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Improvability theory for a simple assembly system consisting of two components and one
assembly machine is developed. Both constrained and unconstrained formulations are ad-
dressed. In the constrained case, it is shown that the assembly is unimprovable with respect
to workforce if each component machine is blocked as frequently as the assembly machine is
starved for parts produced by this particular assembly machine. The system is unimprovable
with respect to work-in-process if, roughly speaking, all buffers have equal average steady
state occupancy. In the unconstrained improvability case, it is shown that the bottleneck
machine can be identified by analyzing the probabilities of the so-called manufacturing
blockages and starvations. A generalization to n component—one assembly machine system
is also included.

Keywords: Improvability; assembly systems; bottlenecks; manufacturing blockage and star-
vation

1. INTRODUCTION

Assembly is a production system which includes the merging of parts
produced. In most cases, it consists of two or more component machines,
one or more assembly machines and, if necessary, additional processing
machines. All the machines are separated by finite buffers. An example of
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an assembly is shown in Figure 1, where m;, i > 0, are the component
machines, mg, is the assembly machine, mg;, j > 1, are the additional
processing machines, and b;; and by, are the buffers. Systems of this struc-
ture are the focus of this paper.

The idea of improvability for production systems was introduced in [1]
to facilitate the development of quantitative engineering methods for de-
sign and implementation of continuous improvement projects on the fac-
tory floor. Roughly speaking, a production system is called improvable
under constraints if limited resources involved in its operation (for in-
stance, workforce—WF or work-in-process—WIP) can be re-distributed
so that a performance index is improved. Unconstrained improvability
addresses the question of constraints relaxation and, in particular, the iden-
tification of the machine improvement of which results in the best possible
behavior of the system as a whole.

The properties of improvability under constraints for the simplest class
of production systems—serial lines, where all machines are arranged in
the consecutive order—have been investigated in [1], [2]. In particular, it
has been shown that a serial line is unimprovable with respect to the WF
if and only if all of its buffers are on the average half full. In other words,
if some of the system’s buffers are too full, the system can be improved;
analogously, when some of the buffers are too empty; only when all the
buffers are on the average half full (whatever the size of buffers may to
be), the system is unimprovable by re-assigning the existing WF. Also, it
has been shown that a serial line is unimprovable with respect to WIP and
WF simultaneously if and only if each machine is blocked and starved
with equal probability. In a certain sense (see [2]), this condition holds

bi by b,
m, M M,
by bowg1
- - My My, Mo oM Mo,
by by, b
My [ M2 [] Mo, 2y
—oO—- -—O—‘ et = = -

FIGURE 1 Assembly system.
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also for improvability with respect to WIP. Thus, if some of the machines
in the system are blocked more often than they are starved, the system is
improvable; analogously, if some of the machines are more often starved
than blocked; only when each machine is blocked and starved with equal
frequency, the system is unimprovable by WIP re-allocation. Several ex-
tensions of this theory and a practical application have been reported in
[3]-[5].

The unconstrained improvability for serial lines was analyzed in [2] and
[6]. The bottleneck was defined as the machine which has the largest effect
onto the overall system production rate. It was shown that in a system
unimprovable with respect to WF, the slowest machine is always the
bottleneck. Systems which are improvable with respect to WF may or may
not have the slowest machine as the bottleneck. Sometimes other ma-
chines, including the fastest one, could be the bottleneck. In [6], a method
for bottlenecks identification was developed, and it was shown that they
can be identified by analyzing the probabilities of the so-called manufac-
turing blockages and starvations.

Although assembly systems have been a subject of many studies over
the years (see [7], [8] and references therein) and heuristic algorithms for
their performance analysis have been (relatively recently) developed ([9]-
[11]), system-theoretic properties of these systems remain largely un-
known. Two exceptions are reported in [12], [13], where the question of
work and work-in-process distribution among the component machines
and the assembly machine has been addressed. In particular, it has been
shown that less work should be assigned to the assembly machine than to
each of the component machines.

In this paper, we develop improvability theory for a simple assembly
system consisting of two component and one assembly machine. Both
constrained and unconstrained improvability are addressed. A generaliza-
tion for n component machines, working in parallel, is also presented. The
case of a more general systems, such as shown in Figure 1, will be de-
scribed elsewhere.

The goal of the development presented here is not only to characterize
the improvability properties of the assembly but also to accomplish this in
terms of variables available on the factory floor. This should make the
results obtained practical from the point of view of applications. Indeed,
conditions formulated in terms which are either unfamiliar to practitioners
or are not measurable on the factory floor could hardly find a receptive
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audience among the production systems personnel. Only the conditions
which are, on one hand, intuitively understandable and, on the other hand,
use data available on the factory floor could realistically be expected to
make an impact on the manufacturing practice. To this end, every condi-
tion derived in this work is re-formulated as an Improvability Indicator,
i.e., a rule which, being based on real-time data, allows the production
system personnel to identify whether the systems is improvable and to
design steps for accomplishing this improvement.

The outline of the paper is as follows: In Section 2, the model of the
system considered and the problem analyzed are formulated. In Section 3
an auxiliary result pertaining to the production rate calculation is de-
scribed. Sections 4-6 and 7-8 are devoted to constrained and uncon-
strained improvability, respectively. A generalization for a system with n
component machines is outlined in Section 9. The conclusions are given in
Section 10. All the proofs are assembled in Appendices A-E.

Roughly speaking, the main results of this work are as follows:

(a). The assembly system is unimprovable with respect to WF if the
probability of blockage of every component machine equals to the prob-
ability of starvation of the assembly machine caused by the lack of the
parts produced by this component machine.

(b). The assembly system is unimprovable with respect to WIP if the
average buffer occupancy of all buffers is as close to each other as pos-
sible.

(c). In an improvable system, if the probabilities of manufacturing
blockage of the component machines are larger than the probability of
manufacturing starvation of the assembly machine, the latter is the bottle-
neck; otherwise, one of the component machines is the bottleneck, and the
rule for its identification is provided.

2. PROBLEM FORMULATION

2.1. The Model

The following model is considered throughout this work:

(i) The system consists of component machines, m;, i = 1,2, an assem-
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bly machine, m,, and buffers, b;, i = 1,2, storing the parts produced
by m;, i = 1,2, respectively; one part from each buffer is required for
the assembly.

(i) All the machines have an identical cycle time, T; the time axis is
slotted with the slot duration 7.

(iii) Each machine is characterized by the probability, p,, i = 0,1,2, to
produce a part during a time slot; these probabilities are referred to as
machines’ production rate in isolation.

(iv) Each buffer is characterized by its capacity, N,, i = 1,2; the buffer
capacity is assumed to be finite.

(v) A component machines m;, i = 1,2, is never starved; it is blocked
during a time slot if buffer b, is full and the assembly machine, my,
fails to take a part from the buffer at the beginning of this time slot.

(vi) The assembly machine is never blocked; it is starved for parts, if at
least one buffer b;, i = 1,2, is empty at the beginning of this time slot.

Remark 2.1: The generalization of this model to the case of n > 2 com-
ponent machines (Section 9) is obvious: in all of the above assumptions
use i = 1,2,..., n, instead of i = 1,2.

Remark 2.2: The assumption that only one part from each buffer is re-
quired for the assembly can be removed by an appropriate modification in
the model. Basically, it does not restrict the generality.

Remark 2.3: On the other hand, the assumed Bernoulli model of ma-
chines reliability (assumption (iii)) is quite restrictive. In many practical
situations, machines obey the Markovian, rather than the Bernoulli, reli-
ability model, where the machines are characterized by exponentially dis-
tributed up- and down-time. As in [1]-[5], we use the Bernoulli model
because, on one hand, there are assembly operations with machine’ up-
time process similar to a sequence independent trials and, on the other
hand, this simpler model permits a more complete analytical investigation.
We believe (and have a numerical evidence) that the results reported here
hold qualitatively for the Markovian model as well. However, the exten-
sion of this theory to Markovian machines is the topic of the future work.

Remark 2.4:  The synchronous operation, implied by (ii), is also assumed
to simplify the analysis. Although somewhat restrictive, it is not unrealistic
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for operations with automated material handling system which defines the
assembly tact.

Remark 2.5: The assumption of a deterministic and fixed processing
time (or cycle time) of the machines (see (ii)) does reflect the situation in
most large volume production industries, with automated material han-
dling or not. The often cited in the literature random processing time is
not, in our opinion, appropriate in the context of such production systems.

2.2, Constrained Improvability

Assume that N,’s and p,’s are constrained as follows
N, + N, = N*, @.1)
P\PPo = P*. (2.2)

Obviously, (2.1) can be interpreted as WIP constraint: the total inventory
in the system cannot exceed N*. As in [1], [2], equality (2.2) is interpreted
as WF (or machine efficiency) constraint: the total work that can be carried
out in the system is bounded by p*, and a reassignment of the workforce
(or work) among the operations leads to changes in p,’s compatible with
(2.2).

DermniTion 2.1: The assembly system (i)—(vi) is improvable with respect
to WF if there exists a sequence p;, p?, p; such that p’f p; p; = p*and

PR(p}, Py, Po» Ny, Ny) > PR(py, pay Pos Ny, Ny,

where PR denotes the production rate of the system, i.e., the average
steady state number of parts produced by the assembly machine per cycle
time.

DermnitioN 2.2:  The assembly system (i)—(vi) is improvable with respect
to WF and WIP simultaneously if there exist sequences ps, pT, p, and
N}, Nysuchthatp) p, po = p*, N, + N, = N*and
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PR}, py, Po» N1, Ny) > PRy, Py, pos Ny, V).

Dermvtion 2.3:  The assembly system (i)—(vi) is improvable with respect
to WIP if there exist N, and N, such that N; + N, = N* and

PR(p,, py, o, N1, Ny) > PR(py, P, Pos Ny N).

2.3. Unconstrained Improvability

When the system is no longer improvable under constraints or when the
resource re-allocation, required by the improvability conditions, cannot be

carried on the factory floor, a further increase in PR can be obtained only
by the constraints relaxation, i.e., by increasing p* or N*. In practical
terms, this amounts to the improvement of the machines isolation produc-
tion rates (say, by improved preventative maintenance or by installing a
more efficient machine) or by allocating additional in-process inventories
to the system. The question arises: Which p; or N, should be increased so

that the largest increase in PR is obtained? A formalization of this question
is as follows:

DeriniTION 2.4:  Machine m;, i = 0,1,2, is the bottleneck machine if

PR _ 9PR
PR L IR Wy +i.
ap; 9p;

Dermvition 2.5:  Buffer b, is the bottleneck buffer if

PR(py, py, o Ny + 1, Ny) > PR(py, p, P, Ny, N, + 1).

Buffer b, as the bottleneck is defined analogously.

Remark 2.6: In Definitions 2.1-2.5 and throughout this paper, the sym-
bols with the “~” denote the exact values of the appropriate quantity. The
respective analytical approximation, to be introduced below, is denoted by
the same symbol but without the “~”.

Remark 2.7. Definitions 2.1-2.5 have obvious generalizations to the n
component machines case: The sequences of three p;’s and two N;’s
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should be replaced by sequences of p;’s and N;’s, with i = 1, ..., n + 1;
j=1,...,n

2.4. Problems

The goal of this paper is to derive conditions under which the assembly
system (i)—(vi) is improvable in both constrained and unconstrained sense.
As it was pointed out above, the conditions sought are to be formulated
either in terms of the data available on the factory floor or in terms of the
data that can be constructively calculated using the machines and buffers
parameters, p;’s and N,’s. As in [1], [2], we refer to these conditions as
Indicators of Improvability. The problems, then, addressed in this paper
are:

Problem 1: Given model (i)—(vi), derive indicators of improvability with
respect to WF, WIP, and WF and WIP simultaneously which could be used
based on either measured or calculated data.

Problem 2: Given model (i)—(vi), derive indicators of improvability for
bottleneck identification which are based on real-time or calculated data.

Solutions of Problems 1 and 2 are given in Sections 4-6 and 7-8,
respectively. In the unconstrained case, only the notion of bottleneck ma-
chines is analyzed; the problem of bottleneck buffers will be addressed
elsewhere.

