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This paper focuses on the principle for designing reduced-order fuzzy-observer-based actuator
fault reconstruction for a class of nonlinear systems. The problem addressed can be indicated
as an approach for a kind of reduced-order fuzzy observer design with special gain matrix
structure that depends on a given matching condition specification. Using the Lyapunov theory,
the stability conditions are obtained and expressed in terms of linear matrix inequalities, and the
conditions for asymptotic estimation of actuator faults are derived. Simulation results illustrate
the observer design procedure and demonstrate the actuator fault reconstruction effectiveness and
performance.

1. Introduction

Automated diagnosis has been one of the most fruitful applications in sophisticated
control systems, with potential significance for domains in which systems diagnosis must
proceed, while the system is operative and testing opportunities are limited by operational
considerations. A real problem is usually to fix the system with faults so that it can continue
its mission for some time with some limitations in functionality. Consequently, diagnosis
is a part of a larger problem known as Fault Detection, Identification and Reconfiguration
(FDIR). The classical principles include observer-based methods, parity space methods, and
parameter identification based methods, which have been thoroughly studied (see, e.g., [1, 2]
and the references therein).

Observer design is an actual research topic, important in the observer-based fault
estimation, and in the fault detection and isolation [3–5]. The nonlinear system theory,
exploiting Lipschitz condition, is emerged as an approach capable of use in the state
estimation design for nonlinear systems [6], although Lipschitz condition is a restrictive



2 Mathematical Problems in Engineering

limitation and many classes of systems may not be satisfied. Application of this principle
in state estimator design results only in a sufficient condition for the asymptotic stability of
estimation error, and, in fact, there is no straightforward method for selecting the observer
gain to satisfy such conditions [7]. Because of strong restrictions, an observer structure with
adaptively adjusted parameters is proposed in [8], where Lipchitz constant can be unknown.
Concerning fault detection, for example, in [9–11] there are proposed sliding-mode observers.
Since they are conditioned by matching conditions, these approaches are not sufficient to
ensure safe operation in all applications.

Recently, fault estimation and reconstruction are preferred as an option to fault
detection, where, instead of generating residuals, observer-based methods are used to
reconstruct sensor and actuator fault signals in nonlinear systems. These practices primarily
use adaptive and unknown input observer structures (see e.g., [12–14]), ensuring disturbance
rejection and robustness properties of fault estimation.

An alternative approach is the Takagi-Sugeno (TS) fuzzy approximation of the
nonlinear system model equations. Since the TS fuzzy method provides the suitable model
for a certain class of nonlinear dynamic systems [15], the well-known nonlinear observers are
based on TS fuzzy system model. Using TS fuzzy model, a nonlinear system is represented
by the fuzzy rules. Each rule utilizes the local system dynamics by a linear model, and the
nonlinear system is represented by a collection of fuzzy rules. In this sense, the TS fuzzy
model can be viewed as an expansion of piecewise linear partition for the nonlinear system.
Since such description allows the utilization of system state representation, model order
reduction and error approximation problems have to be solved using the projection methods
[16], generally given in the form of linear matrix inequality (LMI) constraints.

System state observers based on TS fuzzy models are principally realized in the same
structures as the linear observers [17–20], and design principles usually used techniques
based on LMIs. Research in TS fuzzy observers application in fault detection and isolation
has attracted many investigators and was the subject of widely scattered publications (see,
e.g., [21–24]), mainly focused on the LMI-based observer design, to ensure the stability of the
residuals and to optimize the quadratic performance of residual transfer matrix with respect
to exogenous disturbance.

Because fault reconstruction provides a direct estimate of the size and severity of
a fault, the location of the fault is so known, and the fault isolation step can be deleted.
Establishing a general approach for fault reconstruction in systems described by TS models,
or finding conditions under which fault reconstruction is well possible, is still an open
task [25]. Sophisticated fault estimation schemes were proposed especially for systems
with disturbances and uncertainties, where, for example, Gao et al. [26] propose the fuzzy
descriptor observer, potentially applicable to sensor fault estimation. In contrast, Xu et al.
[27] present an estimation algorithm, based on the integrated fuzzy observer and the inverse
system model, for nonlinear actuator fault estimation. The principle of the inverse system
model is combined with sliding mode also in [27], since sliding mode observers can be
employed in fault estimation if systems are uncertain owing to their insensitivity to matched
uncertainties or disturbances. Certainly, the basic approach to actuator faults estimation is
based on TS adaptive observers [17], in spite of high-order observer dynamics. On the other
hand, few results have been reported to reduced-order observer-based fault reconstruction
[8, 28], despite the importance of relative-order dynamics of reduced-order observers for
systems without disturbances.

Considering the author’s previous work [29], the main contribution of the paper
is to examine one principle for designing of reduced-order-observer-based actuator fault
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estimation for a class of continuous-time nonlinear MIMO systems, approximated by TS
models. Comparing with the approach given in [14], a new design method is proposed
to construct a set of linear reduced-order observers, combined by fuzzy rules, to estimate
unmeasurable part of the system state vector. Based on the stable observer set, the actuator
fault estimation scheme is developed to guarantee asymptotic estimation of actuator faults.
The structure of the design conditions is motivated by the need for feasibility, while under
defined matching conditions the stability of the reduced-order observer is assured.

The remainder of this paper is organized as follows. Sections 2 and 3 describe TS fuzzy
model properties for given class of nonlinear systems and the design principle of the reduced-
order observer based on TS model, respectively. The actuator fault reconstruction, using
reduced-order fuzzy observer, is outlined in Section 4, especially with respect to observer
design principle, matching condition, and stability. In Section 5, one illustrative example is
given, and simulation results are presented to confirm the validity of the proposed fault
reconstruction scheme. Finally, Section 6 draws some concluding remarks.

