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We present sufficient conditions for the preservation of stability of fractional-order systems, and
then we use this result to preserve the synchronization, in a master-slave scheme, of fractional-
order systems. The systems treated herein are autonomous fractional differential linear and
nonlinear systems with commensurate orders lying between 0 and 2, where the nonlinear ones can
be described as a linear part plus a nonlinear part. These results are based on stability properties for
equilibria of fractional-order autonomous systems and some similar properties for the preservation
of stability in integer order systems. Some simulation examples are presented only to show the
effectiveness of the analytic result.

1. Introduction

The applications of fractional calculus to science and engineering have been growing in the
last few years [1]; this is due in part to the properties of these operators. The applications,
specifically, that involve fractional-order chaotic systems or their synchronization had been
one of the principal subjects of investigation; some of these works are [2–6]. There is also
several works concerning chaotic systems or complex networks of integer order or their
synchronization, for example, [7–10]. There are many different works on the synchronization
of fractional autonomous systems that can be described as a linear plus a nonlinear part [11–
14], in such works several schemes are proposed to ensure that the error dynamics satisfies
the conditions from the celebrated theorem for autonomous commensurate differential
systems with fractional order between 0 and 1 by [15]; this means that the error dynamics
must hold a linear relation in order to achieve the synchronization. There is also a scheme
proposed in [16], based on [17], where the dynamical system of the synchronization error
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can be nonlinear, which when viewed from the analytical point can be important because it
does not restrict the error dynamics to be only linear.

There is some other interesting theme, the preservation of stability and synchroniza-
tion, which is the main issue in this work. This problem can be stated as follows: if we have an
original autonomous nonlinear system that can be described as a linear plus a nonlinear part
whose origin is stable, we want to investigate some kinds of modifications that can occur to
the fractional order, the linear part, and the nonlinear part in such a way that the origin of the
modified system is also stable. This subject is important because such modifications can be
interpreted as perturbations on the system. Note that the modification of the linear part of the
vector field associated with the fractional differential equation modifies some local properties
of the vector field at the point of equilibrium, in particular local stability. In [18], the authors
developed two results for the preservation of stability of integer-order nonlinear systems; one
of such results gives conditions for the preservation of stability between systems of different
orders of the state vector but does not give direct insight on the transformations, and the
other result gives more insight but in return is a little more restrictive because as part of the
hypothesis it asks for diagonalizability of the linear part of the system. In [19], the authors
have reached conditions for the preservation of stability for integer-order systems in the
presence of nonlinear modifications to the Jacobian matrix; such modifications can be applied
on the characteristic polynomial or in form of a nonlinear polynomial matrix evaluation.

The main objective of this work is to state under which conditions a certain family of
transformations applied to the fractional order, the linear part, and the nonlinear part of an
autonomous fractional differential system with commensurate order will preserve stability
of the origin. It is important to point out that this analytical result is of relevance for its
relation with robustness not for the use of an advanced controller in the stabilization or the
synchronization. As far as the authors know, this problem has not been addressed for the case
of fractional-order systems.

In Section 2, we present the definitions and some results on the stability of autonomous
commensurate fractional-order systems. In Section 3, the main results are stated in form
of propositions and corollaries. Based on these propositions, in Section 4, we present a
methodology to illustrate how these results can be used and this is complemented by the
application of this methodology in two examples of simulation presented in Section 5. Finally
in Section 6, we present the obtained conclusions.

2. Preliminary Results

There are several definitions of a fractional derivative of order α ∈ R
+ [20–22]. We will

use the Caputo fractional operator because the meaning of the initial conditions for systems
described using this operator is the same as for integer-order systems.

Definition 2.1 (Caputo fractional derivative). The Caputo fractional derivative of order α ∈ R
+

of a function x is defined as (see [20])

x(α)= t0D
α
t x =

1
Γ(m − α)

∫ t

t0

dmx(τ)
dτm

(t − τ)m−α−1dτ, (2.1)

wherem − 1 ≤ α < m, dmx(τ)/dτm is themth derivative of x in the usual sense,m ∈ N, and Γ
is the gamma function. (Throughout the paper, we use indistinctly x(α) ≡ x(α)(t), x ≡ x(t).)
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We recall some previous results on the stability of autonomous commensurate
fractional-order systems that are related to our study.

