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The problem of exponential stabilization for nonholonomic mobile robot with dependent
stochastic disturbance of heading angle is considered in this paper. An integrator backstepping
controller based on state-scaling method is designed such that the state of the closed-loop system,
starting from a nonzero initial heading angle, is regulated to the origin with exponential rate in
almost surely sense. For zero initial heading angle, a controller is designed such that the heading
angle is driven away from zero while the position variables are bounded in a neighborhood of
the origin. Combing the above two cases results in a switching controller such that for any initial
condition the configuration of the robot can be regulated to the origin with exponential rate. The
efficiency of the proposed method is demonstrated by a detailed simulation.

1. Introduction

In the past decades, there has been increasing attention devoted to the control of
nonholonomic systems such as knife edge, rolling disk, tricycle-type robot, and car-like robot
with trailers (see, [1, 2] and the references therein). From Brockett’s necessary condition [3],
it is well known that the nonholonomic systems cannot be stabilized to the origin by any
static continuous state feedback, so the classical smooth control theory cannot be applied
directly. This motivates researchers to seek for novel approaches such as discontinuous
feedback and time-varying feedback. The discontinuous feedback uses the state-scaling
technique and switching control strategy [4, 5], which usually results in an exponential
convergence. The time-varying feedback provides smooth controllers, but its convergence
rate usually is slow [6, 7]. All the above references considered the nonholonomic systems
in the deterministic case, while the nonholonomic systems with stochastic disturbance have
rarely been researched up to now.
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The purpose of this paper is to consider the posture (including position and direction)
adjustment of nonholonomic mobile robot with stochastic disturbance dependent of heading
angle. By a state transformation, the mentioned control model can be rewritten as

dx1 = vdt + ϕ1dW1,

dx2 = x3vdt + x3ϕ1dW1,

dx3 = (u − x2v)dt + ϕ2dW2 − x2ϕ1dW1,

(1.1)

where u is the forward velocity, v is the steering velocity, ϕ1 and ϕ2 are two smooth
functions, and W1 and W2 are two independent standard Wiener processes. It seems that the
stabilization can be achieved by extending the backstepping procedure based on state-scaling
technique [5] to the stochastic case.

Our main contribution consists of the following aspects. (i) For nonzero initial value
of x1, by imposing a reasonable assumption on function ϕ1, the state x1 can be easily
exponentially regulated to zero via control v. However, in doing so, v will converge to zero
as t goes to infinity. This phenomenon causes serious trouble in controlling x2-subsystem via
the virtual control x3 because, in the limit (limt→∞v = 0, a.s.), x2-subsystem is uncontrollable.
The variable x3 appears in the drift term x3v and the diffusion term x3ϕ1 of x2-subsystem
simultaneously. This leads to a new problem that the desirable control α and its square term
α2 appear in the same procedure of backstepping control (see, (4.11)), which is distinct from
the traditional stochastic backstepping method as used in [8]. (ii) For a nonzero x1(t0), the
transformation z1 = x2/x1 is used in controller design, therefore, it cannot work for systems
with initial state whose x1(t0) = 0, which motivates us to drive x1 away from zero in a
small distance during a shorter time interval by designing v. (iii) For any initial condition,
a switching control is given by combining the above two cases. Different from the usual
switching schemes depending only on state, our switching controller depends on a stopping
time as well as state. Therefore, the measurement of the stopping time is expected. It is
proved that all signals in the closed-loop system converge to zeros with exponential rate.
The discontinuous switching function is replaced with a continuous one to eliminate the
trembling phenomenon in simulation.

This paper is organized as follows. Section 2 begins with some mathematical
preliminaries. The model of a wheeled mobile robot with stochastic disturbance is presented
in Section 3. Backstepping stabilizer based on state-scaling technique is investigated for the
case of x1(t0)/= 0 in Section 4. In Section 5, for the case of x1(t0) = 0, a controller is designed
such that there exists a time interval in which x1 is driven away from zero and the other
signals are bounded in probability. Section 6 formulates the main stabilization results for any
initial condition. A simulation is given in Section 7. Finally, Section 8 draws the conclusion.

