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The extraction of affine invariant features plays an important role in many fields of image
processing. In this paper, the original image is transformed into new images to extract more affine
invariant features. To construct new images, the original image is cut in two areas by a closed curve,
which is called general contour (GC). GC is obtained by performing projections along lines with
different polar angles. New image is obtained by changing gray value of pixels in inside area. The
traditional affine moment invariants (AMIs) method is applied to the new image. Consequently,
cutting affine moment invariants (CAMIs) are derived. Several experiments have been conducted
to evaluate the proposed method. Experimental results show that CAMIs can be used in object
classification tasks.

1. Introduction

The extraction of affine invariant features plays a very important role in object recognition
and has been found applicable in many fields such as shape recognition and retrieval [1, 2],
watermarking [3], identification of aircrafts [4, 5], texture classification [6], image registration
[7], and contour matching [8].

Many algorithms have been developed for affine invariant features extraction. Based
on whether the features are extracted from the contour only or from the whole shape region,
the approaches can be classified into twomain categories: region-basedmethods and contour-
based methods [9]. For good overviews of the various techniques, refer to [9–12].

Contour-based methods [4, 5, 13–18] provide better data reduction and the contour
usually offers more shape information than interior content [9]. But these methods are unap-
plicable to objects with several separable components (like some Chinese characters).
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In contrast to contour-based methods, region-based techniques take all pixels within
a shape region into account to obtain the shape representation. Moment invariant methods
are the most widely used techniques. The commonly used affine moment invariants (AMIs)
[19–21] are extensions of the classical moment invariants firstly developed by Hu [22].
Although the moment-based methods can be applicable to binary or gray-scale images with
low computational demands, they would be sensitive to noise. Hence, only a few low-order
moment invariants can be used and limit the ability of object classification with a large-sized
database [18].

A number of new region-based methods have also been introduced, such as Ben-
Arie’s frequency domain technique [23, 24], cross-weighted moment (CWM) [25], and Trace
transform [26]. A novel approach called multi scale autoconvolution (MSA) was derived by
Rahtu et al. [27]. These new methods give high accuracy, but usually at the expense of high
complexity and computational demands [27]. It is reported in [27] that one needs O(N4)
and O(N2log2N) operations for computing CWM and MSA, respectively. It can be shown
that some of these methods are sensitive to noise in the background. To derive robust affine
invariant features, in [28], we cut the object into slices by division curves which are derived
from the object based on the obtained general contour (GC). The affine invariant descriptors
are constructed by summing up the gray value associated with every pixels in each slice.
However, the maximum of the division quantity τ is hard to be determined. To cut object into
small slices, the computational complexity is very large.

Recently, structure moment invariants have been introduced in [29, 30]. These invari-
ants are very efficient in object classification tasks for gray level images or color images, but
they are unapplicable to binary images. The density of binary images can not be changed
only by squaring.

All in all, contour-based methods can only be used to objects with single boundary;
whereas some region-based methods can achieve high accuracy but usually at the expense
of high computational demands, and some region-based methods are unapplicable to binary
images.

To extract affine invariant features more efficiency, we transform the original image
into new images in this paper. Affine invariants are extracted from new images. In order
to construct new images, the original image is cut in two areas: the inside area and the
outside area. To establish correspondence between areas of an image and those of its
affine transformed image, as in [28], general contour (GC) of the image is constructed by
performing projection along lines with different polar angles. A nonnegative constant is
added to the gray value associated with every pixel of inside area. As a result, new images
are obtained. Consequently, affine invariant features can be derived from these new images.
In this paper, AMIs method is applied to the obtained new images. More affine invariant
features, cutting affine moment invariants (CAMIs), are extracted. Furthermore, we combine
CAMIs with the original AMIs (we call the obtained affine invariants as CCAMIs). To test
and evaluate the proposed method, several experiments have been conducted. Experimental
results show that CAMIs and CCAMIs can be used in object classification tasks.

The rest of the paper is organized as follows: in Section 2, the GC of an image is
introduced. Consequently, the image is cut in two areas by putting GC on the image. New
image is formed by changing gray value of the inside area.We apply AMIsmethod to the new
image in Section 3. The performance of the proposed method is evaluated experimentally in
Section 4. Finally, some conclusion remarks are provided in Section 5.
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2. The Construction of New Images

To derive affine invariant features, we construct new images by cutting the original image in
two areas. New images can be obtained by changing the gray value associated with pixels in
one of these areas.

2.1. GC of an Image

Suppose that an image is represented by I(x, y) in the 2D plane. Firstly, the origin of the
reference system is transformed to the centroid of the image. To derive general contour of
an image, the Cartesian coordinate system should be converted to polar coordinate system.
Hence, the shape can be represented by a function f of r and θ, namely,

I
(
x, y
)
= f(r, θ), (2.1)

where r ∈ [0,∞), and θ ∈ [0, 2π). Take projection along lines from the centroid with different
angles by computing the following integral:

g(θ) =
∫∞

0
f(r, θ)dr, (2.2)

where θ ∈ [0, 2π).

