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This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems
with perturbed or no. Based on RBF neural networks, the radius basis function (RBF) neural
networks is employed to estimate the unknown continuous functions. The proposed control
guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the
effectiveness of the proposed control scheme.

1. Introduction

The study of the time-delay systems has been one of the most active research topics in
recent years [1-15]. The time-delay systems can be divided into four types: systems with
input delay [1-5], systems with state delay [6-9, 16-18], systems with both input and state
delays, and systems with both input and output delays [19]. The effect of time delay on
stability and asymptotic performance has been investigated in [20]. In [21], Lyapunov-
Krasovskii functionals were used with backstepping to obtain a robust controller for a class
of single-input single-output (SISO) nonlinear time-delay systems with known bounds on
the functions of delayed states, but it was commented that results could not be constructively
obtained in [22]. In [23], the problem of the adaptive neural-networks control for a class of
nonlinear state-delay systems with unknown virtual control coefficients is considered. In [24],
An adaptive control scheme combined with radius basis function (RBF) neural networks,
backstepping, and adaptive control is proposed for the output tracking control problem of
a class of MIMO nonlinear system with input delay and disturbances. Neural networks are
employed to estimate the unknown continuous functions; the control scheme ensures that



2 Mathematical Problems in Engineering

the closed-loop system is semiglobally uniformly ultimately bounded (SGUUB). In [11] A
control scheme combined with backstepping, radius basis function (RBF) neural networks,
and adaptive control is proposed for the stabilization of nonlinear system with input and
state delay.

In this paper, we present an adaptive neural controller design procedure for a class
of output time-delay nonlinear systems with perturbed, based on backstepping, adaptive
control, and neural networks. RBF neural network is employed to the unknown continuous
function. A numerical example is provided to show the effectiveness of the control scheme.

2. Problem Formulation and Preliminaries

Consider the nonlinear time-delay system is described as follows:

X =xp +&i(y) + fi(y(t -7)) +wi(t), 1<i<n-1,
Xn = u(t) + u(y) + fa(y(t=7)) +vu(t), (2.1)

y=x,

where x = [xl,xz,...,xn]T € R" is state, u € R is control and y € R is output vectors,
respectively. v;(t) (i = 1,2,...,n) is a time-varying disturbance. f;(y(t - 7)), (i = 1,2,...,n),
gi(y), (i=1,2,...,n) are unknown continuous functions.

Assumption 2.1. The unknown function f;(y) satisfies fiz(y) <k;, wherek; (i=1,2,...,n)isa
known constant.

Assumption 2.2. The time-varying disturbance v;(t) satisfies |v;(t)| < d; < 1,1 < i < n, where
d; (i=1,2,...,n)is a known constant.

Lemma 2.3. x(t) € Qpp, t € [~Timax, T], where Qpr = {x | ||x]| < M}, M is an unknown constant.

3. RBF NN Approximation

In this paper, for a given 6 > 0 and any continuous function H;(7;) defined on Q;, there is a
perfect RBF neural network, which satisfies

Fi(&) = WISi(&i) +6i(8), (3.1)

where [6;(¢;)| < 6W; € R™ is the weight vector of the neural networks, m; is the number of
the NN nodes, §; € Q; is the input vector, S;({;) = [si1, - - -, sim,.]T is defined by

(3.2)

i — Hij T s
sij(Gi) = exp [_ (¢ /‘17)(;2(@1 /4,])] ‘
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According to the discussion in [21, 22], denote the best weight vector as follows:

W =arg min sup|W/S:(¢&) - Hi(&:) (3.3)
WiER™ Q) .

which is unknown and needs to be estimated in control design. Let W,- be the estimate of W,
and define W; = Wi -Wr.

4. Main Result

In this section, we will consider system (2.1).

