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We consider the problem of identification of the unknown source in a heat equation. The problem
is ill posed in the sense that the solution (if it exists) does not depend continuously on the data.
Meyer wavelets have the property that their Fourier transform has compact support. Therefore,
by expanding the data and the solution in the basis of the Meyer wavelets, high-frequency
components can be filtered away. Under the additional assumptions concerning the smoothness of
the solution, we discuss the stability and convergence of a wavelet-Galerkin method for the source
identification problem. Numerical examples are presented to verify the efficiency and accuracy of
the method.

1. Introduction

Inverse source identification problems are important in many branches of engineering
sciences; for example, an accurate estimation of pollutant source is crucial to environmental
safeguard in cities with high population. This inverse problem has been investigated in some
theoretical papers concerned with the conditional stability and the data compatibility of the
solution, notably in [1–6]. The optimal error bound has been given in [7]. Several numerical
methods [8–13] have been proposed for the inverse source identification problem. In the
present paper, based on some ideas [14–16], we propose a wavelet-Galerkin method to solve
the inverse source problem.

We consider the following initial value problem for the nonhomogeneous heat equa-
tion:

ut − uxx = f(x), x ∈ R, 0 < t,

u(x, 0) = 0, x ∈ R,
(1.1)

where u(·, t) ∈ L2(R) represents state variable and f(x) denotes the source (sink) term.
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The problem (1.1) is a classical direct problem which has been extensively studied
in the past decades. Unfortunately, in many practical situations, the characteristics of the
source (sink) term are always unknown. Therefore, the problem is mathematically under-
determined, and an additional data must be supplied to fully determine the physical process.
Our task is to determine the heat source on the usual initial conditions with the assistance
of additionally supplied data. This is inversely determined and it is usually ill posed in the
sense that small perturbation in the data may result, enormous deviation in the solution.

In this paper we consider the inverse problem of determining the function f(x) in (1.1)
from the overspecified condition:

u(x, 1) = g(x), x ∈ R. (1.2)

This means that our purpose is to determine the pair of functions {u(x, t), f(x)} from the
following problem:

ut − uxx = f(x), x ∈ R, 0 < t,

u(x, 0) = 0, x ∈ R,

u(x, 1) = g(x), x ∈ R.

(1.3)

As shown in [17, 18], this problem has a unique solution, but the solution is very sensitive
to small data perturbations; hence, it is ill posed. Since g can only be measured in practice,
there would be measurement errors and we actually have the noisy data function gm ∈ L2(R)
which satisfies

∥
∥gm(·) − g(·)

∥
∥ =
∥
∥gm(·) − u(·, 1)

∥
∥ ≤ δ, (1.4)

where ‖ · ‖ denotes the L2(R)-norm, and the constant δ > 0 represents the noise level. The ill
posedness of problem (1.3) can be seen by solving it in the frequency domain. Let

v̂(ξ) = (Fv)(ξ) := 1√
2π

∫∞

−∞
e−iξxv(x)dx, ξ ∈ R (1.5)

denote the Fourier transform of the function v(x). The problem (1.3) can now be formulated
in frequency space as follows:

ût(ξ, t) + ξ2û(ξ, t) = f̂(ξ), ξ ∈ R, 0 < t,

û(ξ, 0) = 0, ξ ∈ R,

û(ξ, 1) = ĝ(ξ), ξ ∈ R.

(1.6)

It is easy to know that the function f̂(ξ) in (1.6) can be given by

f̂(ξ) =
ξ2

1 − e−ξ2 ĝ(ξ). (1.7)
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On account of ξ2/(1 − e−ξ2) ∼ O(ξ2) as |ξ| → ∞ and f ∈ L2(R), the existence of a solution
depends on a rapid decay of ĝ(ξ) at high frequencies. However, for the measurement data
function gm is merely in L2(R) and in general does not possess such a decay property, high
frequency components in the error are magnified and can destroy the solution. Therefore
it is impossible to solve the problem using classical numerical methods and some special
techniques are required to be employed.

Since the convergence rates can only be given under a priori assumptions on the exact
solution [19], we will formulate such an a priori assumption in terms of the exact solution
f(x) by considering

∥
∥f
∥
∥
p ≤ E, p > 0, (1.8)

where ‖ · ‖p denotes the norm in the Sobolev spaceHp(R) defined by

∥
∥f
∥
∥
p =
(∫∞

−∞

(

1 + ξ2
)p∣
∣
∣f̂(ξ)

∣
∣
∣

2
dξ

)1/2

. (1.9)

Meyer’s wavelets are special because, unlike most other wavelets, they have compact
support in the frequency domain but not in the time domain (however, they decay very fast).
The wavelet-Galerkin method for approximation solutions of the sideways heat equation has
been used in [15, 16], and so forth. It was demonstrated there that using this method the
sideways heat equation can be solved efficiently and in a numerically stable way.