Definition 2.1. For an angle θ ∈ R, if g(θ) is given in (2.2), then (θ, g(θ)) denotes a point in the
plane of R

2. Let θ go from 0 to 2π , then {(θ, g(θ)) | θ ∈ [0, 2π)} forms a closed curve. We call
this closed curve the general contour (GC) of the image.

By (2.2), a single value is correspond to an angle θ ∈ R. Consequently, a single closed
curve can be derived from any image. For an image I, we denote the GC extracted from
it as ∂I. Equation (2.2) is called central projection transform in [31–33]. It has been used in
those papers to extract rotation invariant signature by combining wavelet analysis and fractal
theory. Satisfying classification rates have been achieved in the recognition of rotated English
letters, Chinese characters, handwritten signatures, and so forth. As aforementioned, in [28],
by employing GC, we derive division curves to cut object into slices. The affine invariant
descriptors are constructed by summing up the gray value associated with every pixels in
each slice. However, the maximum of the division quantity is hard to be determined. In this
paper, we use GC to construct new images. Affine invariant features are extracted from these
new images.

2.2. The Affine Property of GC

An affine transformation A of coordinates x ∈ R
2 is defined as

x′ = Ax + b, (2.3)

where b =
(

b1
b2

)
∈ R

2, and A = ( a11 a12
a21 a22 ) is a 2-by-2 nonsingular matrix with real entries.
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Affine maps parallel lines onto parallel lines, intersecting lines into intersecting lines.
Based on these facts, it can be shown that the GC extracted from the affine transformed image
is also the same affine transformed version of GC extracted from the original image. In other
words, if two images I and I ′ are related by an affine transformation A,

�
′ =
{
x′ | x′ = Ax + b, x ∈ �

}
, (2.4)

where � and �
′ are supports of I and I ′, respectively. Then ∂I and ∂I ′, GCs of I, and I ′ are

related by the same affine transformation A too:

∂I ′ =
{
x′ | x′ = Ax + b, x ∈ ∂I

}
. (2.5)

2.3. The Construction of New Images

To construct new images, we put the GC on the original image. The image is cut in two areas:
the inside area (denoted as Dinside) and the outside area (denoted as Doutside). In Figure 1(b),
we put the GC of Figure 1(a) on the image. Figure 1(c) is the inside area of the image, and
Figure 1(d) is the outside area of the image.

As aforementioned, GC preserves the affine transformation signature. As a result, the
inside area preserves affine transformation too. If two images I and I ′ are related by an affine
transformationA as in (2.4), thenDI

inside andDI ′
inside, inside areas of I and I ′, are related by the

same affine transformation A too:

DI ′
inside =

{
x′ | x′ = Ax + b, x ∈ DI

inside

}
. (2.6)

For example, Figure 2(a) is an affine transform version of Figure 1(a). Put the GC of
Figure 2(a) on the image (as shown in Figure 2(b)). Figure 2(c) is the inside area of the image
of Figure 2(b). Figure 2(d) is the outside area of the image of Figure 2(b). We observe that
Figures 2(c) and 2(d) are affine transformed versions of Figures 1(c) and 1(d). The affine
transformation is the same as that of Figure 2(a) to Figure 1(a).

Consequently, new images can be constructed by changing gray value associated with
pixels inDinside. For an image, a constant d (d ≥ 0) is added to the gray value associated with
every pixels in Dinside. The obtained new image is denoted as I(d)(x, y):

I(d)
(
x, y
)
=

⎧
⎨

⎩

I
(
x, y
)
,

(
x, y
) ∈ Doutside,

I
(
x, y
)
+ d,

(
x, y
) ∈ Dinside.

(2.7)

For different d, various new images can be derived. It is obvious that I(d)(x, y) is the original
image if d = 0.

Suppose that Ĩ(x, y) is an affine transformed image of the original image I(x, y).

I(d)(x, y) is the new image constructed from I(x, y) by (2.7). ˜I(d)(x, y) is the new image

constructed from Ĩ(x, y) by (2.7). Then ˜I(d)(x, y) is the same version affine transformed image
of I(d)(x, y). For example, we add 0.1 to the inside area of Figure 1(a); the obtained new image
is shown in Figure 3(a). The gray value of the inside area of Figure 2(a) is also added 0.1;
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(a) (b)

(c) (d)

Figure 1: (a) Chinese character “Fu”. (b) Put the GC of Figure 1(a) on the image. (c) The inside area of
Figure 1(a). (d) The outside area of Figure 1(a).

the obtained image is shown in Figure 3(b). We observed that Figure 3(b) is the same affine
transform version of Figure 3(a) as that of Figure 2(a) to Figure 1(a).