2.1. Autonomous Commensurate Fractional-Order Linear Systems Stability

Given an autonomous fractional-order system with state space representation

x(α) = Ax + Bu,

y = Cx,
(2.2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, the state vector x ∈ Rn, the input vector u ∈ Rm, and the
output vector y ∈ Rp.

Definition 2.2 (see [15]). The fractional-order autonomous system (2.2)

x(α) = Ax, with x(0) = x0, (2.3)

is said to be

(i) stable if and only if forall ε > 0 ∃ δ = δ(ε) > 0, such that given ‖x0‖ < δ then
‖x(t)‖ < ε for all t ≥ 0;

(ii) asymptotically stable if and only if it is stable and limt→∞ ‖x(t)‖ = 0.

Firstly, we will introduce some results on fractional-order systems stability. First for
0 < α < 1, we have the celebrated Theorem [15] that gives us necessary and sufficient
conditions for the asymptotic stability of the origin of a type of autonomous linear fractional-
order systems; such conditions involve the argument of the eigenvalues of the systemmatrix.

Theorem 2.3. The autonomous system

x(α) = Ax, with x(t0) = x0, 0 < α < 1, (2.4)

is asymptotically stable if and only if | arg(spec(A))| > α(π/2), where spec(A) is the set of all
the eigenvalues of A. Also, the state vector x decays towards 0 and meets the following condition:
‖x‖ < Nt−α, t > 0, α > 0.

And for 1 < α < 2, we have a similar result [23].

Theorem 2.4. The autonomous fractional differential system

x(α) = Ax, t > t0, (2.5)

with initial conditions x(k)(t0) = xk(k = 0, 1), with the Caputo derivative and where x ∈ R
n, A ∈

R
n×n is asymptotically stable if and only if | arg(spec(A))| > α(π/2). In this case, the components

of the state decay towards 0 like t−α−1. Moreover, the system (2.5) is stable if and only if either it is
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asymptotically stable, or those eigenvalues which satisfy | arg(spec(A))| = α(π/2) have the same
algebraic and geometric multiplicities.

2.2. Commensurate Fractional-Order Nonlinear Systems Stability

Given a commensurate fractional-order system with the Caputo fractional operator

x(α) = f(t, x) (2.6)

with initial condition x(t0) = x0, α ∈ (0, 1), f : [t0,∞) × Ω → R
n is piecewise continuous in

t and locally Lipschitz in x on [t0,∞) × Ω, and Ω ⊂ R
n is a domain that contains the origin

x = 0.
The equilibrium point of (2.6) is defined as follows [24].

Definition 2.5. The constant xe is an equilibrium point of the fractional-order system (2.6) if
and only if f(t, xe) = 0.

Without loss of generality, let the equilibrium point be x = xe = 0. In this definition,
we are considering that the result of the derivative of a constant is zero because we are using
only the Caputo fractional operator.

Definition 2.6 (the Lyapunov stability). The equilibrium point x = 0 of the system (2.6) is said
to be

(1) stable, if for all ε > 0 ∃δ > 0 such that if ‖x0‖ < δ then ‖x‖ < ε, for all t ≥ 0.
Otherwise the equilibrium point is called unstable;

(2) asymptotically stable, if it is stable and in addition the following equality holds:

lim
t→∞

‖x‖ = 0. (2.7)

As a starting point for the construction of our own results, we can use the following
result for the stability of the origin of commensurate fractional-order systems with 0 < α < 1
[17].

Theorem 2.7. Consider the n-dimensional nonlinear fractional-order dynamic system

x(α) = Ax + g(x), (2.8)

with a constant linear regular matrix A, a nonlinear function g(x) of the states x, and 0 < α < 1. If

(1) the zero solution of x(α) = Ax is asymptotically stable and αρ(A) > 1;

(2) g(0) = 0 and lim‖x‖→ 0‖(g(x)‖/‖x‖) = 0, where ρ(A) is the spectral radius of A,

then x = 0, 0 ≤ t0 ≤ t is a stable solution of the system (2.8).
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The following result is valid for the asymptotic stability of systems with 1 < α < 2.
Consider the n-dimensional nonlinear fractional-order dynamic system with the Caputo
derivative

x(α) = Ax + g(t, x), t > t0, (2.9)

under the initial conditions

x(α−k)(t)
∣∣∣
t=t0

= xk−1 (k = 1, 2), (2.10)

where x ∈ R, matrix A ∈ R
n×n, and 1 < α < 2, g(t, x) : [t0,∞) × R

n → R
n is a continuous

function in which g(t, 0) = 0; moreover, g(t, x) holds the Lipschitz condition with respect to
x.