The purpose of this paper is to demonstrate that, using a wavelet-Galerkin approach,
we can solve problem (1.3) efficiently. By using the method, we give an error estimate be-
tween the exact solution and its approximation, as well as the rule for choosing an appropriate
wavelet subspace, depending on the noise level of data.

The outline of the paper is as follows. First in Section 2 we describe Meyer’s wavelets
and discuss the properties that make them useful for solving ill-posed problems. Then, in
Section 3, we describe the wavelet-Galerkin method and give an error estimate which shows
the continuous dependence of approximated solution on the data.

2. The Meyer Wavelets

Let ϕ(x), ψ(x) be Meyer’s scaling and wavelet function defined by their Fourier transform in
[20] which satisfy

supp ϕ̂ =
[

−4
3
π,

4
3
π

]

,

supp ψ̂ =
[

−8
3
π,−2

3
π

]

∪
[
2
3
π,

8
3
π

]

.

(2.1)

The function family

ψjk(x) = 2j/2ψ
(

2jx − k
)

, j, k ∈ Z (2.2)
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constitute an orthonormal basis of L2(R) and

supp ψ̂jk =
[

−8
3
π2j ,−2

3
π2j
]

∪
[
2
3
π2j ,

8
3
π2j
]

. (2.3)

The multiresolution analysis (MRA) {Vj} of the Meyer wavelet is generated by

Vj =
{

ϕjk, k ∈ Z
}

, ϕjk := 2j/2ϕ
(

2jx − k
)

, j, k ∈ Z, (2.4)

supp
(

ϕ̂jk
)

=
{

ξ; |ξ| ≤ 4
3
π2j
}

. (2.5)

The functions {ψjk}k∈Z
constitute the orthonormal complement Wj of Vj in Vj+1; that is,

Vj+1 = Vj ⊕ Wj . Let Pj and Qj denote the orthogonal projections of L2(R) onto Vj and Wj ,
respectively. Then the orthogonal projections of any function g ∈ L2(R) on space Vj and Wj

can be expressed by

Pjg :=
∑

k∈Z

(

f, ϕjk
)

ϕjk, Qjg :=
∑

k∈Z

(

f, ψjk
)

ψjk, (2.6)

respectively.
It is easy to see from (2.3) and (2.5) that

P̂Jg(ξ) = 0 for |ξ| ≥ 4
3
π2J , (2.7)

Q̂jg(ξ) = 0 for j > J, |ξ| < 4
3
π2J . (2.8)

From (2.7) we see that the projection PJ can be considered as a low-pass filter:
frequencies higher than 4π2J/3 will be filtered away.

3. A Galerkin Method in VJ

We now introduce the Galerkin method for approximation of the solutions of problem (1.3)
based on the separation of variables and using wavelets approximation in the space variable.

Consider the weak formulation of the differential equation with test functions from
VJ :

(

ut − uxx, ϕJk
)

=
(

f, ϕJk
)

,

(

u(·, 0), ϕJk
)

= 0,

(

u(·, 1), ϕJk
)

=
(

g, ϕJk
)

,

(3.1)
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for all k ∈ Z. The problem (3.1) can be rewritten in the equivalent form: find {uJ , fJ} ∈ VJ
such that

(

uJ
)

t − PJ
(

uJ
)

xx = fJ ,

uJ(·, 0) = 0,

uJ(·, 1) = PJg.
(3.2)

Then with the Ansatz

uJ(x, t) =
∑

ν∈Z

c(ν)(t)ϕJν(x), fJ(x) =
∑

ν∈Z

μ(ν)ϕJν(x), (3.3)

we get the infinite-dimensional system of ordinary differential equations for the vector of
coefficients c and μ,

ct −DJc = μ, 0 ≤ t ≤ 1,

c(0) = 0, c(1) = γ,
(3.4)

where γ = {(g, ϕJν)}ν∈Z
; that is,

PJg =
∑

ν∈Z

γ (ν)ϕJν, (3.5)

and the matrix DJ is given by

(

DJ

)

kν =
(

ϕ′′
Jν, ϕJk

)

. (3.6)

ThematrixDJ is the second-order differentiation operator in VJ , and the following boundness
guarantees the well-posedness of the Galerkin equation (3.1).