3. PRODUCTION RATE EVALUATION

This section presents auxiliary results used below to provide an analytical
solution to Problems 1 and 2.

Under assumption (i)—(vi), the dynamics of the assembly system are
described by an irreducible, ergodic Markov chain with the states (k,, k),
ki = 1,..., N, i = 1,2. Let X, 5(k;, k) be the stationary probability that
buffers b, and b, have k; and k, parts, respectively. In terms of X 120k, k),
the production rate of the system is:
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N, N,
PR=py 3 3 Xtk o) 3.1)

N, N>
= poll — X1,2(O’ 0) — kZI Xu(kp 0) — kzl XI,Z(O’ k)]l

Unfortunately, Xl,z(kl, k,) cannot be calculated in the closed form. There-
fore, a simplification is necessary. One possibility is to reduce the joint
probability distribution to the product of its marginals. In general, of
course, the joint probability distribution )Zl,z(kl, k,) is not equal to the
product of its marginals, )~(1 (k) and Xz(kz). However, when either k, or k,
or both are 0, these two quantities are close to each other in the following
sense: Introduce

/Jl(kl) = 'X~1)2(k], O) - Xl(kl))zz(o)‘, kl = 0, ey Nl’
to(ky) 1= 1%, (0, ky) — X,(O)X(ko)l, ky = 0, ..., N,

Bi= T?{X {1k, palky) }.

NumericaL Fact 3.1: For the assembly system defined by assumptions

(i)-(vi),

<<l

Justification:  Justification is carried out using numerical analysis of the
Markov chain defined by assumptions (i)—(vi). Specifically, the transition
matrix has been constructed and iterated upon until the stationary prob-
ability distribution, X, ,(k;, k,), has been reached. The X, ,(k,, 0) and
X 1200, ky), thus calculated, have been compared with the products of their
marginals )?l(kl)f(z(O) and X 1(O)Xz(kz), where

N,
X1(k1) = kE—O X],z(kp kz),
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N,
Xk = kE—O X, o(ky, ky).

Finally, the value of p has been calculated. In every case analyzed, it was
found that p << 1. Several typical example are shown in Table I. Based on
this evidence, we conclude that Numerical Fact 3.1 holds.

Remark 3.1: We believe that Numerical Fact 3.1 can be proved analyti-
cally. Up to now, however, we were unable to do so. The readers are
certainly encouraged to attempt such a proof.

Using Numerical Fact 3.1, expression (3.1) can be rewritten as follows:

Ny
PR = poll = ,0%0) = 3 Xi(k)%,(0)

N,
- kZI Xl(O)Xz(kz)] + @(IJ)

= poll — X,(0X,(0) — (1 = X,(0)X,(0)
= X,00)(1 — X,(0)] + O(u).

Therefore,

PR = pyl1 — Z,(0)][1 — £,(0)] + O(). 32)
The quantities X 1(0) and )22(0), i.e., the probabilities that buffers b, and

b, are empty, still cannot be calculated in the closed form. However, a
recursive evaluation is possible. Indeed, assume that the estimate of the

TABLE I Illustration of x4 and the estimation error

IPR — PRI

100%
D1 123 Po N, N, H PR PR PR
0.7 0.6 0.8 1 1 0.0032 0.4527 0.4512 0.3%
0.8 0.7 0.8 1 2 0.0024 0.598 0.5974 0.1%
0.7 0.6 0.8 2 2 0.0108 0.5492 0.5537 0.8%
0.6 0.6 0.99 3 3 0.029 0.5584 0.5856 4.9%
0.9 0.9 0.6 2 2 0.0013 0.5893 0.589 0.05%
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probability that b, is empty at the s-th step of the recursion is known;
denote this probability as X,(0, s). Consider the serial line {m;, b,, my}
(see Figure 2) with the isolation production rate of machines m; and m,
defined as p; and po[l — X,(0, s)], respectively. For this line, using the
results of [1], it is easy to calculate the probability that b, is empty.
Specifically, this probability is Q(p;, pol1 — X5(0, s)], N;), where function
QO(x, y, N) is defined below and N, is the capacity of b,. Denote this
probability as X;(0, s + 1) and consider another serial line, {m,, b,, m},
with the isolation production rate of m, and m, given by p, and py[1 —
X,(0, s + 1)], respectively. Again, calculate the probability that b, is
empty and, thus, obtain X,(0, s + 1). As a result, we obtain the following
recursive procedure:

X,(0,5 + 1) = Q1 poll — X5(0, )], Ny), (3.3)
X,(0,5 + 1) = O(p,, poll — X4(0, s + 1)], N,),
X,(0,00=0,s=0,1,2,...,
where

(1 =x)1 —fx), X # y,
1-=ao" —

Q(X, y,N) = )‘a o= u

s y(1 —x)

N+1-x

X=Y,

Lemma 3.1:  Recursive procedure (3.3) is convergent, i.e., the following
limits exist:

b,

FIGURE 2 Two component—one assembly machine system.
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lim X,(0, s) =: X,(0),
s
lim X,(0, s) =: X,(0).
s—%

Moreover, sequences X,(0, s) and X,(0, s) are monotonically decreasing
and increasing, respectively.

Proof: See Appendix A.

The relationship between the exact, )N(,.(O), and the calculated, X,(0),
probabilities of the buffers being empty is given by

THEOREM 3.1:  For assembly lines defined by assumptions (i)—(vi),
X,(0) = X,(0) + O(u),

%,(0) = X,(0) + O(u). (3.4)
Proof: See Appendix A.

Introduce the production rate estimate as follows:
PR := po[1 — X,(0)][1 — X,5(0)], (3.5)
where X,(0) and X,(0) are the steady states of (3.3).

CoroLLARY 3.1:  For the assembly system defined by assumptions (i)—(vi),

PR = PR + O(u).
Proof: Follows immediately from (3.2), (3.4) and (3.5).

The numerical accuracy of the calculated production rate, defined by

(3.5), is illustrated in Table 1, where both PR and PR are shown along with
the approximation error. All cases analyzed resulted in a high accuracy,
with 0.05%-5% error. Based upon this evidence, the improvability analy-
sis described in this paper is carried out in terms of the calculated produc-
tion rate, PR, defined by (3.3), (3.5).

To conclude this Section, we cite two more auxiliary results. The first
one is concerned with the relationship between the exact and the calcu-
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lated steady state occupancies of buffers b, and b, and the second de-
scribes the monotonicity properties of the assembly system.
Let

X.(k;) = Prob{b, has k; parts in the steady state}, k; = 1,..., N, i = 1, 2.
Introduce

1
= poll = X,(0)]

X, (k) = X,(0) ( . ) ot k=

|
=
=
—_
w
)
~

1
~ poll — X,(0)]

X,(ky) = X,(0) (1 ) oi ky =1,...,N,,

where X,(0), X,(0) are the steady states of (3.3) and

o =P1(1 - P0[1 - Xz(o)]) o = po(l1 — Po[l - Xl + (O)])
Lol = X001 —p) P pll = X, O = py)

CoRrOLLARY 3.2:  For the assembly system defined by assumptions (i)—(vi),

Xi(k) = X(k) + O(u), k, = 1,..,N, i=1,2.
Proof: See Appendix A.

CoroLLARY 3.3: The calculated production rate, PR(p,, p,, Py, N1, N>),
defined by (3.3), (3.5), is a monotonically increasing function of all its
arguments.

Proof: See Appendix A.

The monotonicity property of the assembly system cited above is quite
similar to that established in [14]-[15].

4. IMPROVABILITY WITH RESPECT TO WF
4.1. Improvability Conditions
In terms of the calculated production rate, assembly system (i)—(vi) is

improvable with respect to WF if there exist pg, pT,p; such that
Pipapo = p*and
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PR(p}, p3. Po» Ny, Ny) > PR(py, P, s Ny, Ny).

THEOREM 4.1: Assembly system (i)—(vi) is unimprovable with respect to
WF if and only if

Py = poll — X5(0)],

P2 = poll — X,(0)]. (4.1

where X,0), i = 1,2, is the steady state of the recursive procedure (3.3).
Proof: See Appendix B.

To reformulate condition (4.1) in terms of the data available on the

factory floor, let Ei, i = 1,2, denote the probability of the so-called com-
munication blockage of the component machine i:

cb, = Prob{b; is full and mj fails to take parts from b,}, i = 1, 2.

Let ’EEi, i = 1,2, denote the probability of the communication starvation
of the assembly machine m, due to the lack of parts produced by the
component machine i

cs; = Prob{b, is empty}, i = 1, 2.

Finally, let ﬁ,, i = 1,2, denote the average steady state occupancy of buffer
bl‘-

CoroLLARY 4.1:  Under condition (4.1),

(a).
b, = cs; + O(p),i=1,2;

(b).

N, N +1

N.
_ ]l=———— 4+ 0 ~—i=12.
)y e R
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Proof: See Appendix B.

Since, as it is stated in Corollaries 3.1 and 3.2, the exact and the calcu-
lated production rates and buffer occupancies are O(u) close to each other,
from Corollary 4.1 follows

IMPROVABILITY INDICATOR 4.1: Assembly system (i)—(vi) is unimprovable
with respect to WF if the frequency of communication blockage of a com-
ponent machine is close to the frequency of communication starvation of
the assembly machine caused by the lack of parts produced by this com-
ponent machine; when this situation takes place, each buffer is on the
average almost half full.

Remark 4.1: Improvability indicator 4.1 can be rationalized as follows:
Buffer b, protects m, from blockages and m,, from starvations due to parts
produced by m,. From the point of view of m,, buffer b, should be mostly
empty; from the point of view of m,, buffer b, should be mostly full. The
compromise is: buffer half full or blockages equal starvations. This is
accomplished by distributing p* in an unimprovable manner.

4.2. Unimprovable Distribution of p*

Using improvability indicator 4.1, one could determine how good the as-
sembly system is with regard to WF distribution. This does not require the
knowledge of the machines and buffers parameters, p;’s and N;’s. If, how-
ever, N;’s are known, the unimprovable value of p;’s can be calculated as
follows:

Let PR* denote the production rate of the system under the best possible
distribution of p,’s, i.e.,

PR* = max PR(p,, py Py Ny Ny). 4.2)

PiPPo=p*
Introduce the recursive procedure:

1) o (N1 + x(s))§ (N2 + x(s))§
N = .
x LRl v N, + 1

(4.3)
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THEOREM 4.2: Assumei + ]% = % Then the recursive procedure (4.3) is

. 2
a contraction on [0, 1]. Moreover,

lim x(s) = PR¥*,

5%

where PR* is defined by (4.2). In addition, the values of p,, i = 0,1,2, that
result in PR* are:

* (—-—N"H )PR*' 1,2

pi = N1+PR* L= 1,4,

. (N1+1> N2+1)PR* »
Po =\ N, ¥ PR* <N2+PR* ‘ (44

Proof: See Appendix B.

Remark 4.2:  Since, as it follows from the above py/p; > 1, Theorem 4.2
confirms the conclusion, established in [12], concerning the bowl phenom-
enon for the assembly systems.

5. IMPROVABILITY WITH RESPECT TO WF AND WIP
SIMULTANEOUSLY

5.1. Improvability Conditions

In terms of the calculated production rate, the assembly system (i)—(vi) is
improvable with respect to WF and WIP simultaneously if there exist
Po» P1» P2 and Ny, Nysuchthat pipopy = p*, N, + N, = N*and

PR(p}, p3. Po» N1, N3) > PR(py, Py, s Ny, Ny).

THEOREM 5.1:  Assembly system (i)—(vi) is unimprovable with respect to
WF and WIP simultaneously if and only if (4.1) takes place and, in addi-
tion,

X,(0) = X(0). 5.1)
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where, as before, X(0), i = 1,2, is the steady state of the recursive proce-
dure (3.3).

Proof: See Appendix C.

CoroLLARY 5.1:  Under conditions (4.1) and (5.1),

hy = Iy + O(), (5.2)

where ﬁ,«, i = 1,2, is the average steady state occupancy of buffer b,.

Proof: See Appendix C.