The following notations are used throughout the paper: Ci denotes the set of all
functions with continuous ith partial derivative; for any vector x in R

n, |x| means its
Euclidean norm and xT is its transpose; for any Matrix X in Rm×n, |X| denotes the Frobenius
norm defined by |X| = (Tr{XXT})1/2, where Tr(·) denotes the matrix trace; K denotes the set
of all functions: R+ → R+, which are continuous, strictly increasing and vanish at zero; K∞
denotes the set of all functions which are of class K and unbounded.
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2. Mathematical Preliminaries

Consider the nonlinear stochastic system

dx = f(x, t)dt + g(x, t)dW, x(t0) = x0 ∈ R
n, (2.1)

where x ∈ R
n is the state, f(0, t) = 0, g(0, t) = 0, and W is an r-dimensional independent

standard Wiener process.
The following notion of boundedness on an interval in probability can be seen as a

slight extension from that used in [9].

Definition 2.1. A stochastic process x(t) is said to be bounded on t ∈ [t0, T], where T ≤ ∞, in
probability if the random variable |x(t)| satisfies

lim
R→∞

sup
t∈[t0,T]

P{|x(t)| > R} = 0. (2.2)

For this notion, a corresponding criterion can be easily obtained following the line of
[10].

Lemma 2.2. Consider system (2.1) defined in [t0, T], where T ≤ ∞. Assume that there exist a
function V ∈ C2, class K∞ functions α(|x|) and α(|x|), a positive constant c, and a nonnegative
constant d such that for all x0 ∈ R

n, (i) α(|x|) ≤ V (x) ≤ α(|x|), and (ii) LV (x) = Vx(x)f(x, t) +
(1/2)Tr[gT (x, t)Vxxg(x, t)] ≤ −cV (x) + d, for all t ∈ [t0, T], then system (2.1) has a unique
solution on [t0, T], which is bounded on t ∈ [t0, T] in probability.

To find condition to let state scaling make sense, the following lemma proved by Mao
in [11, pages 51, 120] is recited as follows.

Lemma 2.3. For system (2.1) defined on t ∈ [t0, T], where T ≤ ∞, assume that there exist two
constants K1 and K2 such that

(i) (lipschitz condition) for all x, y ∈ R
n and t ∈ [t0, T]

∣
∣f(x, t) − f

(

y, t
)∣
∣
2 ∨ ∣∣g(x, t) − g

(

y, t
)∣
∣
2 ≤ K1

∣
∣x − y

∣
∣
2; (2.3)

(ii) (Linear growth condition) for all (x, t) ∈ R
n × [t0, T]

∣
∣f(x, t)

∣
∣
2 ∨ ∣∣g(x, t)∣∣2 ≤ K2

(

1 + |x|2
)

, (2.4)

then there exists a unique solution x(t) := x(t0, x0, t) to system (2.1) and for all x0 /= 0 in
R

n,

P(x(t, t0, x0)/= 0) = 1, ∀T ≥ t ≥ t0 (2.5)

(i.e., almost all the sample path of any solution starting from a nonzero state will never
reach the origin).
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The concepts of moment exponential stability and almost surely exponential stability
together with their criteria can be found in [12, page 166], which are presented here for self-
sufficiency.

Definition 2.4. For p > 0, system (2.1) is said to be pth moment exponential stable if

lim sup
t→∞

1
t
logE|x(t, t0, x0)|p < 0 (2.6)

for each x0 ∈ R
n. Moreover, system (2.1) is said to be almost surely exponential stable if

lim sup
t→∞

1
t
log|x(t, t0, x0)| < 0, a.s., ∀x0 ∈ R

n. (2.7)

Lemma 2.5. Assume that there exist a function V ∈ C2 and positive constants c1, c2, c and p such
that (i) c1|x|p ≤ V(x) ≤ c2|x|p, and (ii) LV (x) ≤ −cV (x), for all x0 ∈ R

n and t ≥ t0, then system
(2.1) has a unique solution on [t0,∞), which is pth moment exponential stable. Moreover, if further
assume that (iii) there exists a positive constant K such that

∣
∣f(x, t)

∣
∣ ∨ ∣∣g(x, t)∣∣ ≤ K|x| (2.8)

for all (x, t) ∈ R
n × [t0,∞), then system (2.1) is almost surely exponential stable.

3. Problem Formulation

A nonholonomic mobile robot of tricycle type in the presence of stochastic disturbance can
be described by

dθ = vdt + ϕ1(θ)dW1,

dxc =
(

udt + ϕ2(θ)dW2
)

cos θ,

dyc =
(

udt + ϕ2(θ)dW2
)

sin θ,

(3.1)

where u is the forward velocity, v is the steering velocity, (xc, yc) is the position of the mass
center of the robot moving in the plane, θ is the heading angle from the horizontal axis, W1

and W2 are two independent standard Wiener processes, and ϕ1 and ϕ2 are two unknown
scaler-valued smooth functions. A tricycle-type robot is described by Figure 1.