Throughout the paper, the following notations are used: xT , XT denotes the transpose
of the vector x and matrix X, respectively, diag[·] denotes a block diagonal matrix, for a
square matrix X = XT > 0 (resp., X = XT < 0) means that X is a symmetric positive definite
matrix (resp., symmetric negative definite matrix), the symbol In represents the nth order unit
matrix, R denotes the set of real numbers, and R

n×r denotes the set of all n × r real matrices.

2. Takagi-Sugeno Fuzzy Models

The systems under consideration fall in a class of multi-input and multioutput (MIMO)
nonlinear dynamic systems, which in the state-space form are represented as

q̇(t) = a(q(t)) + B(q(t))u(t) + Bf f(t),

y(t) = Cq(t),
(2.1)

where q(t) ∈ R
n, u(t), uf(t) ∈ R

r , and y(t) ∈ R
m are vectors of the state, input, actuator

fault, and output variables, respectively, C ∈ R
m×n, Bf ∈ R

n×r are real matrices, a(q(t)) ∈ R
n,

B(q(t)) ∈ R
n×r are bounded nonlinear functions of q(t), and f(t) ∈ R

r is an actuator fault.
It is assumed that a(q(t)) is bounded in associated sectors, that is, in the regions within the
system will operate, a(0) = 0, only actuator faults can occur, and if no actuator fault occurs
then uf(t) = 0, for all t ≥ 0.

It is considered that the number of the nonlinear terms in the vector function a(q(t))
is p and there exists the set of the nonlinear sector functions {wlj(θj(t)), l = 1, 2, . . . , p, j =
1, 2, . . . , k} such that

wl1(θ(t)) = 1 −
k∑

j=2

wlj

(
θj(t)

)
, (2.2)

where k is the number of sector functions, and

θ(t) =
[
θ1(t) θ2(t) · · · θq(t)

]
(2.3)
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is the vector of premise variables. A premise variable represents any measurable variable (in
a simple case it can be directly a state variable) and none of the premise variables depend on
the inputs u(t).

Thus, constructing the set of membership functions wi(θ(t)) =
∏p

l=1|jwlj(θj(t)), i =

1, 2, . . . s, s = 2k from all combinations of the sector functions, the states of the system with
an actuator fault are inferred as follows:

q̇(t) =
s∑

i=1

hi(θ(t))(Aiq(t) + Biu(t)) + Bf f(t), (2.4)

y(t) = Cq(t), (2.5)

where the system output is given by the relation (2.5) and

hi(θ(t)) =
wi(θ(t))∑s
i=1 wi(θ(t))

(2.6)

is the averaging weight for the ith rule, representing the normalized grade of membership
(membership function). By definition, themembership functions satisfy the following convex
sum properties:

0 ≤ hi(θ(t)) ≤ 1,
s∑

i=1

hi(θ(t)) = 1, ∀i ∈ 〈1, . . . , s〉, (2.7)

Ai ∈ R
n×n is the Jacobian matrix of a(q(t)) with respect to q(t) = qi, Bi ∈ R

n×r is the matrix
equal to B(qi), and qi is the center of the i-th fuzzy region, described by the associated sector
function. It is evident that the fuzzy model is achieved by fuzzy amalgamation of the linear
subsystem models.

Using a TS model, the conclusion part of a single rule consists no longer of a fuzzy
set [19], but determines a function with state variables as arguments, and the corresponding
function is a local function for the fuzzy region that is described by the premise part of the
rule. Thus, using linear functions, a system state is described locally (in fuzzy regions) by
linear models, and at the boundaries between regions the linear interpolation is used between
the corresponding local models.

Note, the model (2.4), (2.5) is mostly considered for analysis, control, and state
estimation of nonlinear systems.

It is supposed in the next that the aforementioned TS model does not include
parameter uncertainties or external disturbances, and all premise and output variables are
measurable.

3. Basic Preliminaries

Definition 3.1 (null space of the matrix). Let E ∈ R
h×h, rank(E) = k < h be a rank deficient

matrix. Then the null space NE of E is the orthogonal complement of the row space of E.
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Lemma 3.2 (orthogonal complement). If E ∈ R
h×h, rank(E) = k < h, is a rank deficient matrix,

then an orthogonal complement E⊥ of E is

E⊥ = E◦UT
E2, (3.1)

where UT
E2 is the null space of E and E◦ is an arbitrary matrix of appropriate dimension.

Proof (see, e.g., [30]). The singular value decomposition (SVD) of E gives

UT
EEVE =

[
UT

E1
UT

E2

]
E
[
VE1 VE2

]
=
[
SE 012
021 022

]
, (3.2)

where UT
E ∈ R

h×h is the orthogonal matrix of the left singular vectors of E, VE ∈ R
h×h is the

orthogonal matrix of the right singular vectors of E, and SE ∈ R
k×k is the diagonal positive

definite matrix of the form

SE = diag
[
σE1 · · · σEk

]
, σE1 ≥ · · · ≥ σEk > 0, (3.3)

which diagonal elements are the singular values of E. Using orthogonal properties of UE and
VE, that is, UT

EUE = Ih,VT
EVE = Ih, and

[
UT

E1
UT

E2

][
UE1 UE2

]
=
[
I1 0
0 I2

]
, UT

E2UE1 = 0, (3.4)

respectively, where Ih ∈ R
h×h is the identity matrix, then E can be written as

E = UESEVT
E =
[
UE1 UE2

][SE 012
021 022

][
VT

E1
VT

E2

]
=
[
UE1 UE2

][SE1

02

]
= UE1SE1, (3.5)

where SE1 = SEVT
E1. Thus, (3.4) and (3.5) imply

UT
E2E = UT

E2

[
UE1 UE2

][SE1

02

]
= 0. (3.6)

It is evident that for an arbitrary matrix E◦ it is

E◦UT
E2E = E⊥E = 0, (3.7)

which implies (3.1). This concludes the proof.

