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This paper deals with the class of linear time-delay systems with Markovian jumping param-
eters (LTDSMIJP). We mainly extend the stability results of the deterministic class of linear
systems with time-delay to this class of systems. A delay-independent necessary condition
and sufficient conditions for checking the stochastic stability are established. A sufficient
condition is also given. Some numerical examples are provided to show the usefulness of the
proposed theoretical results.
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1 INTRODUCTION

This paper deals with stochastic stability of the class of linear time-delay
systems with Markovian jumping parameters. The class of linear systems
with Markovian jumping parameters (LSMJP) is a hybrid class of systems
with two components in the vector state. The first component refers to the
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mode and the second one to the state. The mode is described by a con-
tinuous Markov process with finite state space. The state in each mode is
represented by a differential equation.

This class of systems have received the attention of many researchers
from both categories theoretical and practical. Many papers have been
reported in the literature. Among these papers, we can quote Kats and
Krasovskii [1], Sworder [2], Mariton and Bertrand [3], Ji and Chizeck [4],
[5], [6], Kushner [7], Mariton [8], Feng et al [9], Boukas [10] and the
references therein. In these cited papers the authors covered a large variety
of problems such as stochastic stability, stochastic controllability, stochas-
tic observability, optimal control, etc.

For the class of linear time-delay systems with Markovian jumping
parameters, no work have been reported to the literature and the estab-
lished results regarding the deterministic linear time-delay systems have
not been extended yet to this class. For the deterministic linear time-delay
systems there exists many papers in the literature. We quote Thowsen [11],
Cheres [12], Ikeda [13], Lewis [14], Brierley [15], Mori [16] and the
references therein.

The aim of this paper is to extend some results on the stability of the
class of linear time-delay systems to our class of systems. We mainly
establish a delay-independent sufficient condition to check the stochastic
stability of LTDSMIJP. A such condition is easy to check. A necessary
condition which is easy to test is also established.

The paper is organized as follows: In section 2, the stability problem is
stated for the class of systems under consideration. In section 3, a suffi-
cient condition for stochastic stability of this class is established. Other
conditions, (necessary, sufficient), are also established. In section 4, some
examples are presented to show the usefulness of the proposed theoretical
results.

2 PROBLEM STATEMENT

In this paper, we consider the class of linear time-delay systems with
Markovian jumping parameters where the dynamics is described by the
following systems of differential equations:
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) N

x(f) = Ay(r())x(r) + 21 A (r())x(t = T,) (D
=

x(t) = W), t €[ty — 7, 1) ()

where 1, is the initial time (in the rest of the paper we will take 7, = 0) and
Tis T2»--.» Ty are the system’s constant delays and 7,, = max,—; _n{.,},
x(f) € R" is the state vector at time ¢, V() € 6([—T,, 0] - R") is a
continuous vector-valued initial function, (€([—T,,, 0] — R") is the space
of continuous functions mapping [—1,,, 0] into R”) and A, (r(s)) € R™"
and A (r(t)) € R"™", g = 1,..., N are matrices with real values. These
matrices are functions of the random parameter r(z).

The parameter r(¢) in Eq. (1) represents a continuous-time discrete-state
Markov process with values in a finite set ¥ = {1, 2,..., s} with transition
probability rate matrix Il = [m,];;—,,. The transition probability from
mode i to mode j is given by:

™A + 0(4) i#+]j

Plr(t+ 8) =jir) =iy =}, " . od) i=j

3)

where A > 0 and lim,_,, ﬁA—).

In this Eq. (3), (7; = 0) is the transition probability rate from mode i to
mode j (i # j) and

N
.12# my=—my=m fori=1,.,s
J=1j

Remarks 2.1

e The system described by Egs. (1)-(3) is a hybrid system with state
vector (r(?), x(1));

e For each mode i, the system described by Egs. (1)—(3) is linear in x(?),
X(t — T, X(E — ’Tq).

To simplify the study of the class of systems under consideration, we
will assume that the system delays are constant and not dependent on the
stochastic process but depend on the system structure. Let the initial val-
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ues {W()}_, and {p(r) = r(n}_, __ be independent random func-
tions and fixed. Furthermore, we assume that the system has the same
dimension at each mode and the Markov process is irreducible.

The question we address in this paper is how to check the stability of
this class of systems. In the rest of this paper, we will establish the nec-
essary or sufficient condition for the stochastic stability, and some ex-
amples are given to illustrate our results.