Performing the change of coordinate

x1 = θ, x2 = xc sin θ − yc cos θ, x3 = xc cos θ + yc sin θ, (3.2)

system (3.1) can be transformed into system (1.1). The control objective is to design a
state-feedback controller such that all the signals in the closed-loop system are globally
exponentially regulated to the origin in probability. For this end, the following assumptions
are imposed throughout this paper.
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Figure 1: A nonholonomic mobile robot.

(A1) There exists a positive constant k such that

∣
∣ϕ1(x1) − ϕ1(x2)

∣
∣ ≤ k|x1 − x2|, ϕ1(0) = 0. (3.3)

(A2) There exist a positive constant l and a smooth nonnegative function φ such that

ϕ2
2(x1) ≤ lx2

1φ(x1). (3.4)

Remark 3.1. System (1.1) is similar to the class of systems in strict-feedback form driven by
Wiener processes, which motivates us to investigate the backstepping controller design that
had been extensively researched by [8, 13]. Assumptions (A1) and (A2) are given to diffusion
terms as same as those imposed to drift terms in [5] in the deterministic case. For nonzero
initial value of x1, by imposing (A1) on function ϕ1, the state x1 can be regulated to zero with
exponential rate but never reach zero (see the subsequent subsection), which is the key to
introduce a state-scaling transformation to deal with other troubles (see Section 1).

4. Controller Design for the Case of x1(t0)/= 0

4.1. Design of Controller v

It can be seen that the state x1 of system (1.1) can be globally exponentially regulated to zero
via a static feedback control law. In fact, we can introduce a Lyapunov function

V0 =
1
4
x4
1 (4.1)
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whose infinite generator along the first equation of (1.1) satisfies

LV0 ≤ x3
1v +

3
2
x4
1k

2. (4.2)

By choosing the control law v as

v = −λx1, (4.3)

where λ ≥ 2k2 is a positive parameter (further requirements for λ will be given later), (4.2)
becomes

LV0 ≤ −λV0. (4.4)

By substituting (4.3) into the first equation of (1.1), one has

dx1 = −λx1dt + ϕ1dW1, (4.5)

which, together with assumption (A1) and Lemma 2.3, means that there exists a unique
solution to (4.5) and that any solution starting from a nonzero state will never reach the origin
in almost surely sense. From assumption (A1), (4.1) and (4.4), according to Lemma 2.3, the
solution exponentially converges to zero, that is, lim supt→∞(1/t) log |x1(t)| < −λ, a.s., which
means that

|x1(t)| < |x1(t0)|e−λ(t−t0), a.s. (4.6)

4.2. State-Scaling Transformation

We have designed controller v such that state x1(t) can be globally exponentially regulated to
zero. Consequently, v will converge to zero as t goes to ∞. This causes trouble in the control
of x2-subsystem and x3-subsystem. To overcome this difficulty, we introduce a state-scaling
transformation defined by

z1 =
x2

x1
. (4.7)

According to the comment in the end of Section 1, the transformation (4.7) makes sense in
almost surely sense, for the initial value x1(t0)/= 0. From (1.1), (4.3), and (4.7), we have

dz1 =

[

λz1 − λx3 −
(
ϕ1

x1

)2

x3 +
(
ϕ1

x1

)2

z1

]

dt +
[(

ϕ1

x1

)

x3 −
(
ϕ1

x1

)

z1

]

dW1. (4.8)

4.3. Backstepping Controller Design of u

In this part, controller u will be constructed, based on backstepping techniques, under the
assumption x1(t0)/= 0.
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Step 1. Beginwith z1-subsystem of (4.8), where x3 is regarded as a virtual control. Introducing
the transformation

z2 = x3 − α (4.9)

and choosing Lyapunov function

V1 = V0 +
1
4
z41, (4.10)

it comes from (4.8)–(4.10) that

LV1 = z31

[

λz1 − λ(z2 + α) −
(
ϕ1

x1

)2

(z2 + α) +
(
ϕ1

x1

)2

z1

]

+ 3z21

(
ϕ1

x1

)2

(z2 + α)2 + 3z41

(
ϕ1

x1

)2

+LV0.
(4.11)