Lemma 3.3 (congruence transform). Let the output matrix C be of full column rank, rank C = m,
then there exists a new coordinate system such that C takes the structure Ca = [Im 0].
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Proof. Applying SVD to C gives

C = U
[
S 0
]
VT = US

[
Im 0

]
VT , (3.8)

where rows of UT ∈ R
m×m are left singular vectors of C, and columns of V ∈ R

n×n are right
singular vectors of C, all ordered in such way to be associated with the singular values of C,
written as diagonal elements of S ∈ R

m×m,

S = diag
[
σ1 · · · σm

]
, σ1 ≥ · · · ≥ σm > 0. (3.9)

Using the notations

W−1 = US, Ta = VT , Ca =
[
Im 0

]
, (3.10)

where

TT
a =
[
TT
a1 TT

a2

]
, TT

a1 ∈ R
n×m, (3.11)

then (3.8) implies

C = W−1CaTa, Ca = WCT−1
a . (3.12)

Note if C is of rank m, W ∈ R
m×m is a regular matrix, and Ta ∈ R

n×n is an orthogonal matrix
such that T−1

a = TT
a = V. This concludes the proof.

Lemma 3.4. Using the congruence transform (3.12), each linear submodel of fault-free TS fuzzy
model (2.4), (2.5) can be partitioned such that

[
q̇a1i

q̇a2i

]
=
[
Aa11i Aa12i

Aa21i Aa22i

][
qa1(t)
qa2(t)

]
+
[
Ba1i

Ba2i

]
u(t) +

[
Baf1

Baf2

]
f(t), (3.13)

y(t) = W−1v(t), (3.14)

v(t) =
[
Im 0

]
qa(t) =

[
Im 0

][qa1(t)
qa2(t)

]
, (3.15)

qT
a(t) =

[
qT
a1(t) qT

a2(t)
]
, qa(t) = Taq(t), (3.16)

where qa1(t) ∈ R
m, qa2(t) ∈ R

n−m, Ba1i ∈ R
m×r , Baf1 ∈ R

m×r , respectively.

Proof. Substituting (3.11) into (2.5) gives

y(t) = W−1CaTaq(t) = W−1Caqa(t). (3.17)
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Thus, using

v(t) = Caqa(t), (3.18)

(3.17) implies (3.14), and with (3.11), (3.12), then (3.18) implies (3.15).
Substituting (3.16) in (2.4), it can be obtained

q̇a(t) =
s∑

i=1

hi(θ(t))Aaiqa(t) + Baiu(t) + Baf f(t), (3.19)

where

Aai = TaAiT−1
a , Bai = TaBi, Baf = TaBf , (3.20)

and partitioning accordingly to (3.15), (3.20) implies (3.13). This concludes the proof.

Proposition 3.5 (matching condition). The fault input matrix and the output matrix Baf , C
satisfies the conditions rank Baf = r, rank C > rank Bf , respectively, that is, m > r, and the matrix
Baf takes the structure

Baf = CT
aBaf1. (3.21)

The matching condition, given in Proposition 3.5 seems to be restrictive theoretically,
but fortunately, for many practical control systems it is satisfied. In addition, comparing
with the static decoupling control principle [31], the condition reflects inserting at least one
redundant output sensor into the sensor structure.

4. Full-Order TS Fuzzy Observer

Standard applications of TS fuzzy principle in nonlinear system fault diagnosis exploit the
fuzzy observers as residual generators. The procedure of fault detection covers the residual
generation by the fuzzy observers and their evaluation. Thus, the reconstruction error, or any
function of it, is used as fault residual signal that is as a rule zero in the fault free case and
nonzero otherwise [1, 2].

The fuzzy observer to the fault-free system (2.4), (2.5) is constructed as follows:

q̇e(t) =
s∑

i=1

hi(θ(t))(Aqe(t) + Bu(t) +Aiqe(t) + Ji(y − ye(t))), (4.1)

ye(t) = Cqe(t), (4.2)

where qe(t) ∈ R
n is the estimation of the system state vector, Ji ∈ R

n×m, i = 1, 2, . . . , s, is the
set of the observer gain matrices. The design conditions are given by the next lemma.
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Lemma 4.1. The fuzzy observer (4.1), (4.2) is stable if there exist a positive definite symmetric matrix
P > 0, P ∈ R

n×n, and matrices Zi ∈ R
n×m, i = 1, 2, . . . , s, such that

P = PT > 0, (4.3)

AiP + PAi − ZT
i C

T − ZiC < 0, ∀i. (4.4)

If the above conditions hold, the set of the observer gain matrices is given as

Ji = P−1Zi. (4.5)

Proof. Introducing the estimation error between the fault-free (2.4) and (4.1) as follows:

e(t) = q(t) − qe(t), (4.6)

and taking into account the time derivative of e(t), it can be obtained

ė(t) =
s∑

i=1

hi(θ(t))(Ai − JiC)e(t) =
s∑

i=1

hi(θ(t))Aeie(t), (4.7)

where the observer system matrices are

Aei = Ai − JiC, i = 1, 2, . . . , s. (4.8)