When the mode of the system is i, i.e. r(f) = i, we will use the notation
Ai” to represent the matrix A (r(f)) with ¢ = 0, 1,..., N. [[x]| = o +
X+t xﬁ)”2 (where x;, for i = 1,..., n, denotes the ith element of x())
represents the Euclidean norm of vector X. The induced Euclidean norm of
matrix |[M]| is given by [M| = [\, .(M'M)]"?, where M’ denotes the
transpose of matrix M and \,,;,(M) and \,,,.(M) denote respectively the
minimum eigenvalue and the maximum eigenvalue of matrix (M). M > 0
means that the matrix M is positive-definite and M2 is the matrix square
root.

m=r=0

3 STOCHASTIC STABILITY OF LTDSMJP

The concept of stochastic stability for linear and nonlinear systems was
used by many authors. Among these authors, we quote the research of
Kats and Krasovskii [1], Mariton [8], Ji and Chizeck [6] and the references
therein. In this paper, we will use the following definition:

Dermnition  Let E {.} be the expectation, x, = x(0) be the initial state of
the system and x(t, ¥, p) be the corresponding solution of system (1)—(3)
at time t when the initial conditions are respectively ¥ and p. The system
(1)—(3) is stochastically stable if for all finite ¥(t) € b([—T,,, 0] — R"),
and p([—T,,, 0] = &, there exists a constant ¢ such that

tim £ [ x'(1, W, rg)x(t, . o)t o} <df? 4)

T—>=

is satisfied.
The following assumption establishes a relation between the system
state at time ¢ and the one at time t + m, n € [—1T,,, 0].
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AssumptioN A (Kolmanovskii [17]) For all v € [—7,,, 0], there exists a
scalar h > 1 such that

[x( + || = Alx(2)] ®)

where X(t) is the state of system at time t.

Based on the results of Ji and Chizeck [6] for the class of linear systems
with Markovian jumps and the ones of Gregory and Nazaroff [18] for the
class of linear systems with delay, we can establish the following delay-
independent sufficient condition for stochastic stability:

THEOREM 1 The system (1)—(3) is stochastically stable if for any given
positive-definite symmetric matrix Q;, Vi € ¥ and a constant positive-
definite symmetric matrix Q, the unique set of solutions, P, Vi € &, of the
coupled system:

N K
ol + PAy + P, [Zl A,j,iQ~1 A"I,-} P, + ]é m P+ NQ=—-Q;
(6)

is positive-definite symmetric.

Proof Let the mode at time ¢ be i, i.e. r(f) = i € &; then Eq. (1)
becomes:

. N
X(0) = Agx() + 3 Agx(t = 7,) ™
P

Based on the results of Kushner [7] and Gregory and Nazaroff [18], we
can choose the following stochastic Lyapunov functional V(.): R” X ¥ —
R.:

V(x(1), r(t) = i) = V(x, i)

N t
=xOPx)+ 3 [ % (m)Qx(n)n ®)
g=1 =T,

The infinitesimal operator A of the random process {(x(?), r(¢)), t = 0} is
given by:
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A V(x(2), ¢(1) = lim % [E{V(x(t + A), x(t + A)x(2), r(¢) = i}
= V(x(2), x(7) = )]

=x'(1) AoP; + PAy + > mP + NQ | x(7)
Jj=1

s X' (NPAX(1 — 7)) — S x(t - T)QX(t — 7,)

q=1 q=1

&)

Based on Eq. (6), we obtain:
_ N
AV(x, i) = —x'(HQx(t) — x’(t)P,.{ EAqu_lA;i}Pix(t)
qg=1

N
+2 X x'(OPA X(t — 1) —
qg=1

qr

N
> x'(t—7,)Qx
g=1

(t—m,)

N
=~ 2@ =) - QAP0 (Q"x(t = 7

~ QA Px(1) —x'(NQxX(1)

Notice that (Q'?x(t — 7,) — Q™" A’ Px(1))'(Q"*x(t — 7,) — Q"* A’ Px
(9)) is a positive number. Then we have:

AV(x, i) = —x'()Qx(7) (10)
On the other side, for x # 0 and for each mode i, we have:
V(x,i)) =x'Px>0 (11)

Thus,
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AV (x, i)< x'Qx
V(x,i)  xPx

v

forx #0

Using the fact that Q; > 0 and P; > 0, we can write

AV (x, 1) xm,-n(Qf)} 1)

Ve © BT Tmin [)\max(Pi)

Using now Dynkin’s formula [7], the Fubini’s theorem and the
Gronwall-Bellman lemma [19], we get for each i € &