Here, the terms α and α2 appear in the same time, which is different from the traditional
backstepping procedure. Considering assumption (A1) and the characters of terms of (4.11),
the virtual control is chosen as

α = c1z1, (4.12)

where c1 > 0 is a design parameter. By the aid of (4.4), (4.12), and (ϕ1/x1)
2 ≤ k2 (that comes

from assumption (A1)), (4.11) can be rewritten as

LV1 ≤ λz41 − λz31z2 − c1λz
4
1 + k2

∣
∣
∣z31

∣
∣
∣|z2|c1k2z41

+ k2z41 + 6k2z21z
2
2 + 6c21k

2z41 + 3k2z41 − λ
x4
1

4
.

(4.13)

Submitting the inequalities

−λz31z2 ≤
3d
4
λz41 +

1
4d3

λz42, k2z31|z2| ≤
3
4
k2z41 +

1
4
k2z42,

6k2z21z
2
2 ≤ 3k2z41 + 3k2z42,

(4.14)

where d > 0 is a design parameter, into (4.13) gives

LV1 ≤
((

1 +
3d
4

)

λ − c1λ +
(
31
4

+ c1 + 6c21

)

k2
)

z41 +

(

λ

4d3
+
k2

4
+ 3k2

)

z2
4 − λ

4
x4
1.

(4.15)
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By selecting parameters λ and c1 such that c1 ≥ (4+ 3d)/4e, λ ≥ (31+ 4c1 + 24c21)k
2/2c1(1− e),

where e is a design parameter satisfying 0 < e < 1, it comes from (4.15) that

LV1 ≤ −c1λ(1 − e)
2

z41 +

(

λ

4d3
+
13k2

4

)

z2
4 − λ

4
x4
1. (4.16)

Step 2. In view of (1.1) and (4.9), we have

dz2 =

[

u − x2v − c1λz1 + c1λx3 + c1

(
ϕ1

x1

)2

x3 − c1

(
ϕ1

x1

)2

z1

]

dt

+ ϕ2dW2 +
[

−x2ϕ1 − c1

(
ϕ1

x1

)

x3 + c1

(
ϕ1

x1

)

z1

]

dW1.

(4.17)

Consider the candidate Lyapunov function

V2 = V1 +
1
4
z42 (4.18)

whose infinite generator along (4.17) satisfies

LV2≤ z32

[

u − x2v − c1λz1 + c1λx3 + c1

(
ϕ1

x1

)2

x3 − c1

(
ϕ1

x1

)2

z1

]

+
3
2
z22ϕ2

2

+
9
2
z22
(

x2ϕ1
)2 +

9
2
z22(c1)

2
(
ϕ1

x1

)2

x2
3 +

9
2
z22(c1)

2
(
ϕ1

x1

)2

z21 +LV1.

(4.19)

By using Young’s equality and (A1), (A2), (4.7), and (4.9), it is easy to obtain that

3
2
z22ϕ

2
2 ≤

3
4
l2z42φ

2(x1) +
3
4
l2x4

1,

9
2
z22
(

x2ϕ1
)2 ≤ 9

4
k2z42x

8
1 +

9
4
k2z41,

9
2
z22(c1)

2
(
ϕ1

x1

)2

x2
3 ≤ 9c21k

2z42 +
9
2
c41k

2z42 +
9
2
c41k

2z41,

9
2
z22(c1)

2
(
ϕ1

x1

)2

z21 ≤
9
4
c21k

2z42 +
9
4
c21k

2z41,

(4.20)
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which are submitted into (4.19) to give

LV2 ≤ z32

[

u − x2v − c1λz1 + c1λx3 + c1

(
ϕ1

x1

)2

x3 − c1

(
ϕ1

x1

)2

z1 +
3
4
l2φ2(x1)z2

+
9
4
k2x8

1z2 + 9c21k
2z2 +

9
2
c41k

2z2 +
9
4
c21k

2z2 +
1

4d3
λz2 +

1
4
k2z2 + 3k2z2

]

+
3
4
l2x4

1 +
(
9
4
k2 +

9
2
c41k

2 +
9
4
c21k

2 − 1
2
c1λ(1 − e)

)

z41 −
λ

4
x4
1.