Defining the quadratic positive definite Lyapunov function of the form

v(e(t)) = eT (t)Pe(t), (4.9)

where P > 0, then after evaluation of its derivative with respect to t it is obtained

v̇(e(t)) = ėT (t)Pe(t) + eT (t)Pė(t). (4.10)

Substituting (4.7) in (4.10) gives

v̇(e(t)) = eT (t)P
s∑

i=1

hi(θ(t))Aeie(t) + eT (t)
s∑

i=1

hi(θ(t))AT
eiPe(t), (4.11)

v̇(e(t)) = eT (t)
s∑

i=1

hi(θ(t))
(
PAei +AT

eiP
)
e(t), (4.12)

respectively. It is evident that (4.12) is negative if there exist a set of gain matrices Ji ∈
R

n×m, i = 1, 2, . . . , s, and a symmetric positive definite matrix P ∈ R
n×n such that

(Ai − JiC)TP + P(Ai − JiC) < 0, ∀i. (4.13)



Mathematical Problems in Engineering 9

Setting

PJi = Zi, (4.14)

(4.13) implies (4.4). This concludes the proof.

Note, to apply for actuator fault reconstruction, an adaptive structure of the full-order
state observer can be used [12].

5. Reduced-Order TS Fuzzy Observer

Problem of the interest is to design the asymptotically stable reduced-order observer based
on the TS fuzzy model of the fault-free nonlinear system (2.4), (2.5).

Theorem 5.1. Considering the affine TS fuzzy system (2.4), (2.5), then the reduced-order TS fuzzy
observer takes the form

ṗ2e(t) =
s∑

i=1

hi(θ(t))q◦
2ei(t), (5.1)

q◦
2ei(t) = Aaeip2e(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t), (5.2)

qa2e(t) = p2e(t) +
s∑

i=1

hi(θ(t))Jiv(t), (5.3)

where

Aavi = Aa21i − JiAa11i + (Aa22i − JiAa12i)
s∑

j=1

hj(θ(t))Jj , (5.4)

Aaei = Aa22i − JiAa12i, (5.5)

and Ji ∈ R
(n−m)×m, i = 1, 2, . . . , s is the set of gains.

Proof. Since (3.13) can be partitioned as

Aa12iqa2(t) = q̇a1i(t) −Aa11iv(t) − Ba1iu(t), (5.6)

q̇a2i(t) = Aa21iv(t) +Aa22iqa2(t) + Ba2iu(t), (5.7)

then the TS fuzzy observer can be defined as follows:

q̇a2e(t) =
s∑

i=1

hi(θ(t))q•
a2ei(t), (5.8)

q•
a2ei(t) = Aa21iv(t) +Aa22iqa2e(t) + Ba2iu(t) + Ji(q̇a1i(t) −Aa11iv(t) − Ba1iu(t) −Aa12iqa2e(t)),

(5.9)
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where qa2e(t) ∈ R
n−m is an estimation of the unmeasurable part of system state vector, and

Ji, i = 1, 2, . . . , s, Ji ∈ R
(n−m)×m, is the set of the observer gain matrices. Now, (5.8), (5.9) can

be rewritten as

q̇a2e(t) −
s∑

i=1

hi(θ(t))Jiq̇a1i(t) =
s∑

i=1

hi(θ(t))q

a2i(t), (5.10)

q

a2i(t) = Ba2iu(t) +Aa21iv(t) +Aa22i

(
qa2e(t) −

∑s
j=1 hj(θ(t))Jjv(t) +

∑s
j=1 hj(θ(t))Jjv(t)

)

+ Ji

( −Aa11iv(t) − Ba1iu(t)
−Aa12i

(
qa2e(t) −

∑s
j=1 hj(θ(t))Jjv(t) +

∑s
j=1 hj(θ(t))Jjv(t)

)
)
.

(5.11)

Defining the new state variable

p2e(t) = qa2e(t) −
s∑

i=1

hi(θ(t))Jiv(t), (5.12)

then (5.12) implies (5.3), and defining the left side of (5.10) as

ṗ2e(t) = q̇a2e(t) −
s∑

i=1

hi(θ(t))Jiq̇a1i(t), (5.13)

it can be obtained

ṗ2e(t) =
s∑

i=1

hi(θ(t))q◦
2ei (5.14)

q◦
2ei = (Aa22i − JiAa12i)p2e(t) + (Ba2i − JiBa1i)u(t)

+ (Aa21i − JiAa11i)v(t) + (Aa22i − JiAa12i)
s∑

j=1

hj(θ(t))Jjv(t).
(5.15)

Since

Ba2i − JiBa1i =
[−Ji In−m

]
Bai (5.16)

with (5.4), (5.5), and (5.16) then (5.14), (5.15) implies (5.1), (5.2).
It is evident that

v(t) = qa1(t) = p1(t). (5.17)

This concludes the proof.
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Theorem 5.2 (reducer-order TS fuzzy observer stability). The reduced-order TS fuzzy observer
(5.1), (5.2) is asymptotically stable if there exist a symmetric positive definite matrix P◦ ∈
R

(n−m)×(n−m) and matrices Z◦
i ∈ R

(n−m)×m, i = 1, 2, . . . , s such that

P◦ = P◦T > 0, (5.18)

AT
a22iP

◦ + P◦Aa22i −AT
a12iZ

◦T
i − Z◦

iAa12i < 0. (5.19)

If the above conditions hold, the set of the observer gain matrices is given as

Ji = (P◦)−1Z◦
i . (5.20)

