we denote that ‖X‖F is the Frobenius norm of X, that is, ‖X‖F =
√
〈X,X〉 =

√∑n
i,j=1 X

2
i,j and ‖x‖2 is the 2-norm of x, that is, ‖x‖2 =

√
xTx =

√∑m
i=1 x

2
i ,

respectively. Let X be a p × q matrix. Then we denote by Vec(X) a pq vector made of
columns of X stacked one by one, and the operator Mat(·) is the inverse of Vec(·), that is,
Mat(Vec(X)) = X. We also denote that I is identity matrix.

2. Preliminaries

We consider a SDP problem of the form

min C •X
subject to A(X) = b, X � 0,

(2.1)

where C ∈ Xn, A(i) ∈ Xn, i = 1, 2, . . . , m, and b = (b1, b2, . . . , bm)
T ∈ Rm are given dates; A is a

linear map fromXn to Rm given by

A(X) :=

⎡
⎢⎢⎢⎣

A(1) •X
A(2) •X

...
A(m) •X

⎤
⎥⎥⎥⎦
, X ∈ Xn. (2.2)
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The dual to the problem (2.1) is given by

max bTy

subject to A∗(y
)
+ S = C, S � 0,

(2.3)

where A∗ is an adjoint operator ofA : Rm → Xn given by

A∗(y
)
=

m∑

i=1

yiA
(i), y ∈ Rm. (2.4)

Obviously, X ∈ Xn and (y, S) ∈ Rm × Xn are the primal and dual variables, respectively.
It is easily verified that the SDP problem (2.1) is convex. When (2.1) and (2.3) have

strictly feasible points, then strong duality holds, see [5, 12]. In this case, a point (X, y, S) is
optimal for SDP problems (2.1) and (2.3) if and only if

A(X) = b, A∗(y
)
+ S = C, X � 0, S � 0, 〈X,S〉 = 0. (2.5)

In the sense that (X, y, S) solves SDP problems (2.1) and (2.3) if and only if (X, y, S) solves
(2.5) when both SDP problems (2.1) and (2.3) have strictly feasible points.

We now introduce some lemmas which will be used in the sequel.

Lemma 2.1 (see [17]). LetA,B ∈ Xn and letA � 0, B � 0. Then 〈A,B〉 = 0 if and only ifAB = 0.

For X,S ∈ Xn, we define a mapping φ : Xn × Xn → Xn given by

φ(X,S) := X + S −
√
X2 + S2, (2.6)

which is attributed by Fischer to Burmeister (see [18, 19]). This function is nondifferentiable
and has a basic property.

Lemma 2.2 (see [20, Lemma 6.1]). Let φ be the Fischer-Burmeister function defined in (2.6). Then

φ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = 0. (2.7)

In addition, for τ > 0 and X,S ∈ Xn, we define a mapping φτ : Xn × Xn → Xn by

φτ(X,S) := X + S −
√
X2 + S2 + 2τ2I, (2.8)

which is differentiable and has following results.

Lemma 2.3 (see [11, Proposition 2.3]). Let τ > 0 be any positive number and let φτ be defined by
(2.8). Then

φτ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = τ2I. (2.9)
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Lemma 2.4. Let τ > 0 be any positive number, and let φτ be defined by (2.8). If τ → 0, we would
have

φτ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = 0. (2.10)

Proof. The proof can be obtained from Lemmas 2.2 and 2.3.

Lemma 2.5 (see [20, pages 170–171]). For any C � 0, define the linear operator LC by

LC[X] := CX +XC, X ∈ Xn. (2.11)

Then LC is strictly monotone and so has an inverse L−1
C .

Lemma 2.6 (see [21, Lemma 2]). Let X,S,U, V ∈ Xn, and let φτ be defined by (2.8). For any
τ > 0, we have that φτ is Fréchet-differentiable and

∇φτ(X,S)(U,V ) = U + V − L−1
C [XU +UX + SV + VS], (2.12)

where C :=
√
X2 + S2 + 2τ2I.

Lemma 2.7 (see [22, Corollary 2.7]). Let F be a map fromXn toXn. If F is locally Lipschitzian on
Xn, then F is almost everywhere Fréchet-differentiable on Xn.

3. The Algorithm

In this section, we will present a filter-trust-region method for solving SDP problems (2.1)
and (2.3). Firstly, for a parameter τ > 0, we construct a function:

Hτ

(
X, y, S

)
:=

⎛
⎜⎜⎝

τ
A(X) − b

A∗(y
)
+ S − C

X + S −
√
X2 + S2 + 2τ2I

⎞
⎟⎟⎠, (3.1)

where (X, y, S) ∈ Xn × Rm × Xn.
According to Lemmas 2.1, 2.3 and 2.4, the following theorem is obvious.