Proposition 3.1. The infinite matrix DJ is symmetric and has Toeplitz structure. Its norm satisfies

∥
∥DJ

∥
∥ ≤ 2

(

π2J
)2
. (3.7)

Moreover, if r is a continuous function, then

∥
∥r
(

DJ

)∥
∥ ≤ max

|λ|≤2(π2J )2
|r(λ)|. (3.8)

The proof is similar to [15] and is given in the appendix.
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Let us denote

IJ :=
[

−4
3
π2J ,−2

3
π2J
]

∪
[
2
3
π2J ,

4
3
π2J
]

,

I∗J :=
(

−∞,−4
3
π2J
]

∪
[
4
3
π2J ,∞

)

.

(3.9)

We are interested in the norm estimation of the distance between the Galerkin solution
fδJ of problem (3.1) for the noisy data gm and the unknown solution f of problem (1.3) for
the exact data g. Let PJf denote the projection of f on the space VJ ; by the triangle inequality
we know

∥
∥
∥f − fδJ

∥
∥
∥ ≤ ∥∥(I − PJ

)

f
∥
∥ +
∥
∥PJf − fJ

∥
∥ +
∥
∥
∥fJ − fδJ

∥
∥
∥, (3.10)

where the first term of the right-hand side of (3.10) describes the approximation of the exact
solution in the scaling subspaces VJ , the second one represents the norm of the “error”
function

w = PJf − fJ , (3.11)

and the last one corresponds to the stability of the Galerkin method. Now we consider the
three terms,respectively.

First, let us consider the problem of stability of the Galerkin solution with respect to
perturbations of the data function g.

Theorem 3.2. Let gm be the measured data which satisfies (1.4). Let fJ and fδJ be the solution of the
Galerkin problem (3.2) with data g and gm, respectively. Then

∥
∥
∥fJ − fδJ

∥
∥
∥ ≤
(

2
(

π2J
)2

+ 1
)

δ. (3.12)

Proof. Let fJ and fδJ be given by

fJ(x) =
∑

ν∈Z

μ(ν)ϕJv(x), fδJ (x) =
∑

ν∈Z

μ
(ν)
m ϕJν(x), (3.13)

where μ and μm are the solution of the Galerkin equations (3.4) with data γ and γm (with the
obvious definition of γ). Then, by the Parseval formula,

∥
∥
∥fJ − fδJ

∥
∥
∥ =
∥
∥μ − μm

∥
∥ =
∥
∥
∥
∥

DJ

eDJ − 1

(

γ − γm
)
∥
∥
∥
∥

≤
∥
∥
∥
∥

DJ

eDJ − 1

∥
∥
∥
∥

∥
∥γ − γm

∥
∥ ≤
∥
∥
∥
∥

DJ

eDJ − 1

∥
∥
∥
∥

∥
∥g − gm

∥
∥.

(3.14)
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Due to Proposition 3.1, we have

∥
∥
∥
∥

DJ

eDJ − 1

∥
∥
∥
∥
≤ max

|λ|≤2(π2J)2

∣
∣
∣
∣

λ

eλ − 1

∣
∣
∣
∣

=
2
(

π2J
)2

1 − e−2(π2J )2
≤ 2
(

π2J
)2

+ 1.

(3.15)

Combining it with (1.4), we get (3.12).

Before investigating the relation between the exact solution and the corresponding
Galerkin solution with the exact data g, we list two useful lemma and corollary whose proofs
are similar to Lemma 3.3 in [16] and will be given in the appendix.

Lemma 3.3. If the exact solution f(x) satisfies a priori condition (1.8) for p > 0, then there holds

∥
∥QJf(x)

∥
∥
IJ
≤
(

21−J

π

)1/2

E

(
2
3
π2J
)−p

. (3.16)

Corollary 3.4. Suppose condition of Lemma 3.3 holds, u(x, t) is the exact temperature distribution of
problem (1.1) and (1.2), then there holds

∥
∥PJ
((

I − PJ
)

uxx
)∥
∥ ≤
(

21−J

π

)1/2

E

(
2
3
π2J
)−p

. (3.17)

Theorem 3.5. If (1.8) is satisfied for a certain p > 0, then

∥
∥
(

I − PJ
)

f
∥
∥ ≤
⎛

⎝

(

21−J

π

)1/2

+ 2−p
⎞

⎠E

(
2
3
π2J
)−p

. (3.18)

Proof. Due to (2.7) and (2.8), we know

∥
∥
((

I − PJ
)

f
)

(̂ξ)
∥
∥ =
∥
∥
∥Q̂Jf(ξ)

∥
∥
∥
IJ
+
∥
∥
∥f̂(ξ)

∥
∥
∥
I∗J
. (3.19)

Taking into account the assumption (1.8), we can estimate the second term of the right-hand
side of (3.10) as follows:

∥
∥
∥f̂
∥
∥
∥
I∗J
=

(∫

|ξ|>(4/3)π2J

(

1 + ξ2
)−p(

1 + ξ2
)p|f̂ |2dξ

)1/2

≤ max
|ξ|>(4/3)π2J

ξ−pE =
(
4
3
π2J
)−p

E.