(I) whenv;(t) =0, i=1,2,...,n,

Let us define error variables z; assistant functions and the virtual control a;,
respectively, as follows:

Z1 = X1,
(4.1)
zi=Xxi—aji—1, 2<i<mn.
Define the following sets:
Q. ={zeR||zl<\), @ =(zeR]|lzl>L) (42)
where \; is a small constant. Define assistant functions as
_ 1
Fi=gi(x) + 2—)&111(35121),
1 Oy g
Fi = gi(x) + =5z ) U;(x1) - — W,
S0+ 55 zZ ]E; o, (4.3)
i-1
a(x~_1 1 6zx~_1 .
_ j;la—;cj<xj+1 + gj(x1) — Ea—;}_z]), 2<i<n.

Define the virtual control as

a; = —kiozi ~ W/Si(&), 1<is<n, (4.4)
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where

by 3 1/,
klO =C + ? + E + 2—)L%<)L2+Tmaxk1>,

b; 1 i-1
kiOZCi+El+2+—2 .)LI~2+1+Tmakaj , 2<i<n-1,
2.)Ll~ j=1

b 1 n-1
kno = cn + ?" +1+ T <Al.2+1 + TmaXij>,
" j=1 (4.5)

& =[x, 3],

T

—_T . T . T
&= [E,T,J?,- , i1, <aé;,_1 ) <aa_i_l > Jpic1] . 2<i<nm,
i-1 Xi-1
% iia“i‘la?v 2<i<n
i-1 = e~ jr >IN
How,

Theorem 4.1. System (2.1) with both input delay and state delay satisfies Assumptions 2.1 and 2.2.
The virtual control can be selected as (4.4). If the control law and the adaptive law are selected as

follows:

u(t) = ay,, (4.6)

Wi = ri<Zi5i(§i) - O'iWi> 1<i<n, (4.7)

then the closed-loop system is semi-globally uniformly ultimately bounded.

Proof. Define the Lyapunov-Kresovskii functional V() as

V.. (t) = %Zf(t), Vi, (1) = %W}r;lWi, (4.8)
i t
W0 =35% | Uy@)do, 49)
j=1 —Th
Vi(t) = Vo, () + Vi, () + Vi, (), 1<i<mn, (4.10)

wn:iww. (4.11)
i=1
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Step 1. For the first differential equation of the the first subsystem, by (4.1), (4.3), we can get

Z1 = %1 =x0+ Q1(x1) + fi(x1(t — 7))

1 (4.12)
=z +m +Fi(61) - 2—)3111(351)21 + g1 (x1(t —n)).
1
By
1,15
zifila(t=m)) < 521+ 5 fi (x(t = 7)) (4.13)
differentiating (4.10) and using (4.12), the inequality below can be obtained easily.
) B | 1
Vi=zizi+ W T Wq + Eul(xl) - Eul(xl(t ~Tp))
=z <22 +a; + F1(§1) - 2)L2 Ul(xl)zl + fl(xl(t - Th))>
. . (4.14)
+ WITI1W1 + Eul(xl) - Eul(xl(t ~Tn))
1,1 2 T =147
< lez+21(Xl+Z1F1(§1)+§Zl+§U1 1—P +W1 1"1 Wi.
1
(1) If z; € Q¢ , then |z;1| > Ay. Thus, substituting (4.4) and (4.7) into (4.14) results in
’ T 1 = T r-1747
Vi< z1zp +21< kioz1 - W, 51(@1)) +z1F1(61) + 5 21 + Ul 1- )L— +WiI7 W1
1
1 by 3 z3
< 5half+ 3zl - (et 343 ) A4 Fi@) - o (macks +13)
- zWlS1(%) + 5 21 —||Z1|| + W<Z151(C1) 01W1>
(4.15)

1 b z2 o
< EZ% - <C1 + %)Z% 2]\12 <Tmaxk1 +A ) + Z1£1(§1) — O'1W1TW1

1 b b —
< Ez% - <01 + %)z% + 121 2b (e 1) <Tmaxk1 +1 ) - o Wiw,
2
< —a-Vum - W] + ZIWiI+ 5 )7 + < 23)
< -kiVi+by, +0y,

where ki = min{2c1,01/Amax(T71), 1}, bo, = (01/2) W2 + (1/2b1)(e1)%. ©1 = (1/2)(22 - A2).
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If there is no item ©1 in (4.15), then
0 < Vi(t) < (V4(0) - 6,)e ™t + 6, (4.16)

where 6, = by1/kq. Thus V; is bounded.
(2) If z; € Q;,, then |z1| < A4, z1 is bounded. By the integral median theorem, we can
obtain

t

% U, (y(o))do = %Thlll (¥(6)), 6¢€(t—mpt). (4.17)
-1

By Assumption 2.1 and (4.9), it can be concluded that Vy;, is bounded.
Differentiating V,,,,