Theorem 2.8. If the matrixA such that | arg(spec(A))|/= 0, | arg(spec(A))| > α(π/2), α+1/‖A‖ <
2, and suppose that the function g(t, x) satisfies uniformly

lim
x→∞

∥∥g(t, x)∥∥
‖x‖ = 0, t ∈ [t0,∞), (2.11)

then the zero solution of (2.9) is asymptotically stable.

The proof of this theorem for the Caputo derivative follows from the proof of Theorem
3.3 in [23] and the application of Lemma 2.7 in [23] and Gronwall-Bellman inequality.

3. Preservation of Stability

So once given all these stability results, we need to give a definition for the preservation of
stability in fractional-order systems in order to be in the possibility to state the conditions in
form of a proposition.

Definition 3.1. Given an asymptotically stable autonomous commensurate fractional-order
linear system of the kind

x(α) = Ax, (3.1)

where A ∈ R
n×n, x ∈ R

n, 0 < α < 2 and A = PJAP
−1. If one has a transformation ψ :

R+ × Rn×n → R+ × Rn×n, namely, ψ(α,A) = (αβ,MA), such that the new system

x(αβ) =MAx, with 0 < β ≤ 1 (3.2)

is also asymptotically stable, where MA = PJMJAP
−1, M ∈ R

n×n, for some matrix M =
PJMP

−1, where JM and JA are Jordan matrices, then one says that ψ is an asymptotically
stability preserving transformation for commensurate fractional-order autonomous linear
systems.
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We should notice that for the matricesM and A we are using the same matrix P . It is
also worth to mention that, given the Jordan matrix JA that corresponds to the matrix A, the
Jordan matrix JM, that represents the modifications, must have the same order and type of
Jordan blocks that JA. The reason behind this fact is that in several applications we will need
thatMA ∈ R

n×n. But it should also be noticed that another canonical form, instead of Jordan
form, could result more convenient in the construction of state feedback controllers.

Now in a similar way we state the definition for this concept in commensurate
fractional-order nonlinear systems.

Definition 3.2. Given a commensurate fractional-order nonlinear system of the kind

x(α) = Ax + g(t, x), (3.3)

where A ∈ R
n×n, A = PJAP

−1, x ∈ R
n, 0 < α < 2, g : [t0,∞) × Ω → R

n is piecewise
continuous in t and locally Lipschitz in x on [t0,∞)×Ω, andΩ ⊂ R

n is a domain that contains
the origin and the origin itself is a stable solution of the system. If one has a transformation
Ψ : R+×Rn×n×Ck(Rn, Rn) → R+×Rn×n×Ck(Rn, Rn), namely,Ψ(α,A, g(·)) = (αβ,MA, cg(·)),
in such a way that in the new system

x(αβ) =MAx + cg(t, x), (3.4)

the origin is also a stable solution, where c ∈ R,MA = PJMJAP−1,M ∈ R
n×n, for some matrix

M = PJMP
−1, where JM and JA are Jordan matrices, then one calls to that transformation a

stability preserving transformation for commensurate fractional-order nonlinear systems.

Remark 3.3. In Definition 3.2, for the case where 0 < α < 1, the nonlinear part is considered
as autonomous, that is, for the system (3.3), we have x(α) = Ax + g(x), and for the modified
system (3.4), we have x(αβ) =MAx + cg(x).

Now based on the Theorems 2.3, 2.4, 2.7, and 2.8, and the results from [18] for the
preservation of stability for integer-order systems, the following criterion for the preservation
of stability in autonomous commensurate fractional-order systems can be stated as follows.