(3.20)

Combining (3.20) with Lemma 3.3, we complete the proof.
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It remains to reckon with the second term in the right-hand side of (3.10).

Theorem 3.6. Let f and fJ be the solution of problems (1.3) and (3.2), respectively, for exact data g.
If (1.8) is satisfied, then there holds

∥
∥PJf − fJ

∥
∥ ≤
(

21−J

π

)1/2

E

(
2
3
π2J
)−p

. (3.21)

Proof. Since the Galerkin equation (3.1) for {uJ, fJ} satisfies (3.2),

(

uJ
)

t − PJ
(

uJ
)

xx = fJ ,

uJ(·, 0) = 0,

uJ(·, 1) = PJg,
(3.22)

and the pair of functions {PJu, PJf} satisfy

(

PJu
)

t − PJ
(

PJu
)

xx − PJ
((

I − PJ
)

u
)

xx = PJf,

PJu(·, 0) = 0,

PJu(·, 1) = PJg;
(3.23)

if we denote v = PJu − uJ , w = PJf − fJ , then the error functions {v(x, t), w(x)} satisfy the
equation

vt − PJvxx − PJ
((

I − PJ
)

u
)

xx = w,

v(·, 0) = 0,

v(·, 1) = 0.

(3.24)

Let y(·), z(·) ∈ L2[0, 1] be the representations in the wavelet basis {ϕJk} of the functions v(x, t)
and w(x) + PJ((I − PJ)u)xx, respectively; that is,

yk(t) =
(

v(·, t), ϕJk
)

, zk =
(

w(x) + PJ
((

I − PJ
)

u
)

xx, ϕJk
)

. (3.25)

Then (3.24) is equivalent to the infinite system of first-order differential equations for y =
{yk}k∈Z

and z = {zk}k∈Z
:

yt −DJy = z, −∞ < x <∞,

y(0) = 0, y(1) = 0.
(3.26)
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Then we have
∫1

0
eDJ (1−t)z(t)dt = 0; (3.27)

taking into account (3.25), we get

(

w,ϕJk
)

=
DJ

eDJt − 1

∫1

0
eDJt
(

PJ
((

I − PJ
)

u
)

xx, ϕJk(x)
)

dt; (3.28)

hence we have

∥
∥PJf − fJ

∥
∥ =

∥
∥
∥
∥
∥

DJ

1 − e−DJ

∫1

0
e−DJt

(

PJ
((

I − PJ
)

u
)

xx, ϕJk
)

dt

∥
∥
∥
∥
∥

≤
∫1

0

∥
∥
∥
∥
∥

DJe
DJt

eDJt − 1

∥
∥
∥
∥
∥

∥
∥
(

PJ
((

I − PJ
)

u
)

xx, ϕJk
)∥
∥dt

≤
(

21−J

π

)1/2

E

(
2
3
π2J
)−p

max
|λ|≤2(π2J)2

λ

eλ − 1

∫1

0
eλtdt

≤
(

21−J

π

)1/2

E

(
2
3
π2J
)−p

;

(3.29)

in the last inequality we have used Proposition 3.1 and Corollary 3.4.

Theorems 3.2, 3.5, and 3.6 give the estimates of the three terms appearing in the error
bound inequality (3.10); by combining the three results we can give a Hölder-type error
estimate for the wavelet-Galerkin method in the following theorem.

Theorem 3.7. Let f be the exact solution of (1.1) and (1.2) satisfying (1.8) for p > 0, and let fδJ be
the Galerkin solution of (3.1) for the measured data gm such that (1.4) holds. If J = J(δ, E) satisfies

2
3
π2J =

(
E

δ

)1/(p+2)

, (3.30)

then there holds
∥
∥
∥f − fδJ

∥
∥
∥ ≤ CE2/(p+2)δp/(p+2) + δ = (C + o(1))E2/(p+2)δp/(p+2), for δ −→ 0, (3.31)

where C is a positive constant independent of E and δ.