From Corollaries 4.1 and 5.1 follows

ImprOVABILITY INDICATOR 5.1: Assembly system (i)—(vi) is unimprovable
with respect to WF and WIP simultaneously if each buffer is on the aver-
age close to being half full and the average occupancy of each buffer is
almost the same.

Remark 5.1: A rationalization of Improvability indicator 5.1 can be
given as follows: Buffers b, and b, protect m, from starvations for parts
produced by m, and m,, respectively. When ﬁl > 52, a unit of the capacity
of b, can be reallocated to b, so that the starvation of m, for parts pro-
duced by m, is reduced and, consequently, PR is increased. Only when

h, ~ 52, machine my is protected equally from the starvations for each part
type and, therefore, the system is unimprovable.

5.2 Unimprovable Distribution of p* and N*

The values of p, i = 0,1,2, and N;, J = 1,2, which render the system
unimprovable with respect to WF and WIP can be calculated as follows:

THEOREM 5.2: Assume that N* is even and denote

PR** = max PR\, Py, Py Ny, Ny).
P1» P2 Pos P1 P2 Po=P*
Ny, Ny; Ny +N,=N*

Then conditions (4.1) and (5.1) are satisfied if and only if,
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N*
N2 PR*,i= 1,2,
2
N*
N2 PR¥, (5.3)
2

. _ N%

Ni==,
2

where PR** is calculated according to recursive procedure (4.3) with N;’s
defined by (5.3).

Proof: See Appendix C.

Thus, in an assembly system unimprovable with respect to both WF and
WIP buffers b, and b, are of equal capacity and p; = p, < p,, as indicated
in (5.3).

6. IMPROVABILITY WITH RESPECT TO WIP

In terms of the calculated production rate, assembly system (i)—(vi) is
improvable with respect to WIP if there exist NT and N, such that N, +
N, = N*and

PR(p, Py, Po» Ny, N3) > PR(py, Py, po» Ny, Ny).

Unfortunately, no simple analytical criteria for improvability with re-
spect to WIP have been found. However, motivated by condition (5.2), we
formulate the rule given below and justify it by numerical analysis of the
Markov chain.

IMPROVABILITY INDICATOR 6.1: Assembly system (i)—(vi) is unimprovable
with respect to WIP if the average occupancy of b, is as close as possible
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to that of by, i.e., lﬁl - l:zl is minimized over all N, and N, such that N,
+ N, = N*,

Remark 6.1: Recall that sign “~” indicates that I;,- is the exact (rather
than calculated £;) occupancy of buffer b, i = 1,2.

Numerical Justification: For all systems considered, transition matrices
have been constructed, stationary probabilities of all states have been cal-
culated, and the average occupancies of buffers have been evaluated. A

typical example is shown in Table II. Obviously, max PR takes place if
|ﬁl - lzzzl is minimized. Similar results have been obtained in the majority
of cases analyzed. Several counterexamples, however, have also been
found. One of them is shown in Table III. Although in this example min |

h L ﬁzl does not result in the max PR, the difference between max PR and

the PR corresponding to min lﬁl - ﬁzl is quite small. A similar situation
was observed in every case where the above rule failed. Therefore, we
conclude that Improvability indicator 6.1 results in either the best or “al-
most” the best WIP distribution.

Remark 6.2: The unimprovable distribution of N, and N, can be reached
not only through the complete search as in Tables II and III but also using
the following Algorithm: Estimate 51 - 52; re-allocate a unit of the buffer
capacity from N, to N, if this difference is positive and from N, to N, if it
is negative; continue this process until a periodic cycle of length 2 is
reached; choose N; and N, from the values on the cycle that give the
largest PR; stop. The performance of this algorithm in comparison with
the complete search procedure is illustrated in Table IV: In all case ana-
lyzed, it resulted in the same distribution of N,’s as the complete search
approach.

TABLE II Illustration of Improvability indicator 6.1 (p, = 0.8, p, = 0.5, p, = 0.5, N, +
N, = 6)

N, N, i\ iy 1y — Iy PR
5 1 4.8746 0.6667 42079 0.3333
4 2 3.8177 1.2002 26175 04
3 3 2.7891 1.7191 1.07 0.4281
2 4 1.7987 2285 0.4863 0.4406
1 5 0.8938 32781 2.3843 0.4249
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TABLE III Counterexample for Improvability indicator 6.1 (p, = 0.7, p, = 0.6, p, = 0.8,
N, + N, = 6)

N, N, i, i, 1, — Byl PR

5 1 4.2565 0.6534 3.6031 0.5199
4 2 3.0152 0.9526 2.0626 0.5692
3 3 2.0881 1.2351 0.853 0.5796
2 4 1.3521 1.6724 0.3203 0.5792
1 5 0.7607 27529 1.9922 0.5583

TABLE IV Implementation of Improvability indicator 6.1 based on the complete search
and the Algorithm (N, + N, = 6)

Algothm Complete search

P P2 Po

N, N, N, N,
0.7 0.6 0.5 3 3 3 3
0.7 0.6 0.65 3 3 3 3
0.7 0.6 0.8 3 3 3 3
0.8 0.5 0.5 2 4 2 4
0.8 0.5 0.65 2 4 2 4
0.8 0.5 0.8 2 4 2 4

Remark 6.3: 1In the case of improvability with respect to WF and WIP
simultaneously, the exact equality of the average buffer occupancies is
possible due to the infinitesimal nature of the distribution of p,’s; this
counteracts the discrete nature of the distribution of N;’s. Since in the case
of improvability with respect to WIP only the p,’s are fixed, no equality of
I;I and }72 can, in general, be reached. Only the minimization of the differ-
ence Ih=l - Zzl could be achieved, and the N,’s that result in this minimi-
zation are, according to the Improvability indicator 6.1, the unimprovable
values of WIP distribution.

7. UNCONSTRAINED IMPROVABILITY: WF UNIMPROVABLE
SYSTEMS

According to Definition 2.4, m; is the bottleneck of the assembly system if

dPR PR
—_—> a—~—, Vj#i.
ap; ap;
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As it has been pointed out in Section 2, a machine with the smallest p; is
not necessarily the bottleneck. An example is given in Figure 3, where m,
has the smallest p; but m; has the largest dPR/dp;. In Figure 3 and all the
subsequent figures, the numbers in the circles and the rectangles represent
the machines’ and buffers’ parameters, p; and N,, respectively, and the
numbers under the machines are the estimates of dPR/dp; denoted as

APR/Ap, and calculated using the numerical Markov chain analysis.

It turns out, however, that if the assembly is unimprovable with respect
to WF, the machine with the smallest p; is indeed the bottleneck. This
follows from

TueorEM 7.1:  If assembly system (i)—(vi) is unimprovable with respect to
WF, then

dPR OPR OPR

P\ =D =P (7.1)
' ap, * ap, % ap,

Proof: See Appendix D.
Equalities (7.1) imply that the smallest p; has the largest dPR/dp;. There-
fore,

ImPrOVABILITY INDICATOR 7.1: To expose the bottleneck machine, first en-
sure that the system is unimprovable with respect to WF; then, the machine
with the smallest production rate in isolation is the bottleneck.

4PR _ 0.3174

FIGURE 3 The bottleneck example.
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8. UNCONSTRAINED IMPROVABILITY: THE GENERAL CASE

8.1. Preliminaries

Most production systems on the factory floor are, unfortunately, improv-
able and often cannot be made unimprovable due to practical limitations.
Therefore, it is of importance to identify bottlenecks in improvable sys-
tems. In many cases this is the only way for continuous improvements.
This section is devoted to this topic.

Generally speaking, bottleneck machine of any assembly, improvable or

not, can be determined by calculating ai’Te/ap,. and selecting m; corre-
sponding to its largest value. Unfortunately, however, the calculation of

ai)Te/api is a difficult, if not an impossible, proposition. As it has been
pointed out above, in the case of unimprovable systems this calculation is
unnecessary: the slowest machine is always the bottleneck. Is there a way
to identify bottlenecks in improvable systems without calculating

ai)‘é/ap,.? It turns out that the answer is positive, and a way for such an
identification is described below.

Let %,- and s, denote the probabilities of the manufacturing block-
age of the component machine i, i = 1,2, and the manufacturing star-
vation of the assembly machine m, due to the lack of parts produced by
the component machine i, i = 1,2, respectively, i.e.,

%, = Prob ({m; is up during a time slot}
N {b; is full at the beginning of this slot}

N {m,, fails to take a part from b, at the beginning of this slot}), i = 1, 2,
%i = Prob ({m is up during a time slot}

N{b; is empty at the beginning of this slot}), i = 1, 2.

We show below that bottlenecks in improvable systems can be identified

by analyzing the relationships between the values n’?l;,. and n’E,« for each
pair of consecutive machines.
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8.2. The Case of a Single Bottleneck

Consider an assembly shown in Figure 4(a). The two numbers under each
component machine represent n?l?,- and an estimate of aﬁﬁ/api denoted as

APR/Ap,. The assembly machine has three numbers, with ms, and ms,
representing the probability of starvations due to the lack of part in b, and

b,, respectively, and Aﬁ/Apo. Obviously, m, and m, are never starved
and my, is never blocked; this is not represented in Figure 4. To identify the
bottleneck machine, place arrows directed from one machine to another
according to the following:

msy = 0.0572

ms; = 0.0063
/' AR = 0.622
mbs = 0.2625
PR — (.049
P32

FIGURE 4 Illustration of Improvability indicator 8.1.
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Rute 8.1: If m~b,~ > r?gi, the arrow is directed from the upstream to the

downstream machine; if ”71;:' < ;’ﬁE,., the direction of the arrow is reversed.

The following improvability indicator identifies the bottleneck machine
if it is unique. The case of multiple bottlenecks is addressed in Subsection
8.3.

IMPROVABILITY INDICATOR 8.1: Assume that assembly system (i)—(vi) has a
unique machine which has no arrows emanating from it. Then this ma-
chine is the bottleneck.

Thus, according to this indicator, the bottleneck of an assembly can be
identified without calculating aﬁfe/ap,, or even without the knowledge of
the machines and buffers parameters, p,’s and N;’s, but just by observing
the frequencies of blockages and starvations of the machines. Since these
frequencies often are or can be measured on the factory floor, this indica-
tor offers a constructive way for bottleneck identification.

Improvability indicator 8.1 is justified below both numerically and ana-
lytically.

Numerical Justification: The transition matrix for the Markovian chain
defined by assumptions (i)—(vi) has been constructed and iterated upon to
obtain stationary probability distributions for p, and p, + Ap,, with the step
Ap; = 0.01. Then, the difference between the resulting production rates,

APR, has been calculated and APR/Ap, has been evaluated. Two typical
examples are shown in Figure 4. According to Improvability indicator 8.1,
the bottleneck is the machine without arrows emanating from it. Hence,
the bottlenecks in Figure 4(a) and (b) are component machine m, and
assembly machine m,, respectively. This conclusion is supported by the
values of APR/Ap;.

For most systems considered the bottleneck identified using Improvabil-

ity indicator 8.1 and APR/Ap, coincides. An example in which the two
results differ is shown in Figure 5: According to Improvability indicator
8.1, the bottleneck is m, whereas according to APR/Ap; the bottleneck is
m,;. However, as it can be seen in Figure 5, the difference between
APR/Ap, and APR/Ap, is quite small. The same situation has been ob-
served in all counterexamples discovered. Therefore, we conclude that
Improvability indicator 8.1 identifies either the machine with the largest 9

Fﬁlapi or a machine with 6?’7!5/6pi being close to the largest one.
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mby = 0.2058
PR _
4R = 0.246

FIGURE 5 Counterexample for Improvability indicator 8.1.

Analytical Justification: An additional assumption is needed to carry out
the analytical proof:

Hypothesis 8.1: In assembly system (i)—(vi), if

mb; > msj,j =1,2,

then
X,(0) =~ Q(pj, poll — X3 O], N) =2 €y << 1; 8.1)
if
mb; <ms;, j = 1,2,
then

(1= poll = X ODXM) ~ Opoll = X3 OLpy Ny =tz << | |

Here X;(0) and X(N)) are the stationary probabilities that buffer b;, j = 1,2,
is empty and full respectively, and function Q(x, y, N) is defined in (3.3).