(4.21)

By giving a further requirement to the parameter λ ≥ max{(9k2+18c41k
2+9c21k

2)/c1(1−e), 6l2}
and choosing the control

u = u1 + u2, (4.22)

we have

LV2 ≤ −λ
8
x4
1 −

1
4
c1λ(1 − e)z41 − c2z

4
2 ≤ −cV2, (4.23)

where c = min{λ/2, c1λ(1 − e), 4c2} and

u1 = −c2z2 + x2v − c1λx3 − 3
4
l2φ2(x1)z2

− 9
4
k2x8

1z2 − 9c21k
2z2 − 9

4
c41k

2z2 − 1
d3

4λz2 − 3k2z2,

u2 = c1λz1 − c1

(
ϕ1

x1

)2

x3 + c1

(
ϕ1

x1

)2

z1 − 9
4
c21k

2z2 − 1
4
k2z2.

(4.24)

Summing up all the requirements to λ leads to

λ ≥ max

{

2k2,
31k2 + 4c1k2 + 24c21k

2

2c1(1 − e)
,
9k2 + 18c41k

2 + 9c21k
2

c1(1 − e)
, 6l2
}

. (4.25)

Remark 4.1. It is noteworthy that the terms in control u is separated into two groups. The
terms caused by the state scaling are put in u2, in other words, if the transformation z1 =
x2/x1 is replaced with nonscaling one z1 = x2, the terms in u1 will still remain in u. This will
be used in the subsequent section.

4.4. Stability Analysis

It is position to give stability conclusion for the case of x1(t0)/= 0.
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Theorem 4.2. Under assumptions (A1) and (A2), for every x1(t0)/= 0 and any x2(t0), x3(t0), with
an appropriate choice of the design parameters λ and c1, the closed-loop system consists of (3.1), (3.2),
(4.3), and (4.22) has a unique solution which is 4th moment exponential stable.

Proof. The existence and uniqueness of solution comes from (4.18) and (4.23), according to
Lemma 2.5. It can also be further concluded that

lim sup
t→∞

1
t
logE|zi|4 < 0 (i = 1, 2) (4.26)

for each x0 ∈ R
n. From (4.6), (4.7), and (4.26), we have

lim sup
t→∞

1
t
logE|x2|4 ≤ lim sup

t→∞

1
t

(

log|x1(t)| − 4λ(t − t0)
)

+ lim sup
t→∞

1
t
logE|z1|4 < 0. (4.27)

From (4.6), (4.9), (4.12), and (4.26), we have

lim sup
t→∞

1
t
logE|x3|4 = lim sup

t→∞

1
t
logE|z2 + c1z1|4 < 0. (4.28)

Combining (4.6), (4.27), and (4.28) gives

lim sup
t→∞

1
t
logE|(x1, x2, x3)|4 < 0, (4.29)

which completes the proof.

5. Controller Design to Drive x1 Away from Zero

Considering the transformation z1 = x2/x1, the control u given by (4.22)will escape to infinite
for an initial state with element x1(t0) = 0. The first thing before the controller (4.22) does
work is to drive the state x1(t) away from zero in a small distance denoted by r. For a given
r > 0, define a stopping time τr = inf{t : t ≥ t0, |x1(t)| ≥ r}. To let the state x1 leave zero, the
control v can be chosen as

v = −λ (5.1)

during [t0, τr], where λ is the same design parameter used in (4.25) (some explanation will
be given latter). In this case, the x1-subsystem becomes

dx1(t) = −λdt + ϕ1dW1. (5.2)

By defining τr = inf{t : t ≥ t0, x1(t) ≤ −r}, the expectation of τr satisfies E(τr−t0) ≤ E(τr−t0) =
r/λ, therefore, P(τr − t0 ≥ T) ≤ r/λT , which implies that

P(τr = ∞) = 0, ∀r > 0. (5.3)
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The existence and uniqueness of solution of x1-subsystem in [t0, τr] comes from assumption
(A1) and Lemma 2.3. Since during the interval [t0, τr], the controller (4.22) cannot be used. A
new scheme for u is expected to bound the states x2 and x3 in a neighborhood of the origin in
this interval when x1 is being driven away from the origin. Substituting v = −λ into the last
two equations of (1.1) gives

dx2 = −λx3dt + x3ϕ1dW1,

dx3 = (u + λx2)dt + ϕ2dW2 − x2ϕ1dW1.
(5.4)

Since (5.4) is a standard strict-feedback form, viewing x1 as an external bounded input,
backstepping controller can be designed to make the states x2 and x3 to be bounded in
probability in [t0, τr].