4. Numerical Complement

In this section, we will describe a numerical complement of the proposed method.
Note that the problem (1.3) is essentially local. That is a strong source f(x) at some

position x0 will influence the solution g(x) for x → x0 but have limited impact further away.
This sort of local property of the problem (1.3) allows us to truncate the problem to a finite
internal of x and still obtain reasonable solutions.
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4.1. Solve u(x, 1) = g(x) from the Direct Problem

We select u(x, 0) = 0 and a known f(x) for 0 ≤ x ≤ 1, and suppose that u(0, t) = u(1, t) = 0
(this is to agree with compatibility condition) and computed data functions u(x, t), hence
u(x, 1) = g(x) by solving a well-posed initial-boundary value problem on the interval 0 ≤
x ≤ 1, using the Crank-Nicolson implicit scheme. It is described as follows: let Δt = 1/M and
Δx = 1/N be the step lengths on time and space coordinates, M,N ∈ N, 0 = t0 < t1 < · · · <
tM = 1, and 0 = x0 < x1 < · · · < xN = π denote equidistant partitions of the [0, 1]. We define
u
j

i = u(xi, tj) and fi = f(xi), and the finite difference approximation is

u
j+1
i − uji
Δt

− u
j+1
i−1 − 2uj+1i + uj+1i+1 + u

j

i−1 − 2uji + u
j

i+1

2Δx2
= fi,

i = 1, . . . ,N − 1, j = 1, . . . ,M − 1,

u0i = 0, i = 0, . . . ,N,

u
j

0 = 0, u
j

N = 0, j = 0, . . . ,M.

(4.1)

Then we can easily obtain the data u(x, t) and u(x, 1) = g(x).

4.2. Discrete Wavelet Transform

In the numerical solution of (3.4) by an ODE solver, we need to evaluate matrix-vector
productsDJc. The representation of differentiation operators in bases of compactly supported
wavelets is described in the literature; see, for example, [21]. In our context of Meyer’s
wavelets, which do not have compact support, the situation is different. The proof of
Proposition 3.1 actually gives a fast algorithm for this. From the definition of DJ , it is easily
shown that DJ = 22JD0. Thus, we can compute approximations of the elements of DJ by first
sampling the function Δ equidistantly and then computing its discrete Fourier transform.

We will use DMT as a short form of the “discrete Meyer (wavelet) transform.”
Algorithms for discretely implementing the Meyer wavelet transform are described in [20].
These algorithms are based on the fast Fourier transform (FFT), and computing the DMT of
a vector in R requires O(n log22n) operations [20]. The algorithms presuppose the vector to be
transformed represents a periodic function. So we need to make periodic the vector at first. A
discussion on how to make a function “periodic” can be found in [14].

4.3. Solve μm from Problem (3.4)

In the solution of problem (1.3) in VJ , we replace the infinite-dimensional ODE (3.4) by the
finite-dimensional

ct −Dd
J c = μm, 0 ≤ t ≤ T,

c(0) = 0, c(T) = γm,
(4.2)

where c = c(t) ∈ R
2J represents the approximation of the solution in VJ and J is chosen

according to Theorem 3.7. For simplicity we suppress the dependence in VJ , and since we are
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dealing with functions, for which only a finite number of coefficients are nonzero, Dd
J is a

finite portion of the infinite matrix DJ (we use superscript d to indicate this). We also denote
Δt = 1/M is the step size of time axis t. Define ck = c(kΔt), k = 0, . . . ,M. Then, using a
modified Euler scheme, we have

ck+1 − ck
Δt

−DJ
ck+1 + ck

2
= μm,

c(0) = 0, c(M) = γm;

(4.3)

that is,

ck+1 = A−1
(

Bck + μ
)

, (4.4)

where

A :=
I

Δt
− DJ

2
, B :=

I

Δt
+
DJ

2
. (4.5)

By the initial condition,

c1 = A−1μm,

c2 = A−1
(

Bc1 + μm
)

= A−1
(

BA−1 + I
)

μm,

c3 = A−1
(

Bc2 + μm
)

= A−1
[

B
(

A−1
(

BA−1 + I
)

μm
)

+ μm
]

= A−1
[

BA−1
(

BA−1 + I
)

μm + μm
]

= A−1
2∑

i=0

(

BA−1
)i
μm,

...

γm = cM = A−1
M−1∑

i=0

(

BA−1
)i
μm.

(4.6)

We know that if ‖BA−1‖ < 1, there holds

M−1∑

i=0

(

BA−1
)i

=
(

I −
(

BA−1
))−1(

I −
(

BA−1
)M
)

, (4.7)

where ‖BA−1‖ := maxi|λi|, {λi}M−1
i=1 are the eigenvalues of BA−1. Hence

γm = cM = A−1
(

I − BA−1
)−1(

I −
(

BA−1
)M
)

μm, (4.8)

then we obtain

μm =
(

I −
(

BA−1
)M
)−1(

I − BA−1
)

Aγm. (4.9)
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5. Numerical Examples

In this section some numerical examples are presented to demonstrate the usefulness of the
approach. The tests were performed using Matlab and the wavelet package WaveLab 850.