Proof. Using (5.1), (5.2), it can be rewritten as

ṗ2e(t) =
s∑

i=1

hi(θ(t))
(
Aaeip2e(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t)

)
, (5.21)

and, with (5.4), the autonomous part of (5.21) takes the form

ṗ2e(t) =
s∑

i=1

hi(θ(t))(Aa22i − JiAa12i)p2e(t). (5.22)

Defining the quadratic positive definite Lyapunov function:

v(p2e(t)) = pT
2e(t)P

◦p2e(t), (5.23)

where P◦ = P◦T > 0, P◦ ∈ R
(n−m)×(n−m) then, after evaluation of derivative with respect to t, it

is obtained

v̇(p2e(t)) = pT
2e(t)P

◦ṗ2e(t) + ṗT
2e(t)P

◦p2e(t) < 0. (5.24)

Substituting (5.22) into (5.24) gives

v̇(p2e(t)) = pT
2e(t)P

◦
s∑

i=1

hi(θ(t))Aaeip2e(t) + pT
2e(t)

s∑

i=1

hi(θ(t))AT
aeiP

◦p2e(t) < 0, (5.25)

v̇(p2e(t)) = pT
2e(t)

s∑

i=1

hi(θ(t))
(
P◦Aaei +AT

aeiP
◦
)
p2e(t) < 0, (5.26)

respectively. Thus, (5.26) is negative, if there exist a set of matrices Ji, i = 1, 2, . . . , s, and a
matrix P◦ such that

(Aa22i − JiAa12i)TP◦ + P◦(Aa22i − JiAa12i) < 0, ∀i. (5.27)
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Setting

P◦Ji = Z◦
i (5.28)

(5.27) implies (5.19). This concludes the proof.

Remark 5.3. If (5.19) is infeasible, then it can be set

AT
a22iP + PAa22i −AT

a12iZ
T
i − ZiAa12i < −Q, (5.29)

where Q = QT > 0, Q ∈ R
(n−m)×(n−m) is a symmetric positive definite matrix. It is

obvious, based on the inequality (5.29), such design condition implies inherently the more
conservative solution.

Theorem 5.4 (stability condition equivalency). The asymptotic stability condition of the
autonomous part of (5.22) is the same as the asymptotic stability condition of the error reference
model as follows:

ėaq2(t) =
s∑

i=1

hi(θ(t))(Aa22i − JiAa12i)eaq2(t), (5.30)

where the estimation error of the unmeasurable part of state variables is

eaq2(t) = qa2(t) − qa2e(t). (5.31)

Proof. Substituting (5.3) in (5.31) gives

ea2(t) = qa2(t) − p2e(t) −
s∑

i=1

hi(θ(t))Jiv(t). (5.32)

Defining, in analogy with (5.1)–(5.3), the reference variable p2(t) is as follows:

p2(t) = qa2(t) −
s∑

i=1

hi(θ(t))Jiv(t), (5.33)

ṗ2(t) =
s∑

i=1

hi(θ(t))q◦
2i(t), (5.34)

q◦
2i(t) = Aaeip2(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t), (5.35)

and substituting (5.33) in (5.32) gives

eaq2(t) = p2(t) − p2e(t) = ep2(t), (5.36)

ėaq2(t) = ėp2(t) = ṗ2(t) − ṗ2e(t), (5.37)
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respectively. Thus, inserting (5.1), (5.2) and (5.34), (5.35) into (5.37) results in

ėaq2(t) =
s∑

i=1

hi(θ(t))Aaei(p2(t) − p2e(t)), (5.38)

and with (5.5), (5.36) then (5.38) implies (5.30).
Since (5.22) and (5.36) are associated with the same systemmatrixAaei, this concludes

the proof.

Note, the form of the time derivative (5.13) is given by the definition.

Corollary 5.5 (error reference model). The equalities (5.17), (5.33) can be compactly written as

[
p1(t)
p2(t)

]
=

s∑

i=1

hi(θ(t))Ti(Aaiqai(t) + Baiu(t)), (5.39)

where

Ti =
[
Im 0
−Ji In−m

]
,

TiBaiu(t) =
[
Im 0
−Ji In−m

][
Ba1i

Ba2i

]
u(t),

TiAaiqa(t) =
[

Aa11i Aa12i

Aa21i − JiAa11i Aa22i − JiAa12i

][
v(t)
qa2(t)

]
.

(5.40)

Ones explaining the variable p2(t) as a function of qa2(t) using (5.39), then the time derivative
of p2(t) can be obtained by the substitution (5.33), that is,

ṗ2(t) = p2(t)(qa2(t))‖qa2(t)≡p2(t)+
∑s

j=1 hj (θ(t))Jjv(t). (5.41)

Evidently, (5.39)–(5.41) can be adequately exploited to obtain the time derivative ṗ2e(t)
in the dependency on p2e(t), v(t), and u(t).

Using the equivalency of the stability conditions, an actuator fault estimation structure
based on reduced-order TS fuzzy observer can be discussed.

6. Estimation of Actuator Faults

To obtain an actuator fault estimation structure based on reduced-order TS fuzzy observer,
the matching condition (3.21) has to be satisfied. This implies that a special observer gain
matrices have to be chosen.
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Theorem 6.1. The estimation error dynamics of the reduced-order TS fuzzy observer (5.1), (5.2) is
not affected by actuator faults if, with the matching condition (3.21), there exists a symmetric positive
definite matrix P◦ ∈ R

(n−m)×(n−m) such that

P◦J = B⊥
af1, (6.1)

where B⊥
af1 is the orthogonal complement to Baf1, and Ji = J for all i = 1, 2, . . . , s.