Introduce the transformation

z1 = x2, z2 = x3 − α, (5.5)

which implies that

dz1 = −λx3dt + ϕ1x3dW1,

dz2 = (u − x2v + c1λx3)dt + ϕ2dW2 +
(−x2ϕ1 − c1ϕ1x3

)

dW1,
(5.6)

where α = c1z1 is used as in (4.12) with a design parameter c1 > 0. A careful observation
indicates that all the terms in (5.6) have the corresponding terms in (4.8) and (4.17), that is, if
ϕ1/x1 in the latter is replaced with ϕ1, then we can obtain the terms in the former.

In [t0, τr], we have |x1| ≤ r. To design controller u to guarantee the boundedness of x2

and x3, a candidate Lyapunov function is given as follows:

V =
1
4
z41 +

1
4
z42. (5.7)

Just for simplicity, we will design the controller as consistent as possible with state-
scaling case in the proceeding section. By selecting r ≤ 1, according to assumption (A1),
we can see that in the nonscaling case, we have ϕ2

1 ≤ k2r2 ≤ k2, which is corresponding to
(ϕ1/x1)

2 ≤ k2 used in state-scaling case (4.13). Comparing (5.5)–(5.7)with the corresponding
equalities in the proceeding section, it can be found that, in the nonscaling case, some terms
used in (4.22) (that are included in u2) disappear and the others (that are contained in u1)
have the same forms with the same or milder requirements to the parameters c1 and λ.
Therefore, by choosing

u = u1, (5.8)

we have
LV ≤ 3

4
l2x4

1 −
1
4
c1λ(1 − e)z41 − c2z2

4 ≤ −cV + dc, (5.9)

where dc = (3/4)l2r4 and c = min{c1λ(1 − e), 4c2}, which implies that

EV (z(t)) ≤ e−c(t−t0)EV (z(t0)) − dc

c
e−c(t−t0) +

dc

c
, t ∈ [t0, τr]. (5.10)

The stability analysis before τr can be included in the following result.
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Theorem 5.1. Under assumptions (A1) and (A2), for every x1(t0) = 0 and any x2(t0), x3(t0), for any
0 < r ≤ 1, with an appropriate choice of the design parameters λ and c1, the closed-loop system consists
of (3.1), (3.2), (5.1), and (5.8) has a unique solution, and all the signals are bounded in probability in
the interval [t0, τr].

Proof. According to Lemma 2.2, the existence and uniqueness of z1 and z2 in [t0, τr] come
from (5.7) and (5.9). Noting the existence and uniqueness of x1, (4.7), (4.9), and (4.12), the
existence and uniqueness of x2 and x3 can be concluded on [t0, τr]. Following the same line,
the boundedness of xi (i = 1, 2, 3) on t ∈ [t0, τr] can be obtained, which complete the proof.

6. Design of Switching Controller

Since |x1(τr)| = r > 0, at the stochastic moment t = τr , we switch the control laws v and u from
(5.1) and (5.8) to (4.3) and (4.22), respectively. According to Theorem 4.2, the solution of the
closed-loop system converges to the origin with exponential rate on [τr ,∞) for any r > 0. A
switching control scheme on [t0,∞) can be given as

v = −λ(1 + (x1 − 1)s), u = u1 + u2s,

z1 =
x2

1 + (x1 − 1)s
, z2 = x3 − α, α = c1z1,

(6.1)

where the switching signal is defined by

s(t) =

⎧

⎨

⎩

0, t ∈ [0, τr),

1, t ∈ [τr ,∞).
(6.2)

By summing up the above arguments, the main result in this paper can be presented
now.

Theorem 6.1. Under assumptions (A1) and (A2), for x1(t0) = 0 and any x2(t0), x3(t0), with an
appropriate choice of the design parameters λ, c1 and r, the closed-loop system consists of (3.1), (3.2),
and (6.1) has a unique solution on [t0,∞), which is 4th moment exponential stable.

Proof. For any 0 < r ≤ 1, the existence of a.s. finite stopping time τr can be concluded from
(5.3). The existence and uniqueness of solution of the closed-loop system can be proved by
Theorem 5.1 on [t0, τr] and by Theorem 4.2 on [τr ,∞), respectively. In the interval [t0, τr],
there holds |x1| ≤ r, and from (5.10), we have EV (z41(t) + z42(t)) ≤ d, for all t ∈ [t0, τr], where

d = E((1/4)(z41(t0) + z42(t0)) + (dc/c), which implies that there exists a constant d such that

EV
(

x4
1(t) + x4

2(t) + x4
3(t)
)

≤ d, ∀t ∈ [t0, τr]. (6.3)

In the interval [τr ,∞), similar to (4.29), we have

lim sup
t→∞

1
t
logE|(x1, x2, x3)|4 < 0. (6.4)

Combining (6.3) and (6.4) completes the proof.
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control system

to get
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Figure 2: The Logic operation of switching.