Proposition 3.4. Consider an autonomous commensurate fractional-order nonlinear system of the
form

x(α) = Ax + g(x) (3.5)

with x ∈ R
n,A ∈ R

n×n, g : D ⊂ R
n → R

n is a continuous function,D is a neighborhood of the origin
for 0 < α < 1. Let A ∈ R

n×n with the argument of its kth eigenvalue denoted by θk = arg(λk(A)).
Given a transformation Ψ(α,A, g(·)) = (αβ,MA, cg(·)) such that the new system is

x(αβ) =MAx + cg(x), (3.6)
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where c ∈ R, M ∈ R
n×n, 0 < β ≤ 1, φk = arg(λk(M)) is the argument of the kth eigenvalue of M,

A = PJAP−1,M = PJMP−1. Also let φak = −θk + α(π/2), φbk = −θk − απ/2, φmax = maxk{φak},
φmin = mink{φbk}, if

φmin > φk > φmax (3.7)

for each k = 1, 2, . . . , n, and if the system x(α) = Ax is asymptotically stable, αρ(A) > 1, g(0) =
0, lim‖x‖→ 0‖g(x)‖/‖x‖ = 0, and ρ(MA) ≥ ρ(A), then one claims that such transformation is a
stability preserving transformation for fractional-order systems of the kind of (3.5).

Proof . Summarizing the initial hypothesis, the original system (3.5) holds the conditions from
Theorem 2.7, so we have |θk| > α(π/2) for k = 1, 2, . . . , n.

By the hypothesis ρ(MA) ≥ ρ(A), ρ(A) > 1, and 0 < β ≤ 1, we have that αβρ(MA) > 1,
andwe have asked for g(x) to hold g(0) = 0 and lim‖x‖→ 0‖g(x)‖/‖x‖ = 0. As a result we need
the asymptotic stability of the system x(αβ) = MAx to hold the conditions of Theorem 2.7 for
the new system (3.6).

By the properties of the complex numbers, and based on the fact that JM and JA are
Jordan matrices with the same structure and that MA = PJMJAP

−1, in order to assure that
the system x(αβ) =MAx is asymptotically stable, we need for | arg(spec(MA))| > αβ(π/2) to
hold, so first we want for

∣∣φk + θk∣∣ > απ2 , k ∈ {1, 2, . . . , n}, (3.8)

to hold. The last part of the hypothesis states that the inequality (3.7) holds. From the
right part of (3.7), we know that given that each φk is greater than φmax, we have that
φk > −θk + α(π/2). And similarly from the left part we have that −θk − α(π/2) > φk for
any φk. Then these two parts together give us precisely that (3.8) holds, and taking from
the hypothesis that 0 < β ≤ 1, we have that αβ ≤ α and therefore |φk + θk| > αβ(π/2),
and thus the modified system holds all the conditions for the linear part from Theorem 3.
From the demonstration of Theorem 3 given in [17], we can observe that cg(x) also holds the
corresponding conditions; therefore we claim that Ψ is a stability preserving transformation
for the fractional-order autonomous systems of the form of (3.5).

Now we have a similar result for systems with fractional orders lying between 1 and
2.

Proposition 3.5. Consider a partially autonomous commensurate fractional-order nonlinear system
of the form

x(α) = Ax + g(t, x) (3.9)

with 1 < α < 2, x ∈ R
n, A ∈ R

n×n, g : [t0,∞) × D ⊂ R
n → R

n is a continuous function, D is a
neighborhood of the origin, and g(x) holds the Lipschitz condition with respect to x.

Let A ∈ R
n×n with the argument of its kth eigenvalue denoted by θk = arg(λk(A)). Given a

transformation Ψ(α,A, g(t, ·)) = (αβ,MA, cg(t, ·)) such that the new system is

x(αβ) =MAx + cg(t, x), (3.10)
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where c ∈ R, 1/α < β < 2/α,M ∈ R
n×n, φk = arg(λk(M)) is the argument of the kth eigenvalue of

M,A = PJAP−1,M = PJMP−1. Also let φak = −θk+απ/2, φbk = −θk−απ/2, φmax = maxk{φak},
φmin = mink{φbk}, if

φmin > φk > φmax (3.11)

for each k = 1, 2, . . . , n, and if | arg(spec(A))|/= 0, |arg(spec(A))| > α(π/2), α + 1/‖A‖ < 2,
β ≤ 1, β < α(2 − 1/‖MA‖), limx→ 0‖g(t, x)‖/‖x‖ = 0 is uniformly satisfied for t ∈ [t0,∞),
‖MA‖ ≥ ‖A‖, and | arg(spec(M))|/= 0, then one claims that such transformation is a stability
preserving transformation for fractional-order systems of the kind of (3.9).

Proof. The first part of the hypothesis is that the original system (3.9) holds the conditions of
Theorem 2.8; therefore, we have that |θk| > α(π/2), for k = 1, 2, . . . , n, and that its origin is an
asymptotically stable solution.