Theorem 3.1. Let τ > 0 and let Hτ(X, y, S) be defined by (3.1). If SDP problems (2.1) and (2.3)
have strictly feasible points, then

Hτ

(
X∗, y∗, S∗

)
= 0 =⇒ (

X∗, y∗, S∗
)

solves (2.5). (3.2)

In what follows, we will study properties of the functionHτ(X, y, S). For simplicity, in
the remaining sections of this paper, we denote Z := (X, y, S), Zk := (Xk, yk, Sk) and ΔZ :=
(ΔX,Δy,ΔS).
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Theorem 3.2. Let Hτ(Z) be defined by (3.1). For any Z,ΔZ ∈ Xn × Rm × Xn and τ > 0, then
Hτ(Z) is Fréchet-differentiable and

∇Hτ(Z)(ΔZ) =

⎛
⎜⎜⎝

Δτ
A(ΔX) − b

A∗(Δy
)
+ ΔS − C

ΔX + ΔS − L−1
C [XΔX + ΔXX + SΔS + ΔSS]

⎞
⎟⎟⎠, (3.3)

where Δτ > 0 and C :=
√
X2 + S2 + 2τ2I.

Proof. For any Z ∈ Xn × Rm × Xn, since A(X) − b and A∗(y) + S − C are linear functions
and continuous differentiable, it follows that they are also locally Lipschitz continuous.
Then, from Lemma 2.7, A(X) − b and A∗(y) + S − C are Fréchet-differentiable. Furthermore,
X + S −

√
X2 + S2 + 2τ2I is Fréchet-differentiable from Lemma 2.6. Thus, Hτ(Z) is Fréchet-

differentiable and has the form of (3.3). We complete the proof.

We endow the variable Z with the following norm:

‖Z‖ =
∥∥(X, y, S

)∥∥ :=
(
‖X‖2F +

∥∥y
∥∥2
2 + ‖S‖2F

)1/2
. (3.4)

In addition, we set

h(Z) = (h1(Z), h2(Z), h3(Z), h4(Z))T , (3.5)

where

h1(Z) = ‖A(X) − b‖2,
h2(Z) =

∥∥A∗(y
)
+ S − C

∥∥
F,

h3(Z) =
∥∥∥X + S −

√
X2 + S2 + 2τ2I

∥∥∥
F

h4(Z) = |τ |.

(3.6)

We also define the function Hτ(Z) and the vector h(Z) with the following norm:

‖Hτ(Z)‖ = ‖h(Z)‖ =

(
4∑

i=1

hi(Z)2
)1/2

=
(
‖A(X) − b‖22 +

∥∥A∗(y
)
+ S − C

∥∥2
F +

∥∥∥X + S −
√
X2 + S2 + 2τ2I

∥∥∥
2

F
+ τ2

)1/2

.

(3.7)
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Now, for any τ > 0, we define the merit function Ψ : Xn × Rm × Xn → R by

Ψτ(Z) :=
1
2
‖Hτ(Z)‖2. (3.8)

Lemma 3.3. For any τ > 0 and Z ∈ Xn×Rm×Xn, ifX and S are nonsingular, thenΨτ(Z) is locally
Lipschitz continuous and twice Fréchet-differentiable at every Z ∈ Xn × Rm × Xn.

Proof. For any τ > 0, since Ψτ(Z) is convex and continuously differentiable, it follows that
Ψτ(Z) is also locally Lipschitz continuous.

In addition, for anyZ ∈ Xn×Rm×Xn, from [20, pages 173–175], h3(Z)2 is twice Fréchet-
differentiable. Furthermore, h1(Z)2, h2(Z)2, and h4(Z)2 are continuous at everyZ ∈ Xn×Rm×
Xn when τ > 0, which, together with Lemma 2.7, Ψτ(Z) is twice Fréchet-differentiable. The
proof is completed.

Lemma 3.4. Let Hτ(Z) and Ψτ(Z) be defined by (3.1) and (3.8), respectively. For any τ > 0, we
have

Ψτ(Z) = 0 ⇐⇒ Hτ(Z) = 0. (3.9)

Proof. The proof can be immediately obtained from the definition of Hτ(Z) and Ψτ(Z).