Vo, = Wl (2151(4) - 011

1 — 2 1 1
< - 5 (01— ko)W1 "+ E(olllvv;‘ll2 + k—z%nsl(él)lf) (4.18)
w1
< — ki Vi, + by,
where
ki = 01_—kw1, by = 1(01”1/\/;”2 + ﬂ)&) (4.19)
Amax (ril) 2 kw1

my is the number of neurons of the neural networks. Choose the parameter so that k,, <
01, k1 > 0. Therefore

0 < Vi, () < (Vi (0) = 6, )e Mt + 6, (4.20)

where 6,4, = bi/ki. Thus V,,, (t) is bounded. Because V,,, Vi;,, V4, are all bounded, V; is
bounded when z; € Q.,.
Step i. For the ith (2 < i < n — 1) subsystem, by utilizing (4.1) (4.3), we have

Zi = Xj— &

= xiy + &i(x1) + fi(x1 ((t = 10))) — diq

i-1

= Zi + i+ (1) + filxr(E—Th) = D)
j=1

i—la i1
(o1 + gix1) + filxi (=) = 2, =L
=1 0Wj

oa;_q
6xj

(4.21)
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Differentiating (4.10) along track (4.21), we have

Vi< 2z +a+ FiG) + 27+ 2Zf (aa(t-m1)
22 -l i-1
- —12 Uj(x1) + 5 Z(U (x1) = Uj(x1 (t = 70)))
A A
<z <Zz +ay+ Fi(G1) - 212U1(x1)21>
+f1(X1(t—Th)) +W{FI1W1

+ 3 Ur (1) = U Car(t - ) + WITS W+ 20t (422)

< + + F(§)+122+111 Z%
Z — —
< zizp+zm + zFi(G) + 527+ 5 U )3

+ Wgr;lﬁ\/i + Z,'Ui(t)

1 1
< z1zp + z1a1 + 21 F1(&1) + Ezf + Ezlz
i-1 2 ~ .
+DUj(x1) (1 - A—> + WIT'W,.
j=1 i

(1) If z; € QZ,, then |z > A;. Thus, substituting (4.4) and (4.7) into (4.22) results in

. 1 b;
Vi < zizin + ziFi(i) 5 27 - <Ci + EI + 2)2?

j=1

ZZ i-1 .
212 [Tmaxzk + J\Hl] - ZiWiTSi(gi)
+ W] (2818 - W)

b; 1 & e 1
< ZiZiy1 — (C,’ + 51 + 1>Zi2 — E I:TmaXZk]' + )Ll-2+1] + Z,'S,'(éi) - O'inTWi + Edlz (4'23)
j=1

T i-1 ) o L2
< -zt S of S
1, .\
+2_bi<5i) ) (ZZ+212+1 )‘?+1>
< —kiVi+byi + O;,

where ki = min{zci,oi/mmaX(r;l)),1}, by, = (Gi/2)|WH* + (1/2b) (). ©; = (1/2)(=2% +
)LZ

1+1 i+1
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If there is no item ©; in (4.23), then
0 < Vi(t) < (Vi(0) = 6p)e ™" + 6, (4.24)

where 6, = b,;/k;. Thus V; is bounded.