Proof. The system with an actuator fault is described as

q̇afi(t) = Aaiqafi(t) + Baiu(t) + Bafuf(t). (6.2)

Since (3.13), (5.1), (5.2), and (5.34), (5.35) now implies

Baf = CT
aBaf1 =

[
Im
0

]
Baf1 =

[
Baf1

0

]
, (6.3)

ṗ2e(t) =
s∑

i=1

hi(θ(t))q◦
2efi(t),

ṗ2(t) =
s∑

i=1

hi(θ(t))q◦
2i(t),

(6.4)

q◦
2efi(t) = Aaeip2e(t) +Aaviv(t) +

[−Ji In−m
](
Baiu(t) + Bafuf(t)

)
, (6.5)

q◦
2i(t) = Aaeip2(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t), (6.6)

the dynamics of the error (5.37) can be rewritten as

ėaq2(t) = ṗ2(t) − ṗ2e(t) =
s∑

i=1

hi(θ(t))Aaeieaq2(t) +
s∑

i=1

hi(θ(t))
[−Ji In−m

]
Bafuf(t) (6.7)

Defining the quadratic positive definite Lyapunov function as follows:

v
(
eaq2(t)

)
= eTaq2(t)P

◦eaq2(t), (6.8)

where P◦ = P◦T > 0, P◦ ∈ R
(n−m)×(n−m), after evaluation of derivative of (6.7) with respect to t

it is obtained

v̇
(
eaq2(t)

)
= ėTaq2(t)P

◦eaq2(t) + eTaq2(t)P
◦ėaq2(t). (6.9)
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From the expression (6.7) it follows that

v̇
(
eaq2(t)

)
= eTaq2(t)P

◦
s∑

i=1

hi(θ(t))Aaeieaq2(t) + eTaq2(t)
s∑

i=1

hi(θ(t))AT
aeiP

◦ea2(t)

+ eTaq2(t)P
◦

s∑

i=1

hi(θ(t))
[−Ji In−m

]
Bafuf(t)

+ uT
f (t)

s∑

i=1

hi(θ(t))BT
af

[−Ji In−m
]T
P◦eTaq2(t),

(6.10)

and with respect to the matching condition (3.21), it can be set

P◦[−Ji In−m
]
Baf = P◦[−JiBaf1 0n−m

]
= 0, (6.11)

which results in the equality:

P◦JiBaf1 = 0, ∀i. (6.12)

Evidently, (6.12) can be satisfied if and only if Ji = J for all i. With such J, the equality (6.12)
will be satisfied if (6.1) is satisfied. This concludes the proof.

Evidently, Baf1 may not be a square matrix.

Theorem 6.2. The estimation error dynamic (6.7) is asymptotically stable, if there exists a symmetric
positive definite matrix P◦ ∈ R

(n−m)×(n−m) such that for i = 1, 2, . . . , s

P◦ = P◦T > 0, (6.13)

AT
a22iP

◦ + P◦Aa22i −AT
a12iB

⊥T
af1 − B⊥

af1Aa12i < 0, (6.14)

where B⊥
af1 is the orthogonal complement to Baf1.
If the above conditions hold, the observer gain matrix is given as

J = (P◦)−1B⊥
af1. (6.15)

Proof. Satisfying (6.11) then (6.10) implies

v̇
(
eaq2(t)

)
= eTaq2(t)

s∑

i=1

hi(θ(t))
(
P◦Aaei +AT

aeiP
◦
)
eaq2(t) < 0, (6.16)
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where Aaei is defined in (5.5). It is evident that (6.16) is negative if for all i

(Aa22i − JiAa12i)TP◦ + P◦(Aa22i − JiAa12i) < 0. (6.17)

Using (6.1) then (6.17) implies (5.19). This concludes the proof.

Corollary 6.3. Using (5.20), then one has

[−J In−m
]
Baf = (P◦)−1

[
−B⊥

af1 P◦
]
CTBaf1 = (P◦)−1

[
−B⊥

af1Baf1 0
]
= 0. (6.18)

Equality given above implies that neither estimation error (6.7), nor reduced-order TS fuzzy observer
equation (6.5) is affected by actuator faults.

Corollary 6.4. Since Ji = J for all i and
∑s

j=1 hj(θ(t)) = 1, (5.12) and (5.19) take the form

p2e(t) = qa2e(t) − Jv(t), (6.19)

Aavi = Aa21i − JAa11i + (Aa22i − JAa12)J. (6.20)

Remark 6.5. If Bai = Ba = Baf for all i, (6.18) implies that the reduced-order TS fuzzy observer
will be independent on the input u(t) and will exploit only the vector variable v(t).

Considering the fact that the reduced-order TS fuzzy observer does not contain any
information about actuator faults, the next reconstruction principle can be used.

Theorem 6.6. Designed with respect to P◦ satisfying (5.18)–(5.20), the reduced-order TS fuzzy
observer (5.1), (5.2) asymptotically estimates actuator faults.

Proof. Since (3.11), (3.14) implies

qe(t) = TT
aqae(t) = TT

a2qa2e(t) + TT
a1v(t), (6.21)

substituting (6.19) in (6.21) leads to

qe(t) = TT
a2p2e(t) +

(
TT
a1 + TT

a2J
)
Wy(t), (6.22)

q̇e(t) =
s∑

i=1

hi(θ(t))(Aiqe(t) + Biu(t)) + Bfuf(t). (6.23)

Thus, using Moore-Penrose pseudoinverse B
1
f

of Bf ,

ufe(t) = B
1
f

s∑

i=1

hi(θ(t))(q̇e(t) −Aiqe(t) − Biu(t)). (6.24)
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Explaining uf(t) as follows:

uf(t) = B
1
f

s∑

i=1

hi(θ(t))(q̇(t) −Aiqe(t) − Biu(t)), (6.25)

then for euf(t) = uf(t) − ufe(t) it yields

euf(t) = B
1
f

s∑

i=1

hi(θ(t))
(
ėq(t) −Aieq(t)

)
. (6.26)

Owing to that reduced-order observer is stable, euf(t) converges asymptotically to zero. This
concludes the proof.