We follow the classical method for solving Ψτ(Z) = 0, which consists some norm of
the residual. For any τ > 0, we consider

minΨτ(Z), (3.10)

where Z ∈ Xn × Rm × Xn. Thus, for any τ > 0, we want to find a minimizer Z∗ of Ψτ(Z).
Furthermore, if Ψτ(Z∗) = 0, then Z∗ is also a solution ofHτ(Z).

In order to state our method for solving (3.10), we consider using a filter mechanism
to accept a new point. Just as [16, pages 19–20], the notation of filter is based on that of
dominance.

Definition 3.5. For any τ > 0 and any Z1, Z2 ∈ Xn × Rm ×Xn, a point Z1 dominates a point Z2

if and only if

hi(Z1) ≤ hi(Z2) ∀ i = 1, 2, 3, 4. (3.11)

Thus, if iterate Z1 dominates iterate Z2, the latter is of no real interest to us since Z1

is at least as good as Z2 for each of the components of h(Z). All we need to do is remember
iterates that are no dominated by other iterates by using a structure called a filter.

Definition 3.6. Let F(k) be a set of 4-tuples of the following form:

(h1(Zk), h2(Zk), h3(Zk), h4(Zk)). (3.12)
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We define F(k) as a filter if h(Zk) and h(Zl) belong to F(k), when k /= l, then

hi(Zk) < hi(Zl) for at least one i ∈ {1, 2, 3, 4}. (3.13)

Definition 3.7. A new point Z+
k
is acceptable for the filter F(k) if and only if

∀h(Zk) ∈ F(k)∃i ∈ {1, 2, 3, 4} : hi

(
Z+

k

) ≤ hi(Zk) − α‖h(Zk)‖, (3.14)

where α ∈ (0, 1/
√
4) is a small constant.

Now, we formally present our trust region algorithm by using filter techniques.

Algorithm 3.8. The Filter-Trust-Region Algorithm
Step 0. Choose an initial point Z0 = (X0, y0, S0) ∈ Xn × Rm × Xn, ε > 0, 0 < α < 1/

√
4

and τ0 = 〈X0, S0〉/2n. The constants η1, η2, η3, μ, γ , γ1, and γ2 are also given and satisfy

0 < η1 ≤ η2 ≤ η3 < 1, 0 < μ < 1, 0 < γ < γ1 < 1 ≤ γ2. (3.15)

Compute Ψτ0(Z0), set Δ0 = 0.5‖∇Ψτ0(Z0)‖, k = 0 and only (μ,−∞, μ, μ) in the filter
F(0).

Step 1. If ∇Ψτk(Zk) < ε, stop.
Step 2. Compute ΔZk by solving the following problem:

min ϕk(ΔZ)

s.t. ‖ΔZ‖ ≤ Δk,
(3.16)

where

ϕk(ΔZ) =
1
2
‖Hτk(Zk) +∇Hτk(Zk)(ΔZ)‖2

= Ψτk(Zk) +Hτk(Zk)T∇Hτk(Zk)(ΔZ)

+
1
2
(ΔZ)T∇Hτk(Zk)T∇Hτk(Zk)(ΔZ).

(3.17)

If ‖ΔZk‖ < ε, stop.
Otherwise, computer the trial point Z+

k
= Zk + ΔZk.

Step 3. Compute Ψτk(Z
+
k
) and define the following ratio:

rk =
Ψτk(Zk) −Ψτk

(
Z+

k

)

ϕk(0) − ϕk(ΔZk)
. (3.18)

Step 4. If rk ≥ η1, set Zk+1 = Z+
k
.

If rk < η1 but Z+
k satisfies (3.14), then add h(Z+

k) to the filter F(k) and remove all points
from F(k) dominated by h(Z+

k). At the same time, set Zk+1 = Z+
k .

Else, set Zk+1 = Zk.
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Step 5. Update τk by choosing

τk+1 ∈
{
γτk if Zk+1 = Z+

k ,

τk else;
(3.19)

and update trust-region radius Δk by choosing

Δk+1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γΔk, if rk < η1,

γ1Δk, if rk ∈ [
η1, η2

]
,

Δk, if rk ∈ (
η2, η3

)
,

γ2Δk, if rk ≥ η3.

(3.20)

Step 6. Set k : = k + 1 and go to Step 1.

Remark 3.9. Algorithm 3.8 can be started any τ > 0. In fact, in order to increase the convergent
speed greatly, we always choose τ0 = 〈X0, S0〉/2n. In addition, in this algorithm, we fix τ at
first, then search Z for Ψτ(Z) = 0 to update Z. At last we update τ and repeat.

The following lemma is a generalized case of Proposition 3.1 in [23].