Some well-developed methods can be applied to the derived new images. More affine
invariant features can be constructed. As aforementioned, only a few low-order moment
invariants can be used for object classification. We can apply AMIs method to the derived
new images. More low-order moment invariants can be extracted. We construct new affine
moment invariants in the next section.

3. Cutting Affine Moment Invariants

By applying various region-based methods to the derived new image, some affine invariant
features can be extracted. As aforementioned, AMIsmethod is region-basedmethodwith low
computational demands. We apply AMIs to the constructed new image.

Geometric moment m(d)
pq of the new image I(d)(x, y) is defined as

m
(d)
pq =

∫
xpyqI(d)

(
x, y
)
dx dy, (3.1)
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(a) (b)

(c) (d)

Figure 2: (a) An affine transformation version of Figure 1(a). (b) Put the GC of Figure 2(a) on the image.
(c) The inside area of Figure 2(a). (d) The outside area of Figure 2(a).

(a) (b)

Figure 3: (a) New image constructed from Figure 1(a). (b) New image constructed from Figure 2(a).

where p, q are nonnegative integers. μ(d)
pq is the central moments:

μ
(d)
pq =

∫
(x − x0)p

(
y − y0

)q
I(d)
(
x, y
)
dx dy, (3.2)

where x0, y0 are the coordinates of the centroid of the image.
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For two points x1 = (x1, y1)
T , x2 = (x2, y2)

T ∈ R
2, we denote the cross product C12 as

C12 = x1y2 − x2y1. (3.3)

After an affine transform, the following equation holds:

C̃12 = JC12, (3.4)

where J denotes the Jacobian of affine transformation: J = det(A).
For N points (N ≥ 2): Ui = (xi, yi)

T ∈ R
2, i = 1, 2, . . .N, and non-negative integers

nkj(1 ≤ k < j ≤ N), we define RCAMI(d) of the form:

RCAMI(d) =
∫ ∏

1≤k<j≤N
C

nkj

kj

N∏

i=1

I(d)
(
xi, yi

)
dxi dyi. (3.5)

Denote w =
∑

1≤k<j≤N nkj . We normalized RCAMI(d) as follows:

CAMI(d) =
RCAMI(d)
(
μ
(d)
00

)w+N
. (3.6)

Using similar argument with that of affine moment invariants (see [20], etc.), it can be shown
that CAMI(d) is affine invariant. We call these invariants as cutting affine moment invariants
(CAMIs). If d = 0, these invariants are the same as moment invariants given in [20].

By expanding Ckj in (3.5), RCAMI(d) becomes a polynomial of moments given in
(3.2). Consequently, we can compute CAMIs from moments given in (3.2). Invariants can
be derived by replacing moments in AMIs with the moments given in (3.2). Here, we use the
well-developed theory for the AMIs as described in [19]. The following form invariants are
used in this paper:

F
(d)
1 =

(
μ
(d)
20 μ

(d)
02 −

(
μ
(d)
11

)2)

(
μ
(d)
00

)4 ,

F
(d)
2 =

((
μ
(d)
30

)2(
μ
(d)
03

)2 − 6μ(d)
30 μ

(d)
21 μ

(d)
12 μ

(d)
03 + 4μ(d)

30

(
μ
(d)
12

)3
+ 4
(
μ
(d)
21

)3
μ
(d)
03 − 3

(
μ
(d)
21

)2(
μ
(d)
12

)2)

(
μ
(d)
00

)10

F
(d)
3 =

(
μ
(d)
20

(
μ
(d)
21 μ

(d)
03 −

(
μ
(d)
12

)2) − μ
(d)
11

(
μ
(d)
30 μ

(d)
03 − μ

(d)
21 μ

(d)
12

)
+ μ

(d)
02

(
μ
(d)
31 μ

(d)
12 −

(
μ
(d)
21

)2))

(
μ
(d)
00

)7 .

,

(3.7)
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If we set d = 0, (3.7) results in AMIs used in [19]. By changing the constant d, different
invariants can be constructed. Consequently, more low-order moment invariants can be
extracted. We will show that the obtained CAMIs can be used in object classification.
Furthermore, we will combine the obtained CAMIs with the traditional AMIs. The obtained
features (we call them CCAMIs) are also used in object classification.

4. Experiments

In this section, we evaluate the proposed method in object classification tasks. We will show
that the derived affine invariants (CAMIs) can be used in object classification. Furthermore,
CAMIs can be combined with the original AMIs (we call the obtained affine invariants as
CCAMIs). We denote AMIs used in [19] as: f1, f2, f3 (d = 0 in (3.7)).