(2) If z; € Q,, similar to step 1, we have V; is bounded.
Step n. This is the last step for the nth subsystem, similarly to the ith subsystem, if z, € Q2 ,
then |z,| > A,,. Thus we have

n-1 ~
Vo < —cuz? - TrgaXij - %”Wn

- 2 o, . 1 ., 1
+SIWAIP + 5= () - 520
= n (4.25)

< —kyVy+ by, +0O,,

where k,, = min{2¢,, 0/ Amax(T71), 1}, b, = (0, /2)[[WE|* + (1/2b,)(e5)*. ©, = —(1/2)Z2.
By (4.25), it is easy to have

0 < Vi(t) < (Va(0) = 8o)e ™" + 6y, (4.26)

where 6, = by, / k,. Thus V,, is bounded.
(1) If z,, € Q,, similar to step 1, we have V,, is bounded.
The Vi, (1 <i<n)isbounded when z; € Q,,(1<i<n).Inz; € Qf,(1<i<n):

V() < ZV
i=1
< - ik,Vl + ibvi + i@i (4-27)
i=1 i=1 i=1
< —k,V(t) + by,

where k, = min{ky, ky, ..., kn}, by = 31 byi.
Then

0< V() < (V(0) - 6,)e ™ +6,, (4.28)

where 6, = b, /k,. Thus V(t) is bounded. O

(I) When v;(t) #0,i=1,2,...,n.
Let us define error variables z; assistant functions and the virtual control a;,
respectively, as follows:

Z1 = X1,
(4.29)
Zi = Xj— i, ZSISTI
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Define the following sets:

Q.. ={zi e R||zi| < \i}, Q2 ={z; € R||zi| > \i}, (4.30)

where \; is a small constant. Define assistant functions as

1
Fi =g (x)+ —U1(x121),
1=g1(x) 202 1(x121)

Fi = gi(x) + 1zlill(x) iaai_lw iaai_l Xjs1 + gj(x1) 1—atxi_lz 2<i<n
i=8i —Zi i(x1) — — W, - ji+1 i(x1) — = i), <i<n.
;7T Hewy o F oy T 20x

(4.31)
Define the virtual control as
a; = —kiozi - W/'Si(&), 1<i<n, (4.32)
where
by 3 1
klo:C1+?+§+2—)t%</\%+7'maxkl+d%)/
ko=ci+ Deos L (12 Hk d2 2<i<n-1
iO—Ci+§+ +E i+1+Tmax]§i+ i) sitsn- (4.33)

bn 1 n-1
kno=Cn+3+1+ﬁ A+ T Dk +d ),
n

=1

& =[x, x]"

. T . T T
éi = EzT/ k\le i1, < a—l_l > a—l_l s Pi-1 s 2 < i < n,
0Xi_1 O%Xi 1 (4.34)

0 ia"""la?v 2<i<n
i-1 = e~ jr >t>n.
j=1 OW;

Theorem 4.2. System (2.1) with both input delay and state delay satisfies Assumptions 2.1 and 2.2.
The virtual control can be selected as (4.32). If the control law and the adaptive law are selected as
follow:

u(t) = ay, (4.35)
Wi = Ti<2i5i(§i) - GiWi> 1<i<n, (4.36)

then the closed-loop system is semi-globally uniformly ultimately bounded.
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Proof. Define the Lyapunov-Kresovskii functional V (t) as

Vo= 320, Vinlt) = 3 WITT, (437)
1 i t
Vo =3% [ ) (438)
j=1 7 t=7n
Vi) = Vo (8) + Vi (0 + Vin (), 1<i<n, (439)
V) = Vi), (4.40)
i=1

Step 1. For the first differential equation of the first subsystem, by (4.29), (4.31), We can get

z21 = %1 =x2+ g1(x1) + fr(x1(t = 1)) + w1 (t)

1 (4.41)
=z +m + F1(G1) - ﬁul(xl)zl + hy (x1(t = 73)) + wr (8).
1
By
L, 1,
z1f1(x1(t =) < >4t §f1 (x1(t = 1)) (442)
differentiating (4.39) and using (4.41), the inequality below can be obtained easily.
. TN | 1
Vi=zizi + W I Wi+ Eul(xl) - Eul(xl(t ~Th))
1 e
=2z <Zz +o+ Fi(&1) - ﬁul(xl)zl +wi(t) + f1(x (- Th))> + W[T'W,
' (4.43)

+ %Ul(xﬂ - %ul(xl(t =)