Lemma 3.10. Algorithm 3.8 is well defined, that is, the inner iteration (Step 2) terminates finitely.

For the purpose of our analysis, in the sequence of points generated by Algorithm 3.8,
we denote A = {k | rk ≥ η1}, B = {k | h(Z+

k
) is added to the filter F(k)}, and C = {k | Zk+1 =

Zk + ΔZk}. It is clear that, C = A⋃B.

Remark 3.11. Lemma 3.3 implies that there exists a constant 0 < M ≤ 1 such that

hi(Zk) ≤ M,
∥∥∥∇2hi(Zk)

∥∥∥ ≤ M,
∥∥∥∇2ϕk(ΔZ)

∥∥∥ ≤ M (3.21)

for all k ∈ C and i ∈ {1, 2, 3, 4}. The second of above inequalities ensures that the constant
0 < M ≤ 1 can also be chosen such that

∥∥∥∇2Ψτk(Zk)
∥∥∥ ≤ M. (3.22)

4. Convergence of Analysis

In this section, we present a proof of global convergence of Algorithm 3.8. First, we make the
following assumptions.

Some lemmas will be presented to be used in the subsequent analysis.

(S1) ϕk(0) − ϕk(ΔZk) ≥ 1/2‖∇Ψτk(Zk)‖min{Δk, ‖∇Ψτk(Zk)‖/‖∇Hτk(Zk)
T∇Hτk(Zk)‖},

where ΔZk is a solution of (3.16).

(S2) The iterations generated by Algorithm 3.8 remain in a close, bounded domain.
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Lemma 4.1 (see [24]). Let assumptions (S1) and (S2) hold. If there exists l0 > 0 such that
‖∇Ψτk(Zk)‖ ≥ l0 > 0 for all k; then there exists l1 > 0 such that Δk ≥ l1.

Lemma 4.2. Let {τk} be the infinite sequence generated by the Algorithm 3.8. Then

lim
k→∞

τk = 0. (4.1)

Proof. Since |C| = |A| = +∞, from Steps 4 and 5 of Algorithm 3.8, τk+1 = γτk and 0 < γ < τ0 < 1.
Therefore, τk+1 = γkτ0. Moreover,

lim
k→∞

τk = lim
k→∞

γkτ0 = 0 (4.2)

for 0 < γ < τ0 < 1, which completes the proof.

Theorem 4.3. Let |C| < +∞, assumptions (S1) and (S2) hold. Then there exists k ∈ C such that

∇Ψτk(Zk) = 0. (4.3)

Proof. Suppose that ∇Ψτk(Zk)/= 0 for all k ∈ C. Then there exists ω0 > 0 such that

‖∇Ψτk(Zk)‖ ≥ ω0 > 0. (4.4)

From Lemma 4.1, there exists ω1 > 0 such that

Δk ≥ ω1 > 0. (4.5)

On the other hand, |C| < +∞, letN be the last successful iteration, then ZN+1 = ZN+2 =
· · · = ZN+j (j ≥ 1) are unsuccessful iterations. From Steps 4 and 5 of Algorithm 3.8, rN+j < η1,
for sufficiently large N, we have

lim
N→∞

ΔN+j = 0, (4.6)

which contradicts (4.5). The proof is completed.

We now consider what happens if the set A is infinite in the course of Algorithm 3.8.

Theorem 4.4. Suppose that |C| = |A| = +∞, assumptions (S1) and (S2) hold. For any τ > 0 and
Z ∈ Xn×Rm×Xn, ifX and S are nonsingular, then each accumulation point of the infinite sequences
generated by Algorithm 3.8 is a stationary point of Ψτ(Z).
Proof. The proof is by contradiction. Suppose that {Zk} is an infinite sequence generated
by Algorithm 3.8, and any accumulation point of {Zk} is not a stationary point of Ψτ(Z).
Suppose furthermore that Z∗ and τ∗ are the accumulation points of {Zk} and {τk},
respectively. Since Z∗ is not a stationary point of Ψτ(Z), then

∇Ψτ∗(Z∗)/= 0 (4.7)
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and there exists ε0 > 0 such that

‖∇Ψτ∗(Z∗)‖ > ε0 > 0. (4.8)

For some ε∗ > 0, let N(Z∗, ε∗) be a neighborhood of Z∗. From (4.8), there exists {Zk}k∈K ∈
N(Z∗, ε∗) such that

‖∇Ψτk(Zk)‖ ≥ ε0 > 0, (4.9)

where K ⊆ A.
For m,m + ν ∈ K, because

Ψτk(Zk) −Ψτk+1(Zk+1) ≥ η1
[
ϕk(0) − ϕk(ΔZk)