Expression (8.1) implies that if a component machine is blocked more
often than the assembly machine is starved due to parts produced by this
component machine, the probability that the buffer separating these two
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machines, is empty is small. Similarly, (8.2) implies that if a component
machine is blocked less frequently than the assembly machine is starved,
the probability that the buffers is full is small. Hypothesis 8.1 has been
formulated based on numerical evidence obtained in simulations.

THEOREM 8.1: Assume that system (i)—(vi) has a unique machine m;, i €
{0, 1,2}, with no arrows emanating from it. Then, under Hypothesis 8.1,
m; is the bottleneck in the sense that

PR > ﬂ, Vj#i.
ap; ap;

Proof: See Appendix E.

8.3. Multiple Bottlenecks

Assume now that the assembly system has two machines with no arrows
emanating from them. Under the Rule 8.1, these could be only the two
component machines. Which one, then, is the bottleneck? To answer this
question, introduce the notion of a bottleneck severity:

S, =ms, — mb,i=1,2.

IMPROVABILITY INDICATOR 8.2:  If the assembly system (i)—(vi) has both com-
ponent machines with no arrows emanating from them, the one with the

largest severity is the primary bottleneck, i.e. defines the largest 3?7{/8p,-.

Numerical Justification: Improvability indicator 8.2 has also been justi-
fied using the direct numerical Markov chain analysis. Two typical ex-
amples are shown in Figure 6, where the last row of numbers is the
bottleneck severity. In most cases analyzed, Improvability indicator 8.2
resulted in the correct identification of the primary bottleneck. A number
of counterexamples have also been found. One of them is shown in Figure
7. Nevertheless, since in the majority of cases analyzed Improvability
indicator 8.2 identified the machine with the best possible effect on the
production rate, we conclude that it can be employed as a tool for the
primary bottleneck identification.
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........ ma; = 0.1651

]
: mass = 0.1289
AA%? =0.197
mby = 0.1032
: =0.377
§; =0.0257

¥:‘E = 0.472

$; =o0.10m

........ may =0.1744

ms; = 0.1096
BN %Ep? =0.156
mby = 0.0673
%E?i =0.419
3, = 0.0423

(b)

FIGURE 6 Illustration of Improvability indicator 8.2.

9. THE CASE OF n COMPONENT—ONE ASSEMBLY MACHINE
SYSTEM

Results described in Sections 3-8 can be generalized for the case of the
assembly that consists on n component machines working in parallel and
one assembly machine Figure 8). Such a system is defined by assumptions
(i)—(vi) with obvious changes pertaining to the number of the component
machines (see Remark 2.1). The notions of improvability also remain the
same with obvious changes in Definitions 2.1-2.5 (Remark 2.7). Below, we
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--

mb; = 0.0766

APR _
F? =0.418 v\
Sy = 0.0896

roeoen ms, = 0.1662
sy = 0.1287
PR _ (.14

rﬁi = 0.0566

ALR = 0.476

S, =0.0721

FIGURE 7 Counterexample for Improvability indicator 8.2.

;‘zn

FIGURE 8 n component—one assembly machine system.

cite main results on improvability of such a system. The proofs are

straightforward generalizations of those given in Appendices A—E and are
not included here.
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9.1. Production Rate Evaluation

Using arguments similar to those described in Section 3, the production
rate, PR, of the assembly systems with » component machines is repre-
sented as

PR = p, [T 11 = %1 + O,

where p,, is the isolation production rate of the assembly machine, )~(,~(0),
i = 1,..., n, is the steady state probability of buffer i being empty, and
u<< 1. The analytical approximations of )2,.(0) are obtained through the
following recursive procedure:

i—1 n
X0,s+ 1) =0(p,, po Hl [1 = X0, s+ 1)] ‘I'_L [1 = X0, 5)], Ny,
J= J=i
i=1,..,n, 9.1)

X(0,00=0, i=2,...,n s=0,1,2,..

Lemma 9.1:  Procedure (9.1) is convergent, i.e., the following limits exist:
lim X,(0, s) =: X,(0), i=1,...,n.
s

THEOREM 9.1:  For the assembly system with n component machines,
X(0) = X,0) + O(u), i=1,..,n

As before, define the calculated production rate as follows

PR = p, 1;[1 [1 = X0, 92

where X(0), i = 1,..., n, are the steady states of (9.1).

CoRroLLARY 9.1:

PR = PR + O(u).
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CoroLLARY 9.2:  The calculated production rate, PR(py,..., Py» Po» Nise--»
N,), defined by (9.2) is a monotonically increasing function of all its ar-
guments.

9.2. Constrained Improvability

9.2.1. WF improvability

THEOREM 9.2:  Assembly system with n component machines is unimprov-
able with respect to WF if and only if

i—1 n

p,~=po_Hl[1—X,~(0)] l_[l[l—X,-(O)], i=1..,n  (93)
=

j=i+

CoroLLARY 9.3:  Under conditions (9.3),

(a).
ch;=cs,+ O, i=1,.,n
(b).
P S B R
L= =-—'————‘—-+ ~= — | = ceey FLy
i = E[h] N+ 1-p, (1) o = Loan

where gl;i and 21 are the probabilities of communication blockage and

starvation of machine i, respectively, and h; is the average occupancy
of buffer i.
Therefore,

IMPROVABILITY INDICATOR 9.1:  Assembly system (i)—(vi) with n component
machines is unimprovable with respect to WF if the frequency of commu-
nication blockage of each component machine is close to the frequency of
communication starvation of the assembly machine caused by the lack of
the parts produced by this particular component machine; when this situ-
ation takes place, each buffer is on the average almost half full.

Unimprovable distribution of p;’s is given by
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. 1 n+1
=1y =
N, 2

THEOREM 9.3:  Assume >, . Then

. (Ni+1

‘=) pPR*i=1...n
Pi N,-+PR*) : "

Po=

i=1

n(Ni+l

m) PR*. 9.4

where

PR* = lim x(s)

s—%
and x(s) is defined by the following convergent recursive procedure:

O (N ()
x(s+1)=(p*)n+1n(ﬁ) .

i=1

9.5)

Remark 9.1: In comparison with the two component machine case, (9.4)
result in a larger imbalance between the component and the assembly
machine. This effect was discovered in [12].

9.2.2. WF & WIP improvability

THEOREM 9.4:  Assembly system with n component machines is unimprov-
able with respect to WF and WIP simultaneously if and only if (9.3) takes
place and, in addition,

X,(0) = X,(0) =...= X,(0), (9.6)

where, as before, X(0), i = 1,..., n, is the steady state of the recursive
procedure (9.1).

CoroLLARY 9.4:  Under conditions (9.3) and (9.6),

hy = hy + O() =...= h, + O(w),

where h;, i = 1,..., n, is the average steady state occupancy of buffer b,.
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Therefore,

ImprOVABILITY INDICATOR 9.2: Assembly system (i)—(vi) with n component
machines is unimprovable with respect to WF and WIP simultaneously if
each buffer is on the average close to being half full and the average
occupancy of each buffer is almost the same.

The unimprovable distribution of p;’s and N;’s is given by

THEOREM 9.5:  Assume that N* is a multiple of n. Then

i * N, +1
PL=Pry =P T | PR**
N, + PR**
i} N +1 \"
po=|—7————| PR**, 9.7
N} + PR**
« *
N, = &’_9 1= 1’ » 1,
n

where PR** is calculated according to the recursive procedure (9.5) with
N,’s defined by (9.7).

9.2.3. WIP improvability

The following has been justified numerically:

ImprOVABILITY INDICATOR 9.3:  Assembly system (i)—(vi) with n component
machines is unimprovable with respect to WIP if the average occupancies
of all buffers are as close to each other as possible, i.e., max lﬁ,. - ﬁjl is

minimized over all N;’s such that 2/_| N; = N*.

Remark 9.2: The unimprovable distribution of N,’s can be reached using
an algorithm similar to that described in Remark 6.1.
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9.3. Unconstrained Improvability

9.3.1. WF unimprovable case

THEOREM 9.6:  For assembly system (i)—(vi) with n component machines,
unimprovable with respect to WF,

dPR 0PR OPR OPR
— =p,— =..=p,—
1

=po— 9.8)
ap ap, P, " 9pg

D1

Equalities (9.8), obviously, imply that smallest p; has the largest dPR/
dp,. Therefore,

IMPrOVABILITY INDICATOR 9.4: To expose the bottleneck machine in a sys-
tem with n component machines, first ensure that it is unimprovable with
respect to WF; then, the machine with the smallest p; is the bottleneck.

9.3.2. Improvable case

Consider an assembly shown in Figure 8. As in the two component ma-
chines case, the symbol %i under each component machine represents the

probabilities of manufacturing blockage and the symbols,%i, i=1,..,n,
under the assembly machine represent the probability of manufacturing
starvation due to the lack of parts produced by m;. The arrows are placed

according to the Rule 8.1: If mb, > %i, the arrow is directed from the

upstream to the downstream machine; if r?Tb} < %i, the direction of the
arrow is reversed. For each machine with no arrows emanating from it, the
following value of severity is assigned:

—~

S=ms;—mb,i=1,.,n

ImPrROVABILITY INDICATOR 9.5: If the assembly system (i)—(vi) with n com-
ponent machines has a single machine with no arrows emanating from it,
then this machine is the bottleneck. If there are multiple machines with no
emanating arrows, the primary bottleneck is that with the largest severity.
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10. CONCLUSIONS

An effective continuous improvement process is considered by many as a
necessary condition to achieve and maintain a competitive advantage in
today’s manufacturing market place. Often, however, it is not obvious how
to select, design, and implement a continuous improvement process which
would be most effective in a given practical situation. Although the gen-
eral philosophy of manufacturing gurus, such as Diming, Taguchi,
Goldratt, is quite helpful, quantitative engineering techniques might also
be productive in helping to design a continuous improvement project, in
the same manner as products and processes are designed. The theory de-
veloped in this paper provides an instance of such a technique. The authors
used it in five different continuous improvement projects carried out dur-
ing the last 3 years at two automotive component plants and found it to be
a useful tool for both improvement of existing production systems and
design of new ones. The results of these applications will be reported
elsewhere. It is hoped that this approach will prove to be useful for other
practitioners and theoreticians alike.

APPENDIX A. PROOFS FOR SECTION 3

Proof of Lemma 3.1: By induction: Since function Q(x, y, N) takes val-
ues in (0, 1) and is monotonically increasing in y, [1], for s = 0 we have

X,(0, 1) = Oy, pol1 — X5(0, 0)], Ny) (A.T)
= 0@y, po» N1)
> Q@1 poll — Q2. pol1 — X1(0, DI, NI, Ny)
= Q@1 poll — X,(0, D], N))
= X,(0,2).
Assume that for s > 0,

X,00, 5) < X,(0, s — 1). (A2)
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Then, due to the monotonic properties of Q(x, y, N),
X0, s = 1) = Q2. pol1 — X,(0, s = D], Ny
< QP poll — X,(0, 9)], N,)
= X,(0, 5) (A3)
and
X,(0,5 + 1) = Q(py. poll = X,0, )1, Ny) (A4)
< Q(py, poll — X,(0,s — D], N)
= X,(0, s).
Thus, X;(0, s) is monotonically decreasing in s. Since the sequence
X,(0, s) is monotonic and bounded from above and below (function Q

takes values in (0, 1)), it is convergent, i.e.,

lim X,(0, s) =: X,(0).

Similar arguments are used to prove that X,(0, s) is convergent and
monotonically increasing.

To prove Theorem 3.1, we need the following 5 lemmas:

Lemma A.1: Let
Do := Prob{machine m, produces | buffer b, has parts},

P := Prob{machine m, produces | buffer b, has parts},

Then, under Numerical Fact 3.1,
o = poll = X,(0)] + O(u),

55 = poll = X,(0)] + O(u),
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where )2,(0) and )22(0) are the stationary probabilities that buffer b, and b,
are empty.