1, 1 z TOT 1747
< 2122+21061+21F1(§1)+Ezl+§u1 1—P +W1 1"1 W1 + z1w1 (B).
1
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(1) If z; € QF , then |z1| > A;. Thus, substituting (4.32) and (4.36) into (4.43) results in

2

/ -k -WwT 1,1 _ A T -1747
Vi < z1zo + z1(~kioz1 = Wi S51(81) ) + z1F1(61) + St 2111 1 B +WiT]T Wi+ zvi(t)

2

1 1 b 3 z]
< §||Zl||2 + §||Zz||2 - <C1 + 71 + 2>21 +z1F1(81) -

2)t <Tmaxk1 + )Lz + d2> - lelTsl (gl)

—_

1 — o\ 1
+ ZZ% 5”21”2 + W<lel(§l) — O'1W1> + Ed%

1 b1 Z% —r
< EZ% - <C1 + ?>Z% 2)L2 <Tmaxk1 + A > + Z1£1(§1) - O'1W1TW1
1 by b, 1 1 —
<57 <c1 + 7>z§ + = z7+ 2b (1) + E(mekl +A3+ Ed%) - Wiw,
o177 |17, Ot a2 1,2 1
< —az-Vum - || W+ Z Wi 2_171(51) +5(5-4)
< -kiVi+ bm + 0O,

(4.44)

where k; = min{2¢, 01/()Lmax(l"11)), 1}, by, = (01 /2)||Wi"||2 + (1/2b1)(51‘)2. O = (1/2)(2% —)L%).
If there is no item ©; in (4.44), then

0 < Vi(h) < (Vi(0) = 8p)e ™" + 6y, (4.45)

where 6, = b,1/ky. Thus V; is bounded.
(2) If z; € Q,, then |z1| < Ay, z1 is bounded. By the integral median theorem, we can
obtain

t

% U, (y(o))do = %Thlll (¥(6)), 6¢€(t—mpt). (4.46)
-1

By Assumption 2.1 and (4.38), it can be concluded that Vy;, is bounded.
Differentiating V,,,,

Ve, = W1T<2151(§1) - 01W1>

N

[T+ 3 (Wi I + =S Gl @47)

S _—(0'1 kw,)

IN

- kiVy, + by,
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where

o1 — kw 1
kj=——, b <0'1||W*|| +— )2) (4.48)
Amax (T7)

my is the number of neurons of the neural networks. Choose the parameter so that k;,, <
o1, k1 > 0. Therefore

0 < Vi, (1) < (Vi (0) = 6, )Mt + 64, (4.49)

where 6,,, = bi/ki. Thus V,, (t) is bounded. Because V,,, Vi;,, Vi are all bounded, V; is
bounded when z; € Q.,.
Step i. For the ith (2 < i < n — 1) subsystem, by utilizing (4.29), (4.31), we have

Zi = Xj— &
= X1 + Gi(x1) + fi(x1 ((t = Th))) — i1 + vi(1)

=z + o + gi(xr) + fi(er (t =) +vi(t) - agt, ! (xj1 + gi(x1) + fi(x1(t —m0)))

aal 1 A
_Z Bw]

(4.50)

Differentiating (4.39) along track (4.50),we have

) 1 1<
Vi < zi(ziq1 + o + Fi (i) + EZ? + Ezlj,sz(xl(f ~Th))
]:

22 -1 11 1
- —’2 Uj(x1) + Z(U (x1) = U (1 (t = 70)))
z j=1 ] 1
<z <Zz +a +Fi(&) - %Lh(xl)zl + Vi(f)>
1

+ fi(xa(t =) + WIT]'W,

1 1 — e
+ Eul(xl) - Eul(xl (t—7n)) + WIT'W; + zivi(F)

< z1z +za+zF(§)+1zz+1U —Z%
S zizpt+za +zihilen) + 52+ 5l ¥

+ Wfr;l W,’ + z,-v,-(t)
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1 1
—Z 4oz + d2

< + +z1F + =
z12z2 + z101 + z1F1(G1) > 5 i

i-1 2
+ D Uj(x1) <1 - )T> + WTr-lw

j=1 i
(4.51)