Another part of the hypothesis is that g(t, x) holds the conditions from Theorem 2.8,
and from the proof of Theorem 2.8, we observe that such conditions also hold for cg(t, x).

We have also asked for ‖MA‖ ≥ ‖A‖, α + 1/‖A‖ < 2, and β < α(2 − 1/‖MA‖) to
hold, and thus we have that αβ + 1/‖MA‖ < 2. As a result, we only need | arg(spec(MA))| >
αβ(π/2) to hold the conditions from Theorem 2.8 for the new system (3.10).

By very similar arguments as in the proof of Proposition 3.4, we have that (3.8) holds
and we have asked for β ≤ 1 to hold; therefore conditions from Theorem 2.8 are satisfied and
we claim that Ψ is a stability preserving transformation for the fractional-order autonomous
systems of the form of (3.5).

The following corollaries are a direct consequence of Proposition 1 and Theorem 3.3 in
[23].

Corollary 3.6. Consider a linear autonomous commensurate fractional-order system of the form

x(α) = Ax, with 0 < α < 2, (3.12)

that holds the conditions from Theorem 2.4 or Theorem 2.3 accordingly, if one has a transformation
Ψ(α,M) = (αβ,MA) such that the new system is

x(αβ) =MAx, (3.13)

with all the variables and matrices as defined before, and if the inequality

φmin > φk > φmax (3.14)

holds, with φk, φmin, and φmax as defined before, then one claims that Ψ is an asymptotic stability
preserving transformation for the autonomous commensurate fractional-order linear systems of the
form of (3.12).

Remark 3.7. If we take the case of α = 1 for Proposition 3.4, or Proposition 3.5 we will have
similar conditions for the preservation of stability of the origin for an integer-order nonlinear
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system ẋ = Ax + g(x). And if we take the case of α = 1 for Corollary 3.6, we will have
the conditions for the preservation of asymptotic stability of an integer-order linear system
ẋ = Ax, without the modification over the order, of course.

Remark 3.8. Notice that the conditions from [18, 19] are different from the ones that we
obtain choosing α = 1 in Proposition 3.4 and cannot be obtained as a particular case of
Proposition 3.4.

4. Preservation of Synchronization

Given the conditions from Proposition 3.4, we want to illustrate how to use these criteria to
ensure the preservation of stabilization and synchronization.

4.1. Preservation of Stabilization of Autonomous Commensurate
Fractional-Order Nonlinear Systems

First for the stabilization of a system, we know from previous works that for an autonomous
fractional commensurate order system of the form x(α) = Ax + g(x) + u, where g(x) holds,
the conditions from Theorem 2.7, and with A = PJAP

−1, we can choose a control u = −K1x,
K1 ∈ Rn×n, withK1 ∈ R

n×n in such a way that for the system x(α) = (A−K1)x+g(x), the origin
is a stable solution. But in this particular case we want thatA−K1 = P(JA−JK1)P

−1; therefore,
we need to construct K1 as K1 = PJK1P

−1; the Jordan form JK1 also has the restriction that its
Jordan blocks must be of the same order and type as the ones of JA.

Now for the modified system x(αβ) = MAx + cg(x) + u, we will use a similar control
(i.e., with the same K1) defined as u = −MK1x, where M := PJMP

−1 holds the conditions
from 1 and all the other matrices defined as before, in such a way that for the system x(αβ) =
(MA −MK1)x + cg(x), the origin is also a stable solution.

4.2. Preservation of Complete Practical Synchronization of Autonomous
Commensurate Fractional-Order Nonlinear Systems

First we need to describe the synchronization scheme. Let us consider two fractional-order
systems as the master and the slave system, respectively,

x
(α)
M = AMxM + g(xM), x

(α)
S = ASxS + g(xS) +w,

yM = hM(xM), yS = hS(xS),
(4.1)

where xM ∈ Rn is the state vector of the master system, yM :∈ Rp is the output of the master
system, xS ∈ Rn is the state vector of the slave system, w ∈ Rn is the control input, and
yS ∈ Rp is the output of the slave system.

In this synchronization scheme, the master system represents the target dynamics,
while the slave system represents the system to be controlled.