Proof: Based on the conditional probability formula and Numerical Fact
3.1, we write:

Prob{b, is empty | b, has parts}
21 X0,0. k)
iz Xy (k)

Sz X1(0)X,(ky)
=———+0
I“Xz(o)

X,0)[1 — X,(0)]
=—

- O(w)
1 = X,0)

= X,(0) + O(u)
= Prob{b, is empty} + O(u). (A.5)

Using repeatedly the conditional probability formula, the definition of
ﬁ(l), and (A.5), we obtain:

Po = Prob{mj produces | b, has parts}
= Prob{m is up, b, has parts, and b, has parts | b, has parts}

Prob{m, is up, b, has parts, and b, has parts}
- Prob{b, has parts}

= Prob{my is up | b, has parts and b, has parts}-

Prob{b, has parts | b, has parts}
Prob{b, has parts}

-Prob{b, has parts}
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Prob{b, has parts | b, has parts}

Pol 20 Prob{b, has parts}

1 — Prob{b, is empty | b, has parts}

= pol1 — X,(0
Pl 201 1 — Prob{b, is empty}

= poll = X,(0)] + O(w). (A.6)
This proves the first statement of the lemma. The second is proved analo-

gously. [ ]

Consider now 2 two-machine-one-buffer lines, L, and L,, where the first
machine of L, has the isolation production rate p,, the second 15(1), and the
buffer capacity is N,; the first machine of L, is characterized by p,, the
second by p'(z,, and the buffer capacity is N,. Let X,(-) and X,(-) be the
stationary probability distributions of the buffer occupancy of lines L; and
L,, respectively, and let )21(') and )22(') be the stationary probability dis-
tributions of the occupancy of beffers b, and b, in the assembly system
(i)—(vi). Then, we have

Lemma A.2:  Under Numerical Fact 3.1, the following is true:

X(k) = X(k) + O(), k; = 0,...,N,i=1,2.

Proof: Since assembly system (i)—(vi) can be described by an ergodic
Markov chain with states X, 5(k;, k,), in the steady state we write:

X500, ky)

= 3 X, (0, k)Prob{m, does not produce | 0, kj} Prob{ky— k, | 0 — 0}
ks
+ > X, ,(1, kyProb{m, does not produce, m, produces | 1, ks}
k,

Prob{ky— k, 11 = 0}, (A7)
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where Prob{m, does not produce | k;, k,} denotes the conditional prob-
ability that machine m, does not produce a part during a cycle, giventhat
buffer b, contains k; and buffer b, contains %, and
Prob {k5 — k, | k; = k,} denotes the conditional probability of the transi-
tion from the state where buffer b, contains k, parts, given that the number
of parts in buffer b; change from k| to k,. Summation over all k, yields

>

0

X,,(0, k3)Prob{m, does not produce | 0, k} } kE Prob{k;, — k, 1 0 — 0}

+ kE X,,(1, kj)Prob{m, does not produce, m,, produces | 1, k}}
%Prob{ké—>k2l 1 -0}, (A.8)
SinceProb{k; — k,10 — 0} = 1,

X,(0) = X X, 5(0, k3)Prob{m, does not produce | 0, k3}
ky

+ > X, ,(1, k})Prob{m, does not produce, m, produces | 1, k}}.
i
’ (A.9)

Consider the first term of the right hand side of equation (A.9). Since m;

is the first machine and b, contains zero parts, m, is neither starved nor
blocked. Therefore,

% X,,(0, k3)Prob{m, does not produce | 0, k3 }
=(1- Pl) % X1,2(0» ké)

= (1 — pPX,(0). (A.10)
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For the second term of the right hand side of equation (A.9), we write:
; X, ,(1, k))Prob{m, does not produce, m, produces | 1, k3 }
= 121 X, ,(1, kj)Prob{m, does not produce, m, produces | 1, k}}

+ X, (1, 0)Prob{m, does not produce, m, produces | 1, 0}.

(A.11)

When b, contains one part and b, contains at least one part, m is not
starved. If m, produces a part, then m; is not blocked. Therefore, the
conditional probability in the first term on the right hand side of equation
(A.11) is equal to (1 — p;)p,- When b, contains zero parts, m, is starved,
and the conditional probability in the second term on the right hand side of
equation (A.11) is equal to 0. Thus,

> X, ,(1, k))Prob{m, does not produce, m, produces | 1, k}}
K2

=(1 - p)p, k'21 Xm(l, ky). (A.12)
Under Numerical Fact 3.1, this can be rewritten as

> X, ,(1, kj)Prob{m, does not produce, m, produces | 1, k}}
%

= (1 = ppPplX,(1) — X, (1, 0)]
= (1 = ppolX,(1) = X;(HX,0)] + O(w)

= (1 = pppoll — X01X (1) + O(w). (A.13)

Using Lemma A.1,
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> X, 5(1, kj)Prob{m, does not produce, m, produces | 1, k3}
ks

= (1 = pPppXy(1) + O(w). (A.14)

From (A.10) and (A.14), equation (A.9) can be rewritten as

£,0) = (1 = p; + O)X,(0) + (1 — ppeX,(1) + O(w).

(A.15)
Similar arguments are used to obtain equations for X,(k,), k; =
1,..., Ny. As a result, we have the following:
X1(0) = (1 = py + O)X,(0) + (1 = pX, (D),
XD = pXi(0) + [y + (1= p)(1 = o) + 0GIK (1)
+ (1 = ppeX,(2), (A.16)

X,k = py(1 = pp)Xy(ky — 1) + [pypg + (1 — pP(1 = o) + 01X, (k)

+ (1 = ppeXyky + 1),k =2, N, — 1,
XN = py(1 = pp)X,(N, = 1) + [1 = pg + pyjg + Ow)IX,(N)).

This can be written in matrix form as:

X, = (A + ADX,, X, = [X,(0),..., X,(NDI" (A.17)
where

1-p, (1—ppy
py o+ (L= ppd — fY)
A= pi(1 "15(1)) ..
o+ (1= pp = o) (1= piy
pi(1 = po) 1= po+pipy
(A.18)
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and AA is a diagonal matrix with diagonal elements all of the order O(p),
and therefore II1AAIl ~ O(p).

From Lemma A.5 in [1], the stationary probability X,(-) of line L, is
described by X, = AX,, where A is defined by (A.18). Since A is the state
transition matrix of an ergodic Markov chain, A = 1 is an eigenvalue of
multiplicity 1. Therefore, using the perturbation theory [16],

X,k = X, (k) + Ow), &, =0,...,N,.

Analogously, we can prove that

(k) = Xy(ky) + O(u), ky = 0,..., N,.
|

Lemma A.2 shows that if X;(-) and X,(-) are known, then they can be
used to estimate the stationary probability distributions of buffer occu-
pancy X,(-) and X,(:). Our next goal is to estimate X,(0) and X,(0). Lemma
A.3 shows that this can be accomplished using the recursive procedure
(3.3).

Lemma A.3:  Under Numerical Fact 3.1,
X,(0) = X,(0) + O(u), i = 1,2,
where X,(0) and X,(0) are, respectively, stationary probabilities that buff-

ers by and b, in lines L, and L, are empty, and X,(0) and X,(0) are the
steady states of the recursive procedure (3.3).

Proof: Using Lemma A.5 of [1],

XI(O) = Q(Pl,ﬁ(l), Ny). (A.19)

Sincepy = poll — X,(0)] + O(u) fromLemmaA.1,

X,(0) = Q(py, poll — X,(0)] + O(u), N). (A.20)

From Lemma A.2 and Lemma B.1 of [6],
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X,(0) = O(py, pol1 — X5(0)] + O(u), Ny)
= Q1 poll — X5(0)], Np) + 8201, poll — X5(0)], N))O()
= Q@1 poll — X,(0)], N)) + O(p), (A21)

where

( _ =%, ~
X [x+1\f;—————(l_y)]a

yz(l _ }—CaN)Z

x FYy,
gz(X,y,N) = {

NN + 1= 2%
2N + 1 —x)?

X=Y,
and

_x(1 =y
T -

Similarly,
X5(0) = O, pol1 — X,(0)], N,) + O(u). (A.22)

As it follows from Lemma 3.1, the steady state equations of recursive
procedure (3.3) are given below:

X,(0) = Q(py, poll — X(0)], Ny, (A.23)
X5(0) = Q(p,, pol1 — X,(0)], N). (A.24)

Equations (A.21) and (A.22) show that X,(0) and X,(0) solve equations
(A.23) and (A.24) with error O(n), i.e.,

X(0) = X0) + Ou), i = 1,2.
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According to Lemma 3.1, equations (A.23) and (A.24), i.e.,
X1(0) = O(py, pol1 — X5(0)], Ny,
X,(0) = Q(py, poll = X1(0)], Ny,
have a solution (X;(0), X,(0)). We show below that this solution is, in fact,
unique. In order to prove this, introduce 2 two-machine-one-buffer serial
production lines, L, i = 1, 2, where the first machine of L, has the
production rate in isolation p;, the second py[1 — X,(0)], and the buffer
capacity N,; analogously, the first machine of L, is characterized by p,, the
second by po[1 — X;(0)], and the buffer by N,. Let PR,(p,, p,, N) denote

the production rate of a two-machine-one-buffer serial line, i.e., according
to [1],

PRy(ps, py» N) = p,[1 = Q(p,, p,» N)1 = p,[1 — Q(p,, py» N)].

Then, the following properties hold:
Lemma A4: Let PRL,» i = 1, 2, be the production rate of line L;. Then

PR; = PRy(py, pol1 — X,5(0)], Ny),

PRy, = PRy(py, pol1 = X,(0)], Ny).
In addition,

PR =PR; = PR,
Proof: Using Lemma A.5 of [1], we obtain
PRL, = poll = X(0)][1 — O(py, poll — X,(0)], N))]

=pill = Qol1 ~ X5(0)], py. Ny)]

= PRy(py, pol1 — X,(0)], Ny),
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PR, = poll = X,(0)][1 = Q(p,, poll — X;(0)], Ny)]
= pol1 = Q(poll — X,(0)], pp, No)]
= PRy pol1 — X,(0)], Ny).
Moreover, using (A.23) and (A.24),
PR, = poll — X,(0)I[1 — X,(0)],
PR, = poll — X,(O)][1 — X,(0)].
Therefore, from (3.5),

PR = PR, = PR,
n

LemMa A.5: The equilibrium equations (A.23) and (A.24) of recursive
procedure (3.3) have a unique solution.

Proof: By contradiction: Assume that along with the solution (X;(0),
X,(0)) to equations (A.23) and (A.24), there exists another solution X 100),
Xz(O)). Suppose that X,(0) > X,(0). Then, from Lemma A.4,

PR;, = PRy(p,, pol1 = X,(0)], Ny,
PR, = PRy(py poll = X,(0)], Ny).
Since function PR,(p,, p,, N) is monotonically increasing in p,,
PR, < PR,
By Lemma A 4,
P/R\L2 = P/R\Ll = PRy(py, pol1 — Xz(o)]’ N))

< PR, = PR, = PRy(p;, pol1 — X,(0)], N)).
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Again, using the monotonically increasing property of function PR,(p,, p,,

N)inp,,
poll = Xy(0)] < pol1 = Xp(0)].
Since function Q(x, y, N) is a monotonically increasing function in y,
Q(pppo[l - X2(O)], N) < Q(Pppo[l - Xz(o)], N1),

1e.,

X,(0) < X,(0),
which is a contradiction. Hence,

X,(0) = X,(0).

Assuming that X,(0) < X,(0), and proceeding analogously, yields X,(0)
= X,(0). Therefore, we conclude that

£,(0) = X,(0).