Suppose that the sequence {g(xi)}ni=1 represents samples from the function g(x) on an
equidistant grid and n is even, then we add a random uniformly distributed perturbation to
each data and obtain the perturbation data,

gδ = g + μ randn
(

size
(

g
))

, (5.1)

where

g =
(

g(x1), . . . , g(xn)
)T
, xi = (i − 1)Δx,

Δx =
1

n − 1
, i = 1, . . . , n.

(5.2)

Then the total noise δ can be measured in the sense of root mean square error according to

δ :=
∥
∥
∥gδ − g

∥
∥
∥
l2
=

√
√
√
√

1
n

n∑

i=1

(

gδi − gi
)2
, (5.3)

where “randn(·)” is a normally distributed random variable with zero mean and unit
standard deviation and ε dictates the level of noise. “randn(size(g))” returns an array of
random entries that is the same size as g.

The numerical examples were constructed in the following way. First we selected
function f(x), for 0 ≤ x ≤ 1, and computed u(x, t), and hence u(x, 1) = g(x), by solving a
well-posed initial-boundary value problem on the domain (x, t) = [0, 1] × [0, 1], using the
Crank-Nicolson implicit scheme (see Section 4.1). Then we added a normally distributed
perturbation to data function g giving vectors gδ. From the perturbed data functions, we
reconstructed f(x) and compared the result with the known solution.

Example 5.1. It is easy to verify that the function

u(x, t) =
(

2 − e−π2t
)

sin(πx), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

f(x) = 2π2 sin(πx), 0 ≤ x ≤ 1,
(5.4)

is the exact solution of problem (1.3)with data

g(x) =
(

2 − e−π2
)

sin(πx), 0 ≤ x ≤ 1. (5.5)

Example 5.2. We examine the reconstruction of a Gaussian normal distribution

f(x) =
1

σ
√
2π

e−((x−μ)
2/2σ2), (5.6)
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where μ = 0.5 is the mean and σ = 0.1 is the standard deviation. Note that when σ is small
expression, (5.6) mimics a Dirac delta distribution δ(x − μ). Since the direct problem with
f given by (5.6) does not have an analytical solution, the data g is obtained by solving the
direct problem using finite difference.

Example 5.3. Consider a continuous piecewise smooth heat source; namely,

f(x) =

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

6x − 2,
1
3
≤ x ≤ 1

2
,

4 − 6x,
1
2
≤ x ≤ 2

3
,

0, else.

(5.7)

Example 5.4. This example involves reconstructing a discontinuous heat source given by

f(x) =

⎧

⎨

⎩

1,
1
3
≤ x ≤ 2

3
,

0, else.
(5.8)

The results from these examples are given in Figures 1, 2, 3, and 4. In all cases, the
length of the data vector gδ was 512. The regularization parameters were selected according
to the recipe given in Theorem 3.7. In all cases the number of step length Δt in the ODE
solver were 1/20; that is, M = 20. Before presenting the results, we recomputed our coarse
level approximation on the fine scale, using the inverse Meyer wavelet transform.

Figures 1–4 show that the proposed approach seems to be useful. Moreover, the
smaller the error δ, the better the approximation result fδJ . The scheme works equally well
for piecewise smooth and discontinuous heat sources. To illustrate this, the numerical results
retrieved for Examples 5.3 and 5.4 are presented in Figures 3 and 4. From these figures, it
can be seen that the numerical solutions are less accurate than that of Examples 5.1 and
5.2. It is not difficult to see that the well-known Gibbs phenomenon and the recovered data
near the nonsmooth and discontinuities points are not accurate. Note that the same situation
happened for iterative method [17, 18]. Taking into consideration the ill posedness of the
problems, the results presented here are quite satisfactory.

Appendices

A. Proof of Proposition 3.1

For the proof we use the following two lemmas.

Lemma A.1. The matrix DJ is symmetric and has the Toeplitz structure.

Proof. It can be easily shown by integration by parts that DJ is symmetric. Moreover,

(

DJ

)

νk =
(

̂ϕ′′
Jk, ϕ̂Jν

)

=
(

(iξ)2ϕ̂Jk, ϕ̂Jν
)

=
∫

R

(iξ)2ϕ̂Jkϕ̂Jνdξ

=
∫

R

(iξ)2e−i(k−ν)ξ2
−J ∣
∣ϕ̂J0(ξ)

∣
∣
2
dξ;

(A.1)
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Figure 1: Exact solution (solid) and its approximation (dashed) for Example 5.1. We select J = 4, (a) ε =
10−2; (b) ε = 10−3.

hence,DJ is constant along diagonals; that is, the matrixDJ has the Toeplitz structure. Denote
(DJ)k the element of the kth diagonal of the matrix DJ , then

(

DJ

)

νk =
(

DJ

)

k−v. (A.2)
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Figure 2: Exact solution (solid) and its approximation (dashed) for Example 5.2. We select J = 3, (a) ε =
10−2; (b) ε = 10−3.