E{V(x(2), ¥(t) = i)Ixy, 1y = i} < e PV(x,, i)
Thus,

E{V (x, i)lxy, rq = i}

N t
= E{x'()Px(r) + 21 f . X' (mQx(n)dnixo, ro = i]
q= q

N 1

= E{Xx't)Px(t)xg, vy =i} + E { 2] f,_T x'(n)Qx(n)dnlxy, ¥y = i]
q= q

=e Py (xg, 1)

Notice that E{ e f t—r, X' (MQx(M)dnlxy, ¥y = i} is a positive number,
then

E{X' (DPX(t)xg, 1o = i} < e PV (xq, ) (13)

Let N, := mineo{N,,;,(P)}, Ny := max,eo{\,,.(P;)} and using once
more Fubini’s theorem we have:
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E{ [T b pPxte,  p)dtng, o = i = ([ e Par) v (xq.
\E {fz x'(t, U, p)x(2, s, p)diis, ¥y = i} = - %[e'BT = 1]V (xy, i)

Lett = EqN=1 7, Using the assumption A and taking the limit as 7 — =, we
obtain:

T
tim E{ [ %6, p)x(t, . p)ding, £ = i} = —= x([P, + Th,, QD)%
T—x 0 )\mB
= x|

where

. 1

=13 N ax(P) + B27N,,(Q)]
This completes the proof of the Theorem 1. O
Remarks 3.1

o If the system has only a single mode, then condition (6) is reduced to
the condition of the deterministic stability of linear time-delay system.

e When the time delay is equal to 0, we obtain the result established by Ji
and Chizeck [6]. The Eq. (6) can be rewritten as:

N N s
(AOi + 21 Aqi) P; +P1(A0i + 21 Aqi) + 21 q;X; = -Q (14
q= q= j=

e Notice that the proposed result doesn’t depend on the delay of the
system.

¢ Notice that the condition of Theorem 1 given by Eq. (6) is similar to the
following conditions:

{A(’)iP,» +PAy + 2= mP, + —NQ — Q,
Q - Pi[22’=1 Aqu_lA:]i]Pi >0
The first equation of the system (17) gives the condition of the stochas-

tic stability of linear system with Markovian jumping parameters (LSMJP)
given by (1)-(3) when A;; = 0 forg = 1,...,Nandi = 1,....s.

(15)



STOCHASTIC STABILITY 195

The following corollary provides a necessary condition for stochastic
stability which easier to test.

CoroLrary 1 If the system described by Egs. (1)—(3) is stable in the
stochastic sense, for each mode i € &, then the matrices (AOi +

ZAqi — 1/2mwJ)and (A, — 1/2w]) have allits eigenvalues in the left
half plane i.e. stable.

Proof Suppose that the system described by the Egs. (1)-(3) is stochas-
tically stable, i.e. for any given matrices Q,, Vi € & and Q, there exists s
unique matrices P; satisfying the condition (6) (resp. (17)). Therefore, the
systems

X(1) = Ax(t) t=1,
x(f) = [A,. + % Aq,}x(t) 1=1,
g=1

are stochastically stable. Using the corollary 1, established by Ji an
Chizeck [6], we conclude, that for each i € & the matrices

A+ 3=V A,; — 1/2mland A, — 1/ 2] are stable.
Notice that the stability of the matrix A, + Z)_; A, — 1/2mI or
A; — 1/2w]I for each mode i € ¥ is not sufficient for the stochastic

stability of (1)—(3), this is shown in example 4.2 of section 4.
The following corollary gives a delay-independent sufficient condition
for stochastic stability of LTDSMJP which represents an easy test.

CoroLLARY 2 Let Q; € R™™ be a given positive-definite symmetric ma-
trix such that the system of s coupled equations

ApP + PAy + > P, = —NQ — Q (16)
j=

has a unique solution set of positive-definite symmetric matrix P, Then the
system (1)—(3) is stochastically stable if the following condition

)\min(Qi))\min(Q)

, vied a7
()\max(Pi))z

N
3 IA P <v:=
q=1

is satisfied
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Proof Take the stochastic Lyapunov functional given by Eq. (8) where P,
is symmetric positive-definite solution of system (18). Consider now, the
weak infinitesimal operator & of the stochastic process {(x(?), r(t)), t =
0}:

AV (x(2), v(2) = i) = x'(1) | AGiP, + PA,, + 2 P + NQ | x(1)
+ 2x/(1)P, 2 At = 7,) — Nx'(t — 1)Qx(t — 7))
g=1
Based on the Eq. (18) we have
~ N
oAV (x, i) = —x'(f) (Q,. -P, > Aq,.Q“lA;,,.P,)x(t)
q=1