Similar arguments are used to prove that XZ(O) = X,(0). Therefore, the
solution (X;(0), X,(0)) is unique. u

Proof of Theorem 3.1: According to Lemma A.2,
X(0) = X0) + O(uw), i=1,2.
According to Lemmas A.3 and A.5,
X(0) = X0) + Ow), i=1,2.
Therefore,

X(0) = X,0) + Ou), i = 1, 2.
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Proof of Corollary 3.2: Using Lemma A.2,

X, (k) = X,(k)) + Ou), k, = 0,..., N,. (A.25)

By Lemma A.5 of [1] and Lemma A.2,

1
X,(kp) = XI(O)( )al,kl L... N, (A.26)
1 -5y
pi(1 = pp) )
where @, = #l—oandp’(') = poll — £,(0)] + O(x) (LemmaA.1). Us-
Poll — Py

ing Lemma A.3 and Theorem 3.1, equation (A.26) can be rewritten as

_ _ 1 1
X(k)) = X](O) — ol — XZ(O)] + O(u), k, = 1,..., Ny,
(A.27)
_ pi(1 = pol1 = X,(0)])
where o; = ol — X010 —py)' From (A.25) and (A.27),
X, (k) = X,(0) 1 b+ O, k, = N
1\ 1 ( p()[l "‘Xz(o)]) » Ky — ,..., 1
(A.28)

Similar arguments are used to evaluate X,(k,), k, = 1,..., N,. As a result,

1
1 = poll = X,(0)]

X,(ky) = X,(0) ( ) o + O, ky = 1,y Ny,

(A.29)

Po(1 = pol1 — X,(0)])
poll — X;(®)](1 - Pz)'

where o, =
that

Therefore, from (3.6), we conclude

X(k) = X((k) + O(u), k; = 1,.., N, i =1,2.
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Proof of Corollary 3.3: Let PR,(p,, p,, N) denote the production rate of
a two-machine-one-buffer serial line [1]. Then, we have the following two
properties:

(a). Function PR,(p,, p, N) is monotonically increasing in p,, p,, and N
(Lemma A.5 of [1]).

(B). Function Q(x, y, N), is monotonically decreasing in x and N, and
monotonically increasing in y (Lemma A.1 of [1]).

Consider two assembly systems (1)—(vi), the first of which is described
by parameters p,, i = 0, 1, 2, and N;, i = 1, 2, and the second by param-
eters p, = p, i = 0,1,2,and N, = N,, i = 1, 2. Let X,(0) and X0), i =
1, 2, denote the steady state of recursive procedure (3.3) for the first and
second assembly systems, respectively. We prove Corollary 3.3 by contra-
diction.

Assume

PR(p\, 2 po> Ni» Ny) > PRy, By, Bo» Ny, ).
Thus,
PRy(py, pol1 = X5(0)], N)) = PR(py, P2, Po» Ny, Ny)
> PR(B,, P2 Bo» N1, )
= PR,(p, Boll — X,(0)], ).

Then, by (o),

Poll — X5(0)] > poll — X,(0)].
Hence,
X,(0) > X,(0).

Since X,(0) = Q(p,, Poll — X,(0)], M) and X,(0) = Q(p, poll — X,(0)],
N,) and (B),
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Poll — X,(0)] > pol1 — X,(0)].

Again, using (o),

PRy(p. Pol1 = X1(0)], Ny) > PRy(p,. pol1 — X1(0)], Ny,

ie.,

PR(pl,pz, Pos Nl’ N2) < PR(PAp 132, ﬁo, Nl, Nz),

which contradicts the assumption. Therefore, we conclude that PR(p,, p,,
Pos N1, N5) is a monotonically increasing function of its arguments.
|

APPENDIX B. PROOFS FOR SECTION 4

To prove Theorem 4.1, Corollary 4.1 and Theorem 4.2, we need Lemmas
B.1-B.5. To formulate and prove them, we recall a few results from [1]:
Define function f,(x, y) as follows:

fN(-xs )’) = [1 - Q(x5 Ys N)][l - Q(ys X, N)]’

where Q(x, y, N) is given in (3.3). Then

(). function fo(x, y) can be represented as

_[s1 = oM
fN(x’)’) - [1 _ aNg2:| s
where
X
g y’
_xd -y
y(1 —x)

(Lemma B.1 of [1]);
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(B). under the constraint xy = p = const, function fy(x, y), achieves its
maximum value if and only if x = y. Furthermore,

SV, Vp) = [—N—r

N+1-Vp
(Lemma B.2 of [1]).
LemmaB.1: Letc, = \/ppoll — X,(0)1andc, = \Ipipoll — X,(0)]. Then

N +1
N, + PR

c,.zPR( ),i= 1,2. (B.1)

The equality takes place if and only if p; = poll — X,(0)] and p, =
po [1 — X,(0)].

Proof: From Lemma A 4,

C% = pipoll — Xx(0)]

_ Pill = QWpoll = X5(0)), Py, Ni)Ipoll = X5(0)[1 — Qpy, poll — X5(0)], N)]
(1 = Qoll — X2(0)], p1s NDI1 = Q1. pol1 = X5(0)], Ny)]

PR’
= . B.2
o1 poll = X0 (B2
By (B) and the definition of c,,
N, 2
In @1, poll — X5(0)]) = m} , (B.3)

with the equality taking place if and only if p; = pyll — X,(0)], so

% PR?

CE-——Nl————E,
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PRN,+1—c¢)
L —
1 N1 )

- >

PR(N; + 1)
cl(l +@)> ]

N, N,
_ PR(N, + 1) B4
=N+ PR ‘
Analogously,
_ PR(N, + 1) B25)
2="N, ¥ PR '
]

Lemma B.2:  The total workforce, p*, necessary to achieve the production
rate value PR, is bounded by

. (N1+1)2(N2+1)2PR3 he
= . .
P=\N,+Pr) \N, + PR (B.6)

The equality takes place if and only if
p1 = poll — X,(0)],

P2 = poll — X;(0)].
Proof: From (3.5) and Lemma A .4,

PR = py[1 = X,(O)][1 — X,0)]

_ P1ooll = X5(0)]ppoll — X,(0)]
PP2Po

22
16

PPy

(B.7)

Thus,
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PPy =DP* = 5 (B.8)

By Lemma B.1,

N, +1\2(N,+1)\2
p*z( )( )PR3
N, + PR} \N, + PR

with the equality taking place if and only if
p1 = poll — X,(0)],
P2 = poll — X,(0)].
Lemma B.2 gives a lower bound on the workforce necessary to accom-

plish a desired production rate. The following lemma shows that this
bound is achievable.

Lemma B.3:  The conditions p; = po[l — X,(0)] and p, = pol1 — X,(0)]
are achieved if and only if the workforce is distributed as follows:

(N1+1>PR
Pr=\N+pPr)""

(N2+1>PR B.9
P2=\N, 5 PR (B.9)

(N,+1)(N2+1)PR
Po= AN, ¥PR/\N, + PR) "

Proof:  Suppose p; = poll — X,(0)] and p, = pg[1 — X;(0)]. Then, from
Lemma A.4,
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PR = p,[1 = Qpo[1 — X,(0)], p1, NI

1-p
=p(] - ———
l Ny +1 ‘Pl)
N
- (B.10)
N, +1-p,
Solving (B.10) for p,, we obtain
0 ML g B.11
pi=poll = X0 = | =5 | PR (B.11)
Similarly, we have
0 AR P B.12
P2 = pull = X0 = | pp | PR (B.12)

Using Lemma A.4 and recalling that p;, = pgl1 — X,(0)] and p, = pol[l —
X0,

PR = po[1 — X,(0)][1 — X,(0)]
= poll = Q@1 poll = X,(0)], NDI1 — Oy, poll — X,(0)], Ny)]

1=p 1=p,
= po(l - =
Pl N1+1‘P1)( N2+1“P2)

N N
=p0( : )( 2 ) (B.13)

Substitute for p, using (B.11) and for p, using (B.12). Then,
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PR Nl N2
“pON+1 N‘+1)PR N, + 1 (N2+1)PR
— [ + p— P
! N, + PR 2 N, + PR
<N1+PR) (N2+PR) -
~Po N +1)\N+1) (B.14)

Therefore,

(N1+1)<N2+1)PR
Po=\N, ¥ PR/ \N, + PR] "

Now suppose that the workforce is distributed as in (B.9). Next we
show that this implies that p; = pg[1 — X,(0)] and p, = po[l — X;(0)]. By
Lemma A.5, there is a unique solution to (A.23) and (A.24). From (B.11)
and (B.12), we claim that this solution is

N, + 1 _
) )PR=1 PR B.15)

X, (0)=1-— = :
1©) (N2+PR po N +1

N+ 1 _
X2(0)=1-( ‘ )ﬂ=1 PR
N, +PR) py N+ 1

Due to the uniqueness of this solution, we only need to prove that (B.15)
is indeed a solution. Consider

1 - X,0), N N1+1PR N‘+1PRN
Q(p]’p()[ 2( )]’ 1)—Q(N1+PR 7N1+PR 4 1)

N, +1
LN T PR
N, + 1

N+ PR R

PR

N+ 1-
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_ 1—-PR
N, +1
= X,(0). (B.16)
Similarly,
1 — X,(0)], N Mot l pp bl ey
Q(Pz,po[ 1( )]’ 2) - Q(N2 + PR ’N2 + PR ’ 2)
N, + 1 bR
N, + PR
_N p1-tl g
2 N, + PR
_ 1 - PR
N, + 1
= X,(0). B.17)

Therefore, equations (B.16) and (B.17) imply that
P1 = poll — X,(0)],

py = poll — X,(0)].
|

Lemva B.4:  The minimum workforce, p,,,, required to achieve produc-
tion rate PR is given by

. Ny+1 V2 (Ny+132
Pmin = PR’
N, + PR] \N, + PR

In addition, this production rate is achieved if and only if p* is distributed
among py, p, and po so that p\popo = p*, py = poll — X,(0)] and p, =
poll — X,(0)].

Proof: According to Lemma B.2,



ASSEMBLY SYSTEMS 149

. (N1+1)2(N2+1

2
= PR, B.18
Prin =\N, + PR) \N, + PR) @19

and equality is achieved if and only if p; = po[1 — X,(0)] and p, = p,
[1 — X,(0)]. By Lemma B.3, this lower bound is obtained with the work-
force distribution as specified in equation (B.9). u

Lemma B.5:  The minimum workforce, pf,,,-n, necessary to obtain the pro-
duction rate PR is a monotonically increasing function of PR.

Proof: By Lemma B.4, pfm-n is given by

. N+ 1\ (Ny+1\2
Pmin = PR".
N, + PR} \N, + PR

Differentiation of p,,, with respect to PR yields

opri (N1+1>(N1+1)<N1+1>2 X
OPR N, + PR} (N, + PR} \N, + PR

_(N1+1>z (N2+l) Mot D) s
(

N, + PR “\N, + PR} (N, + PR)
Ny +1V N+

3PR
N, + PR} \N, + PR

(N, + DXV, + PRI(N, + 1)(N, + PR)PR*[3N,N, + PR(N, + N, — PR)] “o

N, + PR*(N, + PR)*
&V, ) (N, ) (B.19)

* . . . . .
Therefore, p,,;, is monotonically increasing in PR.
]

Proof of Theorem 4.1: “Only if”: Suppose the assembly system is unim-
provable, but either p; # poll — X5(0)] or p, # poll — X,(0)]. Then by
Lemma B4, p* > p:,,in. Thus, from Lemma B.5, workforce p* optimally
distributed can achieve a larger production rate, which is a contradiction.
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The “if” part follows from Lemma B.4. Indeed, if p; = po[l — X,(0)]
and p, = poll — X;(0)], the assembly system is unimprovable.
|

Proof of Corollary 4.1: From Theorem 3.1 and Corollary 3.2, the distri-

butions of buffer occupancy )N(l(-) and )~(2(') can be approximated with er-
ror O(u) by X,(-) and X,(-). Hence, under Numerical Fact 3.1,

—~

cb, = Prob{b, is full and m,, fails to take parts from b, }
= XI(NI)(I —py t XI,Z(ND 0)po
= XA = po) + X(N)XAO)py + O(u)
= X, (N = pol1 = X(0)]) + Ow)

= X;(N)( = pol1 = X,(0)]) + O(w),

?51 = Prob{b;, is empty}
= XI(O)
= X,(0) + O(p).