Lemma A.2. For −π2J ≤ x ≤ π2J, define the function

ΔJ(x) = −2π2J
[(

x − 2π2J
)2∣
∣
∣ϕ̂J
(

x − 2π2J
)∣
∣
∣

2
+ x2∣∣ϕ̂J(x)

∣
∣
2

+
(

x + 2π2J
)2∣
∣
∣ϕ̂J
(

x + 2π2J
)∣
∣
∣

2
]

,

(A.3)
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Figure 3: Exact solution (solid) and its approximation (dashed) for Example 5.3. We select J = 4, (a) ε =
10−3; (b) ε = 10−4.

extend it periodically, and expand it in the Fourier series

ΔJ(x) =
∑

k∈Z

δke
ikx/2J . (A.4)

Then for all k, δk = dk, where dk is the element in diagonal k of DJ .
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Figure 4: Exact solution (solid) and its approximation (dashed) for Example 5.4. We select J = 4, (a) ε =
10−3; (b) ε = 10−4.

Proof. The Fourier coefficients are given by

δk =
1

2π2J

∫π2J

−π2J
ΔJ(x)e−ikx/2

J

dx = δ−k + δ
0
k + δ

+
k , (A.5)
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where we have used the three terms in the definition (A.3) of ΔJ(x). As the result of
periodicity, we can rewrite the first term

δ−k = −
∫π2J

−π2J

(

x − 2π2J
)2∣
∣
∣ϕ̂J
(

x − 2π2J
)∣
∣
∣

2
e−ikx/2

J

dx

= −
∫−π2J

−3π2J
x2∣∣ϕ̂J(x)

∣
∣
2
e−ikx/2

J

dx.

(A.6)

Rewriting δ+
k
similarly, combining the expression for δ+

k
, δ0

k
and δ−

k
, and noting that ϕ̂J(x) = 0

for |x| ≥ (4/3)π2J , we get

δk = −
∫3π2J

−3π2J
x2∣∣ϕ̂J(x)

∣
∣
2
e−ikx/2

J

dx = −
∫∞

−∞
x2∣∣ϕ̂J(x)

∣
∣
2
e−ikx/2

J

dx. (A.7)

From the definition of DJ , we now see that dk = δk.

We can now prove Proposition 3.1. From [15]we know that, since

∥
∥DJ

∥
∥ ≤ sup

−π2J≤x≤π2J

∣
∣ΔJ(x)

∣
∣
2
, (A.8)

we only need to estimate sup−π2J≤x≤π2J |ΔJ(x)|2.
First, due to ΔJ(−x) = ΔJ(x), ΔJ(x) is an even function, we only need consider the

interval [0, π2J]. Here, ϕ̂J(x+2π2J) is identically zero, x2|ϕ̂J(x)|2 and (x−2π2J)2|ϕ̂J(x−2π2J)|2
are nonnegative. Since

sup
0≤x≤π2J

x2∣∣ϕ̂J(x)
∣
∣
2 = sup

0≤x≤π2J
x2 · 2−J

∣
∣
∣ϕ̂
(

2−Jx
)∣
∣
∣

2

= sup
0≤s≤π

2Js2
∣
∣ϕ̂(s)

∣
∣
2 =

π

2
2J ,

sup
0≤x≤π2J

(

x − 2π2J
)2∣
∣
∣ϕ̂J
(

x − 2π2J
)∣
∣
∣

2
= sup

−2π2J≤x≤−π2J
x2∣∣ϕ̂J(x)

∣
∣
2

= sup
−(4/3)π≤s≤−π

2Js2
∣
∣ϕ̂(s)

∣
∣
2 =

4
9
π2J .

(A.9)

Finally we get

sup
0≤x≤π2J

∣
∣ΔJ(x)

∣
∣
2 ≤ 2π2J sup

0≤x≤π2J

[

x2∣∣ϕ̂J(x)
∣
∣
2 +
(

x − 2π2J
)2∣
∣
∣ϕ̂J
(

x − 2π2J
)∣
∣
∣

2
]

= 2
(

π2J
)2
.