]
, (4.10)

we obtain that

Ψτm(Zm) −Ψτm+ν(Zm+ν) =
m+ν∑

i=m∈K
[Ψτi(Zi) −Ψτi+1(Zi+1)]

≥ η1
m+ν∑

i=m∈K

[
ϕk(0) − ϕk(ΔZk)

]

≥ η1
m+ν∑

i=m∈K

1
2
‖∇Ψτk(Zk)‖min

⎧
⎨

⎩Δk,
‖∇Ψτk(Zk)‖∥∥∥∇Hτk(Zk)T∇Hτk(Zk)

∥∥∥

⎫
⎬

⎭

≥ η1
m+ν∑

i=m∈K

1
2
ε0 min

⎧
⎨

⎩Δk,
ε0∥∥∥∇Hτk(Zk)T∇Hτk(Zk)

∥∥∥

⎫
⎬

⎭.

(4.11)

From (4.10), we know thatΨτk(Zk) is monotone decreasing and bounded below, which
implies that Ψτm(Zm) −Ψτm+n(Zm+ν) → 0 for m → ∞, m ∈ K. Thus,

η1
m+ν∑

i=m∈K

1
2
ε0 min

⎧
⎨

⎩Δk,
ε0∥∥∥∇Hτk(Zk)T∇Hτk(Zk)

∥∥∥

⎫
⎬

⎭ −→ 0. (4.12)

As a result, we have

lim
k→∞,k∈K

Δk = 0. (4.13)

By the update rule of Δk, there exists an infinite subsequence K� ⊆ K, and we have that

ri ≤ η1, lim
i→∞

Δi = 0, i ∈ K�. (4.14)

which contradicts k ∈ K ⊆ A. This completes the proof.
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Table 1

n m F-time F-it. F-obj. R-time R-it.
300 20000 30 20 3.2566e − 12 63 27
300 25000 72 23 5.1697e − 13 127 29
400 30000 63 25 0.2212e − 12 118 32
400 40000 152 31 6.2008e − 14 202 46
500 30000 176 35 8.5216e − 16 201 39
500 40000 108 41 9.1535e − 15 198 52
600 20000 321 47 8.9660e − 17 485 58
600 60000 298 38 3.5722e − 16 345 56

In what follows, we investigate the case where the number of iterations added to the
filter F(k) in the course of Algorithm 3.8 is infinite.

Theorem 4.5. Suppose that |C| = |B| = +∞ but |A| < +∞, SDP problems (2.1) and (2.3) have
strictly feasible points. Suppose furthermore that assumptions (S1) and (S2) hold. For any τ > 0 and
Z ∈ Xn × Rm × Xn, if X and S are nonsingular, then

lim
k→∞

‖Hτ(Zk)‖ = lim
k→∞

‖∇Ψτk(Zk)‖ = 0. (4.15)

Proof. First let {τk} be the sequence generated by Algorithm 3.8. From Lemma 4.2, we have

lim
k→∞

τk = 0, (4.16)

which, together with assumption (S2), the desired result follows from [16, Lemma 3.1].

5. Numerical Experiments

In this section, we describe the results of some numerical experiments with the Algorithm 3.8
for the random sparse SDP considered in [13]. All programs are written in Matlab code and
all computations are tested under Matlab 7.1 on Pentium 4.

In addition, in the computations, the following values are assigned to the parameters
in the Algorithm: η1 = 0.1, η2 = 0.5, η3 = 0.8, μ = 0.1, γ = 0.2, γ1 = 0.5, and γ2 = 2. We also use
the stopping criteria is being of ε = 10−8.

In the following Table 1, the first two columns give the size of the matrix C and the
dimension of the variable y. In the middle columns, “F-time” denotes the computing time
(in seconds), “F-it.” denotes the numbers iteration, and “F-obj.” defines the value of Ψτk(Zk)
when our stopping criteria is satisfied. Some numerical results of [13] are shown in the last
two columns.

As shown in Table 1, all test problems have been solved just few iterations compared
with [13]. Furthermore, this algorithm is less sensitive to the size of SDP problems.
Comparatively speaking, our method is attractive and suitable for solving large-scale SDP
problems.
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6. Conclusions

In this paper, we have proposed a filter-trust-region method for SDP problems. Such a
method offers a trade-off between the accuracy of solving the subproblems and the amount of
work for solving them. Furthermore, numerical results show that our algorithm is attractive
for large-scale SDP problems.
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