Using Lemma A.5 of [1],

b, = Qpoll — X,(0)], p1, Ny) + O(u), (B.20)
es; = 0y, poll = X,(0)], Ny) + O(w). (B.21)

The expressions for ’c\l;z and 552 can be derived analogously:
cby = Qpoll = X,(0)], pp, Ny) + O(u), (B.22)

€5, = Q(py, poll — X,(0)], Ny) + O(u). (B.23)
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Since p; = pyll — X,(0)] and p, = poll — X;(0)], from (B.20), (B.21),
(B.22) and (B.23), the result of statement (a) follows.
Since p; = poll — X5(0)] and p, = py[1 — X;(0)], from (3.6)

X0
Xik) = m, kk=1...,N, i=1,2, (B.24)
where
— Di
TN
Thus,
h; = E[h] = 2 kiXi(k;) + O(u)
N,
1 1 —p;
+ 0
2 (1_171) (Ni+1_pi) @
N(N; + 1) o Lo
=+ i=1,2.
W+ 1=y oW i= 1
(B.25)
This proves statement (b) of the corollary. u

Proof of Theorem 4.2: It has been shown in Lemma B.3 that (4.1) is
satisfied if and only if

(N1+1 )PR*
Pr=A\n+pr)

N, +1

*
- &7 e PR

N, +1 N, +1
Do = PR*,
N, + PR*) \N, + PR*
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where PR* is defined by (4.2). Thus, for an assembly system satisfying
4.1,

* PR*;(N1+1 )2(N2+1 )2
P = pipabo = PR\ oo ) \N, + pRe) -

This can be rearranged as

1 (N1 + PR*)§ (N2 + PR )§

PR* = (p*)3 B.2

P\ N1 N, + 1 (B-26)

Define a function f{:) as

2 2
_ *1(N1+x)5(N2+x)§ 527
f(x)*(P)le+1 N, +1) (B.27)
and observe that

PR* = f(PR*). (B.28)

We next prove that x(s + 1) = f(x(s)) is a contraction on [0, 1] and,
therefore, (B.28) has a unique solution which recursive procedure (4.3)
converges to. Calculate

2

. s
3

dx N+1) \N+1)\N, +1
(N, 4+ x\29 [N, + x|~
LING T X\32 [Ny T X\ 73 1
+(p*)3(1v +l)3§(N +1) 3(1\1 +1)
1 2 2

2

2
1INy +x\3 [N, + x\32 1 1
2(”*)3(1\/ +1)3(N )3_( " '
| ,+1/ 3\N;+x N, +x




ASSEMBLY SYSTEMS 153

L+ x
Since p* < 1 and = 1for 0 = x = 1, using the assumption 1 +

| 3 N, +1 N,
ﬁz = > we have

dftx)

<1,0=x=1.
dx o

By the Mean Value Theorem, dc € [x, y] such that

df(x)

dx lx=c

fx) = fy) = (x =)

Therefore,

Ifx) = fl <lx — ¥,

ie., x(s + 1) = flx(s)) is a contraction on [0, 1]. This completes the proof
of Theorem 4.2. n

APPENDIX C. PROOFS FOR SECTION 5

Proof of Theorem 5.1: Define

2 2

B *1N1+x§N2+x)g .
SNy, Ny, x) = (p*)3 (Nl n 1) (N2+1 €D
and
oo = Ar]nsx SNy, Ny, x). (C2)
N+ No=N

Using the Lagrange multiplier technique, the values N; and N; which solve
(C.2) can be determined as follows: Introduce

F(N,, Ny, \) = AN, Ny, x) + NN, + N, — N*).

Then the optimality conditions,
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IF(N,, Ny, \)
aN,

1 2
N1+x)‘§ (1-x (N2+x)§+)\=0’
(N, + D \N, + 1

2 1
OF(N, Npy M) 1 (N1 + X)Sg (Nz + X)‘S (1-x

A=0,
oN, 3N1+1 3\N, + 1 (N2+1)2

are satisfied if and only if N, = N,. Therefore, the solution of (C.2) is
given by

%
N; = % i=1,2. (C.3)

Consider now recursive procedure (4.3),
x(s + 1) = f(N]’ NZ» X(S)),
and recall that, by Theorem 4.2, lim,_,.. x(s) = PR(p;,p>, p;, N, N,),
where p;, i = 0, 1, 2, are given by (4.4). Consider now recursive procedure

(4.3) defined on the optimal pair (NT, N;) and any other one (N¥, Ng) such
thatN} + Nj = N*:

x¥(s + 1) = AN}, Ny, x*(s)), (C.4)
(s + 1) = ANE, NE, X)), (C.5)
Assume that the initial conditions for (C.4) and (C.5) are the same:

x*(0) = x*(0) € [0, 1].

We claim that
(o). x*(s) = x*(s), Vs > 0, i.e.,

PR(p}, Py, po» N1, Ny) = PR(py, p3, Po, Ni, Nb);

(B)- X,(0) = X5(0).
To prove (o), we use induction. For s = 1,
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x4(1) = (1),
because the sequence N, and N, solves (C.2). Assume that
x*(s) = x#(s), s> 1.
Since
2

2
1 (N, +x\7 /N, + x\3
2= o () (i) 3 st ) 7o
dx N, +1) \N,+1) 3\N,+x N,+x

(C.6)

i.e., fiN;, N,, x) is monotonically increasing in x, and since the sequence
N, and N, solves (C.2),

x*(s + 1) = fIN}, N3, x*(s))
= Ny, N3, X(5))
= ANT, NG, ()
=x(s + 1), Vs.
For statement (), from (C.2) and (B.15),

1-PR_1-PR

X,0) = ==
No+1ONE

2
1-PR_1-PR
A A
74‘1

Proof of Corollary 5.1: By conditions (4.1) and (5.1),

P1 = Py = poll — X,(0)].
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Substituting (C.3) into (B.25), we have

* %k
- FE
ﬁ,.=N*——+©(p),i=1,2.
25 +1-p)

Therefore, under conditions (4.1) and (5.1), equation (5.2) holds.
[

Proof of Theorem 5.2: Similar to that of Theorem 5.1. Equation (5.3)
follows directly from (C.2) and (4.4).
[

APPENDIX D. PROOFS FOR SECTION 7

Proof of Theorem 7.1: Consider an assembly system (i)—(iv) with (4.1)
taking place. Assume that the workforce distribution is p?, i=01,2,
where p; are defined by (4.4). Modify the workforce distribution to p, =
gpf andpj = (1 /g)p;, i=0,1,2,andj =0, 1, 2, where g # 0. Then, we
find that the total workforce p* is preserved and is not depending on g, but
that the line in unimprovable when g = 1. That is, the production rate
achieves its maximum value at g = 1. Let PR = PR(g). Consequently, we
have

dPR(g)

52 =0. D.1)

g=1

By the chain rule,

(]
_ | 3PRG®) a(gp;) . 9PR(g) (a g
=1 dep?) 08 o og
8 (gp;) s (2,)

dPR(g)
g

g=1

,i=0,1,2,j=0,1,2.

( . dPR(g) _ *(1)2 6PR(g))
iy J 9
p; g p; 02

g=1
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From (D.1),

+ IPR(g)

" 9p '

p=1

g=1

Since i and j are chosen arbitrarily, we therefore conclude that

:’w =J*Q£E_(_g_) ,i=0,1,2,j=0,1,2.
p; lg=1 ;i lg=1
n
APPENDIX E. PROOFS FOR SECTION 8
To prove Theorem 8.1, we need three auxiliary facts:
Lemma E.1:  The following is true:
(E.1)
apoll — X,(0)] _ ngz(pz» poll — X1(0)], Npg,(py, poll — X5(0)], Ny)
op, 1= P(z)gz(Pz»Po[l = X,(0)], Np)ga(py, poll — X5(0)], Nl),
apoll — X,(0)] P82 Poll = X,(0)], Ny)g (s poll — X,(0)], V)
o 1= poga(pys Poll = Xo(O), N)ga(pa, poll = Xy(O)). Ny)
apoll — X,(0)] 1 = 0@ poll — X,(0)), V)
9Po 1= Pégz(st poll = X,(0)], Ny)ga(p1, poll — X5(0)], Nl)’

_ 1 =0y, poll = X5(0)], NDIpoga(pa, poll — X,(0)], Ny)
1 = paga(Pas Poll = X101, Ny)ga(py, poll — Xp(0)], Ny)

apoll — X,(0)] _ 1 = 0@y, poll — X,(0)], Ny)

9Po 1 = pagr(Pas Poll = X,(0)], Ny)gy(@y, poll — X,(0)], Nl)’
_ [1 — Oy, poll — X1 (0)], N)Ipoga(p1> Poll — X5(0)], N))
1 = pigapa Poll = X,(0)], Ny)gy, poll = X,(0)1, Ny’
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where X,(0) and X,(0) are the steady states of recursive procedure (3.3),
Q(x, y, N) is defined in (3.3) and

r —
1+ + N2 Y
y( —x
. » X F Y,
= 0%y N) _ y(d —=a"%’
g[(x’y»N) ax ﬁ y
—N(N + 1)
— xX=y,
\ +1—x)?
2N+ 1 —x) €2
rx—[x+Nzcg—:i;]01N
30(x, . N) ey
.X,, _ =
gy, N = LT = f Y= Te)
y
NN + 1 —2%)
- X = )
2V + 1 — 0 Y

where o = x(1 — y) / y(1 — x).

Proof: The expression for dpy[l — X,(0)]/dp, is derived as follows:
From (A.24),

Ipoll — X500 _ dpoll — Qo poll — X1(0)), )]

ap, ap;
__ 99y, poll — X,(0)], Ny
=—Do 6p1

30(py, poll — X,(0)], N,) %]

ap, p,

=

) [aQ@z, poll = X,(0)1, Ny) apo[1 — X1<0>]}
Pol ™ apll — X,0)] ]

Since dp,/dp; = 0, by Lemma B.1 of [6],

9pol1 — X5(0)] apol1 — X,(0)]

= —Po&2(P2 Poll — X,(0)], Ny)
P Po82(P2» Do 1 2 P,

k)
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where g,(x, y, N) is given by (E.2). From (A.23),
dpoll — X,(0)]
ap,

[1 = Oy, poll — X,5(0)], Ny)]
ap,

dO(py, pol1 — X,(0)], N1)}
dp,

apy
—P082(P2 Poll — X;(0)], N,)

—P082(P2s Poll — X1(0)], N,) | —py

—Po&2(P2 Poll — X,(0)], Ny)

00y poll = XL N) py 0y, poll = Xa(O)), Ny) apfl = X2<o>]]
Po oy iy P07 apll — X,00)] o,

= P3P Poll — X,(0)], Nyg,(py, pol1 — X,(0)], N,)

apol1 — X5(0)]

1

+ P8P Poll = X1(0)], Ny)go(pys poll — X,(0)], N,)
(E.3)

Therefore, solving (E.3) for dpy[1 — X,(0)1/dp;,

Ipoll — X0 _ Pag:(p2s Poll — X,(0)], Ny)g (i, pol1 — X,(0)], Ny
P, 1= piga(py poll = X,(0)], Npgo(py, poll = Xp(O)1, Ny)

The expression of dp,[1 — X,(0)]/dp, is obtained analogously.
The expressions for dpg[l — X,(0)1/dp, and dpy[1 — X,(0)]/dp, are
derived as follows:

dpoll — X,(0)] _ apoll — Oy, poll — X;(0)], N,)]
apy apy

=1 = 0@, poll — X,(0)], N,)

00(py, poll — X,(0)], Ny)
apy

— Do
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= 1= 0y poll = X,(0)1, Ny

[aQ(onPO[l - X,(0)], Ny %

4
0 ap, apgy

00y, pol1 — X,(0)], N,) dpol1 — Xl(o)]]
apoll — X,(0)] apy ’

dpoll — X,(0)] _ dpoll — Oy, pol1 — X,(0)], Ny)]
ap py

=1 = 0y, poll — X,(0)], Ny)

90(py, poll — Xx(0)], Ny]
apy

Po

=1- 0@y, poll = X,(0)1, N))

901, Poll — Xo(0)], Ny) op,

—Po

ap, pg
00(py, poll — X,(0)], Ny) dpg[1 — X5(0)]
apoll — X,(0)] apoy '

Since dp,/dpy = 0 and dp,/dp, = 0, using Lemma B.1 of [1],

apoll — X,(0)]