Let us consider that all the outputs are available, only to illustrate the effectiveness
of the method by showing more states on the graphs of the synchronization error in the
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examples, of course the order of the output can be less than the order of the state vector. This
consideration will lead us to the synchronization error:

e = xM − xS, (4.2)

we must find a function w such that ‖e(t)‖ is bounded in a subset that contains the origin,
because the result presented in [17] only gives conditions for the stability of the origin,
not for asymptotic stability. Because of this fact, this approach is called complete practical
synchronization.

We specifically choose the control

w = g(xM) − g(xS) − g(xM − xS) +AMxM −ASxS −AS(xM − xS) +K2(xM − xS), (4.3)

where K2 ∈ Rn×n, in such a way that the error dynamics is given by

e(α) = x(α)
M − x(α)

S = (AS −K2)e + g(e). (4.4)

As before, given that AS = PASJASP
−1
AS

, we will have AS − K2 = PAS(JAS − JK2)P
−1
AS

,
and therefore we need to construct K2 as K2 = PASJK2P

−1
AS

in such a way that the origin of
the dynamic system of the error is stable. Again the Jordan form JK has the restriction that its
Jordan blocks must be of the same order and type as the ones of JAS .

Then, we want to illustrate what kind of transformations can be applied to the master
and slave systems in such a way that the same K2 still stabilizes the origin of the modified
synchronization error system. And to do this we define the modification matrices MM :=
PAMJMP

−1
AM

and MS := PASJMP
−1
AS

that hold the conditions from Proposition 3.4. With these
modifications applied to each of the systems in the following way:

x
(α)
M =MMAMxM + g(xM) x

(α)
S =MSASxS + g(xS) +w, (4.5)

with the synchronization error defined as in (4.2), and the control defined as

w = g(xM) − g(xS) − g(e) +MMAMxM −MSASxS −MSASxS +MSK2e (4.6)

(the only change is that instead of the termK2e now isMSK2e), one has that the autonomous
commensurate fractional order dynamical system of the error is

e(α) =MS(AS −K2)e + g(e) = (MSAS −MSK2)e + g(e). (4.7)

Given that one has constructed the matrixM in such a way that it holds the conditions from
Proposition 3.4 it is straightforward to prove that the origin of the new dynamic system of the
error is also stable. Note that the modification of the linear part of the vector field associated
to the fractional differential equation, modifies the manifold of synchronization, but not the
stability.
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5. Examples

5.1. Preservation of Stabilization for Fractional-Order Lorenz Systems

Let us take the Lorenz system with commensurate fractional-order α = 0.97 that can be
written as [5]:

x(α) = Ax + g(x) + u =

⎡
⎢⎣
−σ σ 0
ρ −1 0
0 0 −β

⎤
⎥⎦x +

⎡
⎣ 0
−x1x3
x1x2

⎤
⎦ −K1x (5.1)

with x = [x1 x2 x3]
T , σ = 10, ρ = 28, β = 8/3, initial conditions x(0) = [−9 − 5 14]T . This

system is chaotic as it is claimed in [25].
The objective is to stabilize the system and then apply a modification that holds the

conditions of Proposition 3.4, to illustrate the validity of the analytical results.
In order to do this the next, we choose u = −K1x. With

JK1 =

⎡
⎣−17 0 0

0 15 0
0 0 4

⎤
⎦, K1 =

⎡
⎣−5.1552 9.2338 0
25.8545 3.1552 0

0 0 4

⎤
⎦, (5.2)

the eigenvalues of the new matrix A −K1 are λ1 ≈ −5.827, λ2 ≈ −3.172, and λ3 ≈ −6.666, with
this and the fact that g(x) holds the conditions from Theorem 2.7 (as it has been demonstrated
in [17]), we know that the origin of the controlled system is a stable solution.

Now we are interested in verifying what will happen if we propose a modification
such as αβ = 0.95, β ≈ 0.97938, c = 0.8, and

JM =

⎡
⎣11 0 0
0 9 0
0 0 10.4

⎤
⎦, M =

⎡
⎣10.2595 −0.5771 0
−1.6159 9.7403 0

0 0 10.4

⎤
⎦, (5.3)

it can be easily verified that M holds the conditions of Proposition 3.4. The eigenvalues of
the modified systemM(A −K1) are λ1 ≈ −64.105, λ2 ≈ −28.550, and λ3 ≈ −69.333. Given that
this eigenvalues hold the conditions of Theorem 2.7 and that 0.8g(x) also holds the rest of the
conditions, the origin of the modified controlled system is also a stable solution.