Remark 6.7. Taking the actuator fault reconstructor as given by (6.24), it is necessary to note
that q̇e(t) has to be computed numerically from (6.22), since (5.7) is affected by actuator faults
and so cannot be used to the first state vector component derivative evaluation.

Note, matrix pseudoinverse in (6.24) is the reason that Bf has to be the same in all
linear submodels of (2.4).

7. Illustrative Example

Referring to [32], a nonlinear hydrostatic transmission system is considered in this section
for simulating the real environment. The proposed design method is applied to design an
actuator fault estimation scheme based on a reduced-order fuzzy observer using TS model of
this model. The hydrostatic transmission system is represented by the nonlinear state-space
model of the form

q̇1(t) = −a11q1(t) + b11u1(t)

q̇2(t) = −a22q2(t) + b22u2(t),

q̇3(t) = a31q1(t)p(t) − a33q3(t) − a34q2(t)q4(t),

q̇4(t) = a43q2(t)q3(t) − a44q4(t),

(7.1)

where q1(t) is the normalized hydraulic pump angle, q2(t) is the normalized hydraulic motor
angle, q3(t) is the pressure difference [bar], q4(t) is the hydraulic motor speed [rad/s], u1(t) is
the normalized control signal of the hydraulic pump, u2(t) is the normalized control signal of
the hydraulic motor, and the external signal p(t) represents speed of hydraulic pump [rad/s].
It is supposed that the external variable p(t) and all state variables except q3(t) aremeasurable
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and the model parameters are

a11 = 7.6923, a22 = 4.5455, a33 = 7.6054 ∗ 10−4,

a31 = 0.7877, a34 = 0.9235, b11 = 1.8590 ∗ 103,

a43 = 12.1967, a44 = 0.4143, b22 = 1.2879 ∗ 103.

(7.2)

Since the variables p(t) ∈ 〈105, 300〉 and q2(t) ∈ 〈0, 1〉 are bounded on the prescribed sectors,
the vector of premise variables was chosen as follows:

θ(t) =
[
θ1(t) θ2(t)

]
=
[
q2(t) p(t)

]
, (7.3)

where the set of nonlinear sector functions:

w11
(
q2(t)

)
=

b1 − q2(t)
b1 − b2

, w12
(
q2(t)

)
= 1 −w11

(
q2(t)

)
, b1 = 0, b2 = 1,

w21
(
p(t)
)
=

c1 − p(t)
c1 − c2

, w22
(
p(t)
)
= 1 −w21

(
p(t)
)
, c1 = 105, c2 = 300

(7.4)

implies the next set of normalized membership functions:

h1(θ(t)) = w11
(
q2(t)

)
w21
(
p(t)
)
, h2(θ(t)) = w11

(
q2(t)

)
w22
(
p(t)
)
,

h3(θ(t)) = w12
(
q2(t)

)
w21
(
p(t)
)
, h4(θ(t)) = w12

(
q2(t)

)
w22
(
p(t)
)
.

(7.5)

The overall TS fuzzy model (2.4), (2.5)with an actuator fault is represented as follows:

q̇(t) =
4∑

i=1

hi(θ(t))(Aiq(t)) + B(u(t) + f(t)),

y(t) = Cq(t),

(7.6)
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where

A1 =

⎡
⎢⎢⎣

−7.6923 0 0 0
0 −4.5455 0 0

82.7086 0 −0.0008 0
0 0 0 −0.4143

⎤
⎥⎥⎦,

A2 =

⎡
⎢⎢⎣

−7.6923 0 0 0
0 −4.5455 0 0

236.3103 0 −0.0008 0
0 0 0 −0.4143

⎤
⎥⎥⎦,

A3 =

⎡
⎢⎢⎣

−7.6923 0 0 0
0 −4.5455 0 0

82.7086 0 −0.0008 −0.9235
0 0 12.1967 −0.4143

⎤
⎥⎥⎦,

A4 =

⎡
⎢⎢⎣

−7.6923 0 0 0
0 −4.5455 0 0

236.3103 0 −0.0008 −0.9235
0 0 12.1967 −0.4143

⎤
⎥⎥⎦,

Bi = B = Bf =

⎡
⎢⎢⎣

1.8590 0
0 1.2879
0 0
0 0

⎤
⎥⎥⎦ × 103, i = 1, 2, 3, 4, C =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦.

(7.7)

Note that rank(C) > rank(B) and Proposition 3.5 are satisfied.
Using SVD of the output matrix C, (3.10) implies

U = S = W−1 = I3, V = Ta = diag
[
I2
[
0 1
1 0

]]
=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦,

Ta1 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦, Ta2 =
[
0 0 1 0

]
,

(7.8)
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and with such defined Ta, for i = 1, 2, 3, 4, it yields

Ca =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦, Ba1 =

⎡

⎣
1.8590 0

0 1.2879
0 0

⎤

⎦ × 103, Ba2 =
[
0 0
]
,

Aa211 =
[
82.7086 0 0

]
, Aa212 =

[
236.3103 0 0

]
,

Aa213 =
[
82.7086 0 −0.9235], Aa214 =

[
236.3103 0 −0.9235],

Aa121 = Aa122 =

⎡

⎣
0
0
0

⎤

⎦, Aa123 = Aa124 =

⎡

⎣
0
0

12.1967

⎤

⎦,

Aa11i =

⎡

⎣
−7.6923 0 0

0 −4.5455 0
0 0 −0.4143

⎤

⎦, Aa22i =
[−0.0008], i = 1, 2, 3, 4.