P =1 - 0@, poll — X,(0)], Ny

apoll — X,(0)]
~Po&a(Pas Poll = X,(0)], Ny) ~—°—-—5p‘— (E.4)
0

apol1 — X,(0)]

e~ LT Qwpdll = X0V

apoll — X,(0)]
—po2s (1 poll = X,(0)], N}) ——‘)——5;2— (E.5)
0
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where g,(x, y, N) is defined by (E.2). Equations (E.4) and (E.5) can be
re-written in the matrix form as follows:

apoll — X,(0)]

[p 1 P082(P2 Poll — X1(0)], Nz)} apo
0821 Poll = X5(0)], Ny) 1 apoll — X,(0)]
apo
[1 — Oy, poll — X,(0)], Nz)}
= . (E.6)
1 = 0@, poll — X,(0)], Ny)

Solving (E.6) for dpy[1 — X,(0)}/dp, and dpy[1 — X,(0))/dp,, we obtain

apoll — X5(0)] _ 1 = Q(py, poll = X,(0)], Ny)
Po 1= pigapa poll — Xy Nga(pr poll — X)) Ny)
1= 00y, poll = X5(0)], NIpoga(py, Poll — X1(0)], Vo)
1- P(z)gz(Pz’ poll = X1(0)], Ny)gx(p1» Poll — X5(0)], Ny) ’

apoll — X,0)] 1= 0@y, poll — X,0)1, Ny)
o 1= Py poll — X, (O, Ngapr, poll — X)L, Ny

3 [1 = Oy, poll = X1(0)], Ny)1Ipoga(py» Poll — X5(0)], Ny)

1 = pigapn Poll = X,(0)), Ny)ga(py. poll = Xo(0)], Ny)

||
Lemma E.2:  For assembly system (i)—(vi),
JdPR
5 = 1= 0@l = X,(0)], py, Ny) (E.7)
1

apol1 — X,(0)]

—pilg1(poll — X5(0)], py, Ny) T + & (poll — X5(0)], py, NI,
1
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P
Z_R =1 = Qo[ = X,(0)], pp, Ny)
/%)

—palg1(pol1 — X,(0)], pp, Np) s

+ &(pol1 = X,(0)], py, N1,

PR
%£=u—mmmn—&@wwm—Q%mm—anmn

apoll — X,(0)]

—poll = Oy, poll — X1(0)], Ny)1ga(p1» Poll — X,(0)], Ny) P

apol1 — X,(0)]
~poll = Q@1 poll — X(0)]. N1g2(py, pol1— X,(0)], Ny) o

where dpo[l — X,(0)1/dp,, dpoll — X;(0)1/dp,, dpoll — X,(0)1/dpg,
apo [1 — X,(0))/dpy, gi(x, ¥, N) and g,(x, y, N) are given by (E.I1) and
(E.2), respectively.

Proof: By Lemma A. 4,

6PR _ 9Pl ~ Qi1 — X,0)), pi, V)]
op, ap,

dQ(pol1 — X,(0)], py, Ny)
dp,

=1 - Q@1 — X,(0)1, p1. Ny) — p,

=1 - 0@yl — X,(0)], p;, N)
a0(pol1 — X,(0)], py, Ny dpoll — X,(0)]
Py oLl — X,(0)] s

+ 90(pol1 — X,(0)], py, Ny)
ap,

s



ASSEMBLY SYSTEMS 163

dPR _ 9pall = Qo1 — X,(0)), o, N))]
ap, p;

dO(pol1 — X,(0)], po, N,)
dp,

=1- Q@1 = X,(0)], pp Ny) — p,

=1 - Qpoll — X,(0)], py, Ny)

90(pol1 — X,(0)], pp, N,) dpoll — X,(0)]

RE apoll — X,(0)] e
aQ(pol1 — X,(0)], py, N,)
+ o , (E.8)

PR _ 9poll = Oy, poll — X5(0)], NI — Oy, pol1 — X,(0)], Ny)]
o po
=[1 = 9@, poll — X,(0)], NDI[1 = QP poll — X,(0)], Ny)]
00(py, poll — X5(0)], Np)
Po
0Q(py, poll — X1(0)], N;)
po

~Poll = Q2. pol1 = X,(0)], Ny)]

~poll = Oy, pol1 — X5(0)], NI

= [1 = Q@ pol1 = X,(0)]. NDIL = Oy, pol1 — X,(0)], Ny)]

—poll = Q(p,, poll — X,(0)], Ny)]

{3Q(P1, Poll — X,(0), Ny) dp,

ap, apy
00(py, poll — X,(0)], Ny) dpgl1 — X,(0)]
apoll — X,(0)] apo

—poll = Oy, pol1 — X5(0)], Ny)]

[BQ(Pz,Po[l - X;(0)], Ny) %
op, apoy
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00(py, pol1 — X,(0)], N) dpol1 — X,(0)]
apoll — X,(0)] apo

= [1 = Q@1 poll — X,(0)], NDI[1 — Q(pa, pol1 — X,(0)], Ny)]

—poll = Oy, pol1 — X,(0)], N,)]

00(py, poll — X5(0)], N)) dpoll — X,(0)]
apoll — X,(0)] apy

~Poll = Q1. pol1 — X5(0)], Ny)]

00(p,, poll — X1(0)], N,) dpy[1 — X,(0)]
apoll — X,(0)] apo '

Using the expressions for dQ(x, y, N)/dx and dQ(x, y, N)/dy from (E.2), and
the expressions for dpgll — X,(0))/ap;, dpoll — X,(0))/dp,, dpoll —
X5(0)1/dpg, and dpy[1 — X;(0))/dp, from (E.1), (E.8) is reduced to (E.7). ®

Lemma E.3:  Under Hypothesis 8.1, the following hold:

(a) if mb; > ms;, then

3}70[1 - X3 —j(o)]

gz(Pjs poll — X3—j(0)]’ N) P,

~0(), j=1,2
(E.9)

(b) if mb; < ms;, then

apoll — X3-4(0)]

ap;

1ol = X3_(0)], p, N) + g2poll = X5_0)], p, N) ~ O(e),

i=12, (E.10)
where € = max; (€, €;,) and g,(x, y, N), g>(x, y, N), dpo[1 — X5_0)]/dp,,

and dpo[1 — X5_40))/dp;, j = 1, 2, are given by (E.2) and (E.1), respec-
tively.

Proof: Statement (a) is proved as follows: Under Hypothesis 8.1,
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(1-p)1 — )
pj N;
/] 'j
poll = X;_(0)] *

€1 = 0@, poll — X;_(0), N) =

poll — X3—j(0)] — P

1-X,_,0
I L O V) B

1 - =R o
poll — X5_,0)]
where
_ o1 = poll = X, O]
poll — X5_,(0)](1 — p)
Hence,

1— b o = poll — X5_(0)] — p;
poll — X5_40)] €1pol1 — X3_,(0)]

,j=12. (E.11)

Using (E.2) and (E.11), we write:

&) poll — X5_,0)], N)) =

Nj(Po[l - X}—j(o)] - Pj)

iy~ Iy + o = Pl = X O — py poll — X0, O]
P / poll — X3_j(0)](l = poll = X}—j(O)J)J €[l — X5_,0)] pj o
S ~ O(e).
(Poll — X5_,(0)] — p))°
R (E.12)

By Lemma E.1 and (E.12),

apoll — X5_40)]
apo

1= Q3 Poll = X001, N3_) — (1 = €)pogap3_» Poll — X{O)1, N;_)
1 = piga(p3—j Poll — X,(0)], N5_)O(e)

~

Neglecting the O(e) terms, we have
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apoll — X;5_0)]
e~ 1= 05 ol — X(O)L Ny )
Po

— Po&2P3-j, Poll — X;(O)], N3_p). (E.13)

Therefore, substituting (E.13) into the left hand side of (E.9) and using
(E.12), we conclude that

apoll — X5-,(0)]

&) Poll — X5_10)], N) e

~0(e),j=1,2.

Statement (b) is proved similarly. u

Proof of Theorem 8.1: Under the assumption that system (i)—(vi) has a
unique machine, m;, i E {0, 1, 2}, with no arrows emanating from it, the
following three cases are possible:

(o) mb; < ms, and ms, < mb,;
(B) mb; > ms, and ms, < mb,;
(y) mb; > ms; and ms, > mb,.

Consider first case (o). Under Hypothesis 8.1, using Lemmas E.2 and
E.3, for the first component machine,

‘Z_PB =1 - Q(p,1 — X,(0), p;, Ny)
D1

apol1 — X,(0)]
ap,
+ g:(pol1 — X,5(0)], py, Ny)]

= pilg1ol1 — X5(0)1, py, Ny)

apoll — X,(0)]

=1— € = pileiwoll — X,(0)], py, N 3
/41
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+ g, (poll — Xz(o)]a Py N])]
=1-q, (E.14)
where
apol1 — X,(0)]
a; = € + pilg(poll — X,(0)], py, Ny T
1
+ g,(poll — X,(0)], py, N1 ~ O(e).
Analogously, for the second component machine,
OPR
== 1= 0ol — X0 py Ny)
P2
dpol1 — X(0)]
— palg1woll — X1(0)], py, N,) —ap— + g,(pol1 — X, (0)], py, N,)]
2
=1-a, (E.15)
where
a, = Q(poll — X,(0)], py, N,)
apol1 — X;(0)]
+ pz[gl(po[l - Xl(O)], P2 Nz) T + 82(170[1 - Xl(O)], Do Nz)]
2
~ 0(1).

Finally, for the assembly machine,

PR _
py

—poll = Q@y, poll — X1(0)], Ny)1g>(p1s Poll — X5(0)], Ny)

—poll = Oy, poll — X,(0)], Ny)]

(1= Q1. poll — X(0)], NDIL = Q@y, poll — X,(0)], Ny)]

apoll — X,(0)]
po



168 C.-T. KUO et al.

apol1 — X,(0)]

&P poll — X1(0)], N,) 3P

=[1 = 0@y, poll — X,(0)], NDI(A — &)

Ipol1 — X5(0)]

—po(l = €)82(P1, Poll — X5(0)], Ny) 3
Po

—poll = Oy, pol1 = X5(0)], Ny)]

apol1 — X,(0)]

&P Poll — X1(0)], N,) P

=1-a
where

&y = Q@1 Poll = X(0)], N))(1 — €y)

apol1 — X5(0)]

+po(1 — €1)8:(py, poll — X,(0)], Ny) o7

+poll = O(py, poll — X5(0)], Np)]
apoll — X,(0)]

82(P2s Pol1 — X,(0)], N,) T ~ 0(1).

Therefore,

PR _ PR . 9PR _ PR
—>—and—>—,
oy, op, dp;  9pg

i.e., the first component machine is the bottleneck.
Consider now case (). Using Hypothesis 8.1 and Lemmas E.2 and E.3,
dPR/dp, and dPR/dp, are estimated as follows:
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dPR
= = 1= 0ol = X, pp, N
P

apoll — X,(0)]

—pilg1(oll — X5(0)], py, Ny) p + 8(poll — X5(0)], py, NI
1

= 1 - 0(1,
where

o = Q(poll — X5(0)], p1, Ny)

apol1 — X,(0)]
+plg(oll — X,5(0)], py, Ny T

+ &,@ol1 — X5(0)], py, ND] ~ O(1).

and
OPR
— =0 =€ =€)
0 11 21
apoll — X,(0)]
—Po(1 — €)82(P1, Pol1 — X,(0)], Ny) T
0
apol1 — X,(0)]
—Po(1 — €1)82(P2: Poll — X,(0)], Ny) —am__’
= 1 - ao,
where

oy =€+ €(1 —€)
dpol1 — X,(0)]
+po(1 — €)8:(p1, Poll — X,(0)], Ny) —é;—_
o

poll X0

+po(1 — €;1)82(P2, poll — X1(0)], N,) o (e).
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The expression for dPR/dp, remains the same as in case (o), i.e., (E.15).
Therefore,

OPR _ PR . 3dPR _ dPR
—>—and—>—,
dpy  Ip dpy 9P,

i.e., the assembly machine is the bottleneck.
Case () is similar to case () and is proved analogously. ]
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