In Figures 1 and 4, the simulation step and time were 0.004 and 50 s, respectively. In
the first 25 s, the system was the original one (u = 0), and for the last 25 s the control u was
activated, for the unmodified and modified systems (Figure 2).

5.2. Preservation of Complete Practical Synchronization for
Fractional-Order Chen Systems

In this example specifically, we will make the synchronization of two fractional-order Chen
systems with identical parameters and orders but different initial conditions, and because of
these consideration, we will have that AM = AS, and therefore we drop the indices for the
matrices A andM.
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Figure 1: Graphs of the states versus time of the controlled systems.
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Figure 2: Phase plane of the unmodified and modified systems.

We use the structure of the Chen system with fractional-order α as presented in [3].
For the slave system, we have

x(α)
S = AxS + g(xS) =

⎡
⎣ −a a 0
d − a d 0
0 0 −b

⎤
⎦xS +

⎡
⎣ 0
−xS1xS3

xS1xS2

⎤
⎦ +w (5.4)
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Figure 3: Errors graph with the control law applied at t = 25 s.

with w as defined in (4.6), xS = [xS1 xS2 xS3]
T , a = 35, b = 3, d = 28, and α = 0.975, initial

conditions xS(0) = [3 0 10]T .
Now, for the master system, we take

x(α)
M = AxM + g(xM) =

⎡
⎣ −a a 0
d − a d 0
0 0 −b

⎤
⎦xM +

⎡
⎣ 0
−xM1xM3

xM1xM2

⎤
⎦ (5.5)

with xM = [xM1 xM2 xM3]
T , a = 35, b = 3, d = 28, α = 0.975, and initial conditions xM(0) =

[−9 − 5 14]T .
Both master and slave systems are chaotic, as far as the conditions from [25]. For the

control law (4.3), we have

JK2 =

⎡
⎣−26 0 0

0 28 0
0 0 4

⎤
⎦, K2 =

⎡
⎣−30.1130 34.5700 0
−6.9140 32.1130 0

0 0 4

⎤
⎦, (5.6)

and for the modification we take c = 0.9, αβ = 0.96, β ≈ 0.9846, and

JM =

⎡
⎣1.075 0 0

0 0.955 0
0 0 1.2

⎤
⎦, M =

⎡
⎣1.0841 −0.0768 0
0.0154 0.9459 0

0 0 1.2

⎤
⎦. (5.7)
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Figure 4: Phase plane of the unmodified and modified synchronizations; the master systems are in blue,
and the slave systems in black; the control law is applied at t = 50 s.

With K2 as proposed, it is assured that the synchronization error system without
modification holds the conditions of Theorem 2.7. It can be easily verified thatM and 0.9g(x)
hold the conditions from Proposition 3.4, in such a way that we can assure that this is an
example of preservation of synchronization.

Again the simulation step and time were 0.0028 and 50 s, respectively. In the first 25 s
the system was the original one (w = 0), and for the last 25 s, the controlw was activated, for
the unmodified and modified systems.

In Figure 3, we can observe how the application of the control law, with the same K2,
stabilizes the origin of the unmodified and the modified synchronization error systems.

In Figure 4, we can observe the way the slave system follows to the master system for
the unmodified and the modified systems with the same K2. All the simulations were made
using the algorithms presented in [26].

From several simulations, we have observed that under large variations in the
parameters these transformations do not preserve chaos. This limits the possible variations
in the transformations because, as it is well known, the chaos in dynamical systems is very
sensitive to variations in the parameters.

6. Conclusions

As far as the authors know, this is the first time that the preservation of autonomous
commensurate fractional order systems stability is made considering transformations that
affect the fractional order, the linear part, and the nonlinear part of the vector field of the
differential equation.

Furthermore, we have explained how these results can be used to ensure the
preservation of stabilization and the preservation of synchronization of autonomous
commensurate fractional-order systems and, through the presented examples, we have also
showed the effectiveness of the results.
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It is also worth to mention that there are some other results on the stability of
fractional-order autonomous systems [25, 27, 28] that can be used in a similar way to
Proposition 3.4 to state the conditions for the preservation of asymptotic stability of the
solutions, for 0 < α < 1.
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[8] J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled
synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005.
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