N
-x'(OP; X A, 07" AL Px(1)
q=1

N N
FOR Z Al =) = Z X (= m)Qxlt =)
9= a=
_qé (Q"x(t — T,) — Q2 ALPx(1)(Q"x(t — )

- Q APx(1) —x (r)( - P, 2 A Q7' A, ,-)xm

AP 2 llAq,Hz} @)

- 7\mm(Q)
= -Blx0)l
where B,:= \,;,(Q) — Amm( Q) P = AP > 0.
The end of the proof is similar to the one presented for the proof of
Theorem 1. O

Remark 3.2 It can be seen from Theorem 1 that our result consists of
solving a coupled Riccati equations type to check the stochastic stability
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of (1)—(3), which can be solved by the numerical algorithm of Abou-
Kandil et al. [21].

4 EXAMPLES

In this section, we will present some examples to illustrate the usefulness
of the proposed theoretical results. Also we will try to justify the features
we point out in the previous remarks.

Example 4.1 Let us consider a system with two modes and continuous
state X(f) € R?. Let the dynamics in each mode bedescribed as follows:

05 -1 0.5 -0.2
mode 1: Ay = [ 0 _3}’ An = [0.2 0.3 }

51 -0.3 0.5
mode 2: Ay = [ 1 002}’ Ap = [ 04 —0.5}

Let us also assume that the delay is the same in the two modes i.e. T, =
7, = ls and the initial conditions are {(f)_.—, = [, 1]’. Finally let the
generator matrix II of the stochastic process r(z) be:

and p such that p(¥)_,-o = 1.

Let us choose for computation the following matrices Q; = Q, = Q =
I, where I, denotes the 2 X 2 identity matrix. The solution of the corre-
sponding coupled Riccati equations using the numerical algorithm given
in [21] gives two symmetric and positive-definite matrices:

[1.0206 0.1123] _[0.5444 0.2837}
1= , 2=

0.1123 1.2255 0.2837 1.9923

Based on Theorem 1, the system is then stochastically stable. A program
written in Matlab was developed to simulate the evolution of the consid-
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ered system. The results of the simulation are shown in Figure 1, where
the curves of the variables x,(#), x,(f) and r(f) versus time are plotted.

Remark Notice that the system in each mode is unstable. Therefore we
conclude, that the stability in each mode is not necessary for the stochastic
stability of the system.

The solution of the coupled Lyapunov equations (Eq. (18)) gives two
positive-definite symmetric matrices:

~ [0.9048 0.0553}
1 ’ 2

[0.4898 0.2043]
0.0553 0.8909

0.2043 1.3847

Using condition (19), we obtain

IALF=03<v, =11

2
Time (sec)
FIGURE 1 Evolution of modes and states versus time.
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[ALF =0.75>v, =05

The condition of corollary 2 is not satisfied and consequently we can
not conclude that the system under study is unstable, since the condition of
this corollary is only sufficient.

ExampLE 4.2 Let us consider a dynamic system with continuous state in
IRsup2 and two modes. Let the matrices in each mode be as follows:

3 -1 —41
mode 1: A01=[0_3], A”=[01}

-30 1 0
mode 2: A02=[52], A12=[_5_5}

Let also assume that the delay is the same in the two modes i.e. T, = T,
= 1s and the initial conditions are {(#)_,~, = [1,1]’. Finally let the
generator matrix Il of the stochastic process r(f) be:

S

A program using Matlab has been developed to simulate the evolution
of this dynamic system. The simulation results are shown in figure 2,
where the curves of the variables x,(f), x,(¢) and r(f) versus time are
plotted. According to these curves, we conclude that the system is stochas-
tically unstable.

The solution of the coupled Lyapunov equation given by (16) of non-
delayed LSMIJP is:

P=[1 0 }=[0.5 0 ]
171005263, | 0 0.3158

These matrices are symmetric and positive-definite, which means that
the LSMJP is stable. Therefore, we see that the stability of the LSMJP
does not imply the stability of the LTDSMIS. The reverse is true.



200 E. K. BOUKAS and K. BENJELLOUN

2
Time (sec)
FIGURE 2 Evolution modes and states versus time.

5 CONCLUSION AND FUTURE DIRECTIONS

This paper deals with the class of linear time-delay systems with Mark-
ovian jumping parameters. A delay-independent necessary condition and
sufficient conditions for stochastic stability of this class of systems have
been established. To overcome the computation of the Riccati equations a
delay-independent sufficient condition was proposed. Some examples have
be given to show the proposed results. The delay-dependent mode case
remains an open question.
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