(A.10)



Mathematical Problems in Engineering 19

The estimate (3.7) for ‖DJ‖ is proved. Since DJ is a symmetric matrix, it can be written as

DJ =
∫2(π2J )2

−2(π2J)2
λdEλ, (A.11)

where Eλ is a family of orthogonal projections; see Engl et al. [19]. It follows that if r is a
continuous function,

r
(

DJ

)

=
∫2(π2J )2

−2(π2J)2
r(λ)dEλ. (A.12)

Thus we get

∥
∥r
(

DJ

)∥
∥ ≤ max

|λ|≤2(π2J )2
|r(λ)|. (A.13)

B. Proof of Lemma 3.3

Since

ψ̂Jk = e−ikξ/2
J

ψ̂J(ξ), (B.1)

we have

Q̂Jf(ξ) =
∑

k∈Z

(

f̂(·), ψ̂Jk
)

ψ̂Jk

=
∑

k∈Z

(

f̂(·), ψ̂Jk
)

e−ikξ·2
−J
ψ̂J .

(B.2)

On the other hand, each coefficient (f̂(·), ψ̂Jk) can be written as

(

f̂(·), ψ̂Jk
)

=
∫∞

−∞
f̂(ξ)ψ̂J(ξ)e−ikξ·2

−J
dξ

=
∫π2J

−π2J

{

G
(

ξ − 2π2J
)

+G(ξ) +G
(

ξ + 2π2J
)}

e−ikξ·2
−J
dξ,

(B.3)

where

G(ξ) = f̂(ξ)ψ̂J(ξ). (B.4)
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Thus,

Q̂Jf(ξ) = ψ̂J(ξ)
{

G
(

ξ − 2π2J
)

+G(ξ) +G
(

ξ + 2π2J
)}

,

∥
∥
∥Q̂Jf(·)

∥
∥
∥

2

IJ
≤
∫

IJ

∣
∣
∣G
(

ξ − 2π2J
)

+G(ξ) +G
(

ξ + 2π2J
)∣
∣
∣

2
dξ.

(B.5)

Since supp(ψ̂Jk) = {ξ; (2/3)π2J ≤ |ξ| ≤ (8/3)π2J}, we have

G
(

ξ + 2π2J
)

= 0 for ξ ∈
[
2
3
π2J ,

4
3
π2J
]

,

G
(

ξ − 2π2J
)

= 0 for ξ ∈
[

−4
3
π2J ,−2

3
π2J
]

,

(B.6)

and it follows that

∥
∥
∥Q̂Jf(·)

∥
∥
∥

2

IJ
≤
∫−(2/3)π2J

−(4/3)π2J

∣
∣
∣G(ξ) +G

(

ξ + 2π2J
)∣
∣
∣

2
dξ +

∫ (4/3)π2J

(2/3)π2J

∣
∣
∣G
(

ξ − 2π2J
)

+G(ξ)
∣
∣
∣

2
dξ

≤ 4
∫−(2/3)π2J

−(4/3)π2J

∣
∣
∣f̂(ξ)ψ̂J(ξ)

∣
∣
∣

2
dξ + 4

∫ (4/3)π2J

(2/3)π2J

∣
∣
∣f̂(ξ)ψ̂J(ξ)

∣
∣
∣

2
dξ

= 4
∫

IJ

∣
∣
∣f̂(ξ)

∣
∣
∣

2(
1 + ξ2

)p(

1 + ξ2
)−p∣
∣
∣ψ̂J(ξ)

∣
∣
∣

2
dξ

≤ 4E2sup
ξ∈IJ

∣
∣ξ−pψ̂J(ξ)

∣
∣
2 ≤ 4E2

(
2
3
π2J
)−2p

· 2
−J

2π
.

(B.7)

Hence,

∥
∥
∥Q̂Jf(·)

∥
∥
∥
IJ
≤
(

21−J

π

)1/2

E

(
2
3
π2J
)−p

. (B.8)

C. Proof of Corollary 3.4

Since

PJ
((

I − PJ
)

u
)

xx =
∑

k∈Z

(((

I − PJ
)

u
)

xx, ϕJk
)

ϕJk

=
∑

k∈Z

(

−ξ2 ̂
(

I − PJ
)

u, ϕ̂Jk
)

ϕJk =
∑

k∈Z

(

−ξ2Q̂Ju, ϕ̂Jk
)

ϕJk,

(C.1)
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we have

∥
∥
∥

̂PJ
((

I − PJ
)

u
)

xx

∥
∥
∥ =
∥
∥
∥ξ2Q̂Ju(·, t)

∥
∥
∥
IJ

≤
(∫

ξ∈IJ

∣
∣
∣Q̂J

(

ξ2û(ξ, t)
)∣
∣
∣

2
dξ

)1/2

.

(C.2)

Since û(ξ, t) = ((1 − e−ξ2t)/ξ2)f̂(ξ), or equivalently, |ξ2û(ξ, t)|2 ≤ f̂(ξ), similar to the proof of
Lemma 3.3, we get (3.17).
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