In the first experiment, some binary images of Chinese characters are used. The CAMIs
used in this experiment are obtained by setting d equal to 10% of the maximum gray
value in the image. Hence, d is set to 0.1. These CAMIs are denoted as: F(0.1)

1 , F
(0.1)
2 , F

(0.1)
3 .

Figure 4(a) shows the original six Chinese characters. Some of these characters are very
similar. Figure 4(b) shows the same set of characters deformed by affine transforms. The
values of invariants AMIs: f1, f2, f3 and CAMIs: F(0.1)

1 , F
(0.1)
2 , F

(0.1)
3 are given in Table 1. It can

be seen clearly that CAMIs really are invariant under affine transform. Furthermore, CAMIs
are different with the original AMIs.

In the second experiment, we test the combined invariants (CCAMIs): f1, f2, f3,
F
(0.1)
1 , F

(0.1)
2 , F

(0.1)
3 . Two groups of Chinese characters, shown in Figures 5(a) and 5(b), are

chosen as databases. Each group include 40 Chinese characters with regular script font. The
images in Figure 5(a) have size of 128 × 128, and those in Figure 5(b) have size of 256 × 256.
Some characters in these databases have the same structures, but the number of stokes or the
shape of specific stokes may be a little different. The affine transformations are generated by
the following transformation matrix [4]:

T = l

(
cos θ − sin θ

sin θ cos θ

)
⎛

⎜
⎝

a b

0
1
a

⎞

⎟
⎠, (4.1)

where a ∈ {1, 2}, b ∈ {−1.5, −1, −0.5, 0, −0.5, 1, 1.5}, θ ∈ {0◦, 72◦, 144◦, 216◦, 288◦}, and
l ∈ {0.8, 1.2}. l, θ denote the scaling, rotation transformation, respectively, and a, b denote
the skewing transformation.

Each character will be transformed 140 times as described above. With these affine
transformations and the database, 5600 tests run using the proposed method for each group.
In our experiments, the classification accuracy is defined as

η =
γ

η
× 100%, (4.2)

where γ denotes the number of correctly classified images, and η denotes the total number of
images applied in the test.

The AMIs, CAMIs, and the combined invariants CCAMIs are applied to databases in
Figures 5(a) and 5(b). Classification is performed by the method used in [19]. Table 2 shows
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Da Quan Tai Tian Yao Fu

(a)

Test1

Test2

Test3

Test4

Test5 Test6

(b)

Figure 4: (a) The original six model Chinese characters. (b)Deformed Chinese characters to be recognized.

Table 1: AMIs and CAMIs for some similar Chinese characters.

f1 · 104 f2 · 108 f3 · 106 F
(0.1)
1 · 104 F

(0.1)
2 · 108 F

(0.1)
3 · 106

Da 1033 −29586 −6040 889 −20096 −4579
Test1 1029 −29457 −6013 894 −20689 −4645
Quan 1132 −27041 −6406 980 −18884 −4915
Test2 1131 −26560 −6336 1000 −19504 −5051
Tai 1080 −50285 −8123 904 −31880 −5861
Test3 1081 −51263 −8201 915 −33214 −6019
Tian 939 −22855 −5612 805 −15556 −4220
Test4 939 −23053 −5627 816 −16216 −4341
Yao 1037 −29694 −6538 907 −21196 −5118
Test5 1031 −28759 −6415 915 −20846 −5153
Fu 850 −23926 −5847 726 −15462 −4351
Test6 846 −23686 −5795 726 −15324 −4354

the results. For the first group of Chinese characters, we observe that the performance of
CAMIs is a little better than that of AMIs, and the combined invariants CCAMIs have better
performance than the original AMIs and CAMIs. For the other group of Chinese characters,
we observe that the performance of the traditional AMIs is better than that of CAMIs, and
the combined invariants CCAMIs have also better performance than the original AMIs and
CAMIs. Hence, the original AMIs can be combined with CAMIs, more shape information
may be extracted.

5. Conclusions

In this paper, an approach is developed for the extraction of affine invariant features
by cutting image into areas: the inside area and the outside area. In order to establish
correspondence between areas of an image and those of its affine transformed version,
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(a)

(b)

Figure 5: (a) First group of 40 characters. (b) Second group of 40 characters.

Table 2: Classification accuracies of AMIs, CAMIs, and CCAMIs in case of different affine transformations.

AMIs CAMIs CCAMIs
Group one 86.46% 87.62% 90.14%
Group two 95.55% 89.64% 96.13%

general contour (GC) of the object is employed. A nonnegative constant is added to the
gray value associated with every pixel of inside area. Consequently, new image is obtained,
and CAMIs are constructed from the new image. To test and evaluate the proposed method,
several experiments have been conducted. Experimental results show that CAMIs can be
used in object classification tasks.
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