(7.9)

Considering the conditions given in Theorem 6.1, the reduced-order observer (5.1)–(5.5)
takes now the form

ṗ2e(t) =
4∑

i=1

hi(θ(t))
(
Aaeip2e(t) +Aaviv(t) +

[−J In−m
]
Baiu(t)

)
, (7.10)

where

Aavi = Aa21i − JAa11i + (Aa22i − JAa12i)J, Aaei = Aa22i − JAa12i, (7.11)

and J ∈ R
1 × 3 is given by (6.15) as follows:

J = (P◦)−1B⊥
a1, (7.12)

where B⊥
a1 is an orthogonal complement to Ba1.

The scalar LMI variable P ◦ can be found by using the convex optimization techniques
if B⊥

a1 is defined as a structured LM variable of the form

B⊥
a1 =

[
0 0 Z

]
, Z ∈ R, (7.13)

where Z is an LMI variable. Note that a structured matrix variable can be specified only by
including LMI matrix variables multiplied by a natural number or zero.
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Thus, solving (6.13), (6.14) with respect to the LMI variables P ◦, Z using Self-Dual-
Minimization (SeDuMi) package for Matlab [33], the reduced observer gain design problem
was feasible with the results

P ◦ = 1.0832, B⊥
a1 =

[
0 0 0.0410

]
, J =

[
0 0 0.0378

]
,

Aae2 = Aae1 = Aa22 − JAa121 = −7.6053 × 10−4,

Aae4 = Aae3 = Ab22 − JAa123 = −0.4610.

(7.14)

It is evident that the design of the stable reduced-order observer with suppressed input fault
signals is now completely specified, and the system state can be reconstructed, using (6.22),
from the estimated vector p2e(t) and the output vector y(t) as

qe(t) =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦p2e(t) +

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦
[
0 0 0.0378

]

⎞
⎟⎟⎠

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦y(t). (7.15)

Evidently, the final form of the state reconstruction equation is

qe(t) =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦p2e(t) +

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 0.0378
0 0 1

⎤
⎥⎥⎦y(t), (7.16)

and actuator faults, if were occurred, can be computed by (6.24) as

ufe(t) = B
1
4∑

i=1

hi(θ(t))(q̇e(t) −Aiqe(t) − Bu(t)), (7.17)

where

B
1 =
[
0.5379 0 0 0

0 0.7765 0 0

]
× 10−3, (7.18)

and θ(t), hi(θ(t))(q̇e(t)), Ai, and B are above specified. The derivative of the system
state estimation q̇e(t) was computed by standard numerical method from the obtained
qe(t). Since the reduced-order observer is used only, for system without uncertainties no
extra computation consumption is needed, comparing, for example, with the sliding mode
approach.

For simulation purposes only, the equilibrium of the system was stabilized by the
fuzzy feedback controller

u(t) = −
4∑

j=1

hj(θ(t))Kjq(t), (7.19)
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Figure 1: The second actuator fault signal.

where, using the method proposed in [34], offering the possibility to design the linear state
controller for TS fuzzy system, the gain matrices were computed as

K = Kj =
[
0.2386 0.0000 0.0350 0.0075
0.0000 0.0207 0.0000 0.0000

]
, j = 1, 2, 3, 4. (7.20)

In simulations was considered the fault which does not cause closed-loop system
instability, modeled by a fault starting at any time instant in the system equilibrium state.
Applying the above-designed reduced-order observer-based actuator fault estimation, the
fault responses for the nonlinear system are given in Figures 1 and 2. Thus, Figure 1 presents
the fault signal reflecting single actuator fault in the the second actuator, starting at the time
instant t = 20 s and continuing during the time 10 s, and Figure 2 illustrates the signals u1

f , u
2
f

obtained from (6.26) as a reconstruction of the single fault. Note that equivalent results are
obtained for the system working in a forced regime.

From the simulation results of Figures 1 and 2, it can be found that the errors between
the signals reflecting a single actuator fault and the observer approximate ones tend to
zero. Moreover, the states of the system converge to the equilibrium when the actuator fault
disappeared, via the used fuzzy controller.

8. Concluding Remarks

Generalized design method of a reduced-order observer-based actuator fault estimation
scheme is developed, as augmentation of unknown observers synthesis for one class of
nonlinear systems described by TS fuzzymodel. This is achieved bymanipulation of observer
asymptotic stability with respect to the proposed matching conditions. Design conditions
for asymptotic estimation of actuator faults are derived in terms of LMI, using standard
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Figure 2: The reconstruction of the actuator fault signal.

LMI procedures to manipulate the reducer-order observer stability. Because of the specific
observer gain matrix structure, the estimated unmeasurable part of the system state is free
of actuators faults. By examining the estimated state vector, it is presented that using a
numerical realization of time derivative of the state vector estimate, the actuator fault signals
can be faithfully reconstructed.

Proposed scheme is able to simultaneously estimate the time-varying actuator faults,
as well as the system state variables with a good accuracy, is easy to implement, and can be
applied to a reasonably wide class of systems satisfying the matching condition. Presented
simulations have shown that the proposed design task is feasible and effective.
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