(1) If z; € QZ , then |z;] > A;. Thus, substituting (4.32) and (4.36) into (4.51) results in

. 1 b:
Vi < zizin + ziFi(G) 5 27 - (Ci + El + 2> z

-

22
212 [dz + Tmaxzk + 02| - zWISi(g) + WT <Zi5i(§i) - OiWi>

[ i
. B |
< zizj1 — <C,' + % + 1>Zl2 - % TmaXZk]' + dz + )le+1] + %dlz + Zl'é"i(gi) - O‘iWiTW,' + Ed?
| A
T *
< - ClZ _ maxzk _ 2“W|| |W ” (g ) + = < Z; +Z;2+1 )L?Jrl)
< —kiVi+byi + ei,

(4.52)

where k; = min{2cl-,0'i/)pmax(1“i_1), 1}, by, = (crl~/2)||Wl.*||2 + (1/2bi)(g;‘)2. Q;,=(1/2)(- z + zlJr1
)‘12+1

If there is no item ©; in (4.52), then
0 < Vi(t) < (Vi(0) = 6p)e ™" + 65, (4.53)

where 6, = b,;/k;. Thus V; is bounded.

(2) If z; € Q,, similar to step 1, we have V; is bounded.
Step n. This is the last step for the nth subsystem, similarly to the ith subsystem, If z,, € an,
then |z,| > A,,. Thus we have

. Tm xn_1 Ol |12 o %112 1 *\2 1
Vi < —cnzi - 2a j;lkj—— n +§”Wn” +E(En) -5

2" (4.54)
< —kyVy+ by, +Oy,

where k,, = min{2¢y, 0/ Amax (T71), 1}, by, = (02 /2)IWE* + (1/2b,) (5)*. ©,, = —(1/2) 22.
By (4.54), it is easy to have

0 < Vi(t) < (Vu(0) = 6,)e ™" + 65, (4.55)

where 6, = by, /k,. Thus V,, is bounded. O
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(II) If z, € Q,,, similar to step 1, we have V,, is bounded.
The Vi, (1 <i<n)isbounded. When z; € Q,,(1<i<n).Inz; € QZ,(1<i<n):

V()< DV
i=1
< - ikivi + ibvi + zn:ei (4.56)
i=1 i=1 i=1
< —k,V(t) + by,

where k, = min{ky, kz, ..., kn}, by = 21 boi.
Then

0 < V(t) < (V(0) - 6,)e™" +6,, (4.57)
where 6, = b, /k,. Thus V (t) is bounded.

Simulation Example

Consider the nonlinear system with input and state delays as follows:

X] =2+ O.E’,y2 +sin(2y(t - 0.2)) + wy,
%2 = u(t —0.20) + 0.2y* — sin(2y (t - 0.2)) + wy, (4.58)

Yy =X1.
Define virtual control as

o = —[C1 + ﬁ + § + L<'1'maxkl + )‘% + d%):lzl - W}"‘Sl(él)’

(4.59)
ar=—|cr+—=—+1+ L(Tmaxkl + d%) Zy — WgSZ(éz),
212

2

where Cl1 =C = 30, bl = bz = 2, )L1 = 1\2 = 2, Tmax = 0.6, kl = 2. dl = dz = 0.6, F1 = rz = 600,
o1 = 0o = 0.006, wy = 0.05sin(27rt), wy, = 0.05 cos(2art).

Wy=T, <2151(§1) - 01W1>,
W,=T, <2252(§2) - 02W2>, (4.60)
zZ1 = X1,

Zy = Xp — (1.

The result of control scheme is in Figures 1 and 2.
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Figure 1: The control input u(t).
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Figure 2: System state x1(t) (“=") and x(t) (“ -.-").

5. Conclusion

For a class of outputs time-delay nonlinear systems with perturbed or not, a control scheme
combined with adaptive control, backstepping, and neural network is proposed. The radius
basis function (RBF) neural networks is employed to estimate the unknown continuous
functions. It is shown that the proposed method guarantees the semi-globally uniformly
ultimately boundedness of all signals in the adaptive closed-loop systems. Simulation results
are provided to illustrate the performance of the proposed approach.
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