A new question about the performing of switching signal comes forth. One scheme is
presented as follows in a discrete-time form. Suppose that the running time interval is [0, T]
and every step equals to Δ 	 T . Initial step: begin with t = 0, τ1 = T , and τ2 = 0. Recursive
steps: perform the following procedures in turn unless otherwise stated. (a) Write down the
value of x = x(t) and let t = t + Δ. (b) If t > T , then turn to (g), otherwise, perform the
following calculation. (c) If t ≤ τ1, then we have tm = t, otherwise, we have tm = τ1; we have
s = 0, τ1 = τ1 and restore τ2 = t, otherwise, we have s = 1, τ2 = τ2 and τ1 = tm. (e) Submitting
s into control (6.1) and resolve the response x(t) of closed-loop system. (f) Turn to (a). (g)
Output the observed value τr = τ2. (h) End the procedure. The procedure is described in
Figure 2.

It should be pointed out that the switching strategy will lead to trembling
phenomenon. In practice, to eliminate the trembling, the switching signal given by (6.2) can
be replaced by a continuous one which depends on the measurement of τr . The above logic
method will be used in the forthcoming simulation.
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Figure 3: The responses of closed-loop system with nonzero initial heading angle.

7. Simulation

Consider system (3.1) with ϕ1 = kθ and ϕ2 = lθ2. By letting φ(θ) = θ, the assumptions (A1)
and (A2) can be easily verified. As pointed out by [14, page 63], system (3.1) is an idealization
of the following system:

θ̇ = v + ϕ1(θ)N1,

ẋc =
(

u + ϕ2(θ)N2
)

cos θ,

ẏc =
(

u + ϕ2(θ)N2
)

sin θ

(7.1)

with white noisesN1 andN2, which is formally obtained by replacing “dWi(t)/dt” byNi(t).
To give approximate simulation using ordinary differential equation algorithm, system (3.1)
is replaced by (7.1), where the power of each Ni equals to 1.

The following two cases are to be analyzed: (1) θ(0) = −1.5, xc(0) = 0.8, yc(0) = −1, k =
0.1 and l = 1; (2) θ(0) = 0, xc(0) = 0.8, yc(0) = −1, k = 0.1 and l = 1. For the first case, the
state-feedback control law is given by (6.1) (not (4.3) and (4.22))with the design parameters
d = 0.8, e = 0.7, c1 = (1/e)(1 + (3/4)d), c2 = 3, r = 1, and λ satisfying the equality of (4.25).
Figure 3 demonstrates that the state of the closed-loop system can be regulated to the origin
with exponential rate (in almost surely sense) without switching. For the second case, the
same control (6.1)with the same design parameters as in the first case is given. From Figure 4,
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Figure 4: Responses of closed-loop system with zero initial heading angle by using switching (6.2).

we can see that switching happens at the moment τr ≈ 0.1258. The state of the closed-loop
system can be driven to the origin with exponential rate after moment τr (in almost surely
sense). To eliminate the trembling phenomenon, the switching signal s given by (6.2) can be
replaced by a continuous one. Figure 5 describes the responses of the closed-loop system of
Case 2 with the following s(t):

s(t) =

⎧

⎪
⎨

⎪
⎩

0, t ∈ [0, τr),

2
π

arctan(600(t − τr)), t ∈ [τr ,∞).
(7.2)

Comparison of Figure 4 with Figure 5 indicates that control magnitude in the latter is milder
than that in the former.

8. Conclusions

A global exponential stabilization controller has been designed for nonholonomic mobile
robot with stochastic disturbance by using the integrator backstepping procedure based on
the state-scaling technique. There are several interesting problems of the controller design
for the same stochastic nonholonomic mobile robot, for example, the tracking control and
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Figure 5: Responses of closed-loop system with zero initial heading angle by using switching (7.2).

the adaptive control, and the further extensions to more general chained-form nonholonomic
systems with stochastic disturbance. These directions are